Website: <u>iceps.utg.edu.ig</u>

Email: jceps@eps.utq.edu.iq

DOI: http://doi.org/10.32792/utq.jceps.12.02.27

On Best Multiplier Approximation of k-Monotone of $f \in L_{p,\lambda_n}[-\pi,\pi]$

Saheb K. Al-Saidy 1*, Hasan W. Maktoof 2, Abdul khaleq owaid mazeel 3

 $\mathbf{1}_{Department\ of\ Communcation,\ \ College\ of\ Engineering,\ \ Uruk\ University,\ \ Baghdad,\ \ Iraq$

This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstrac:

The aim of this paper is to obtain the degree of the best multiplier approximation of monotone unbounded periodic functions in L_{p,λ_n} —space.

Keywords: Multiplier Integral, Multiplier Averaged Modulus of Smoothness, Multiplier Norm.

Introduction:

There are several researchers and specialists have worked in the field of approximation theory and have obtained results. For example; In 1982 [1], V.A.Popov studied and got several results about one-sided approximation of periodic function. Also, in 1989 [2], V.H.Hristove, obtained some results of best one-sided approximation by interpolating polynomial of periodic functions. In 2004 [3] N.M.Kassim had studied the monotone and comonotone approximation. In 2004 [4] L.Leindler analyzed the topic regarding the degree of approximation and got results. In 2014 [5] S.K.Jassim and Zoboon had studied the approximation of unbounded functions by utilizing the trigonometric polynomials in locally-Global space $L_{p,\delta,\omega}$.

In this work, the Jackson polynomial will be utilized to study and analyze the degree of the best multiplier approximation of monotone unbounded periodic functions in L_{p,λ_n} -space.

1. DEFINITONS and CONCEPTS:

Definition (1.1) [7] (A Multiplier Convergence)

A series $\sum_{n=0}^{\infty} a_n$ is called a multiplier convergent series if there is a convergent sequence of real numbers

 $\{\lambda_n\}_{n=0}^{\infty}$ such that $\sum_{n=0}^{\infty} a_n \lambda_n \leq \infty$ and $\{\lambda_n\}_{n=0}^{\infty}$ is called multiplier for the convergence.

Definition (1.2) (Multiplier Intergal)

For any real valued function $f \in L_{p,\lambda_n}(X)$, where $X = [-\pi,\pi]$, if there is a sequence $\{\lambda_n\}_{n=0}^{\infty}$, such that:

 $²_{Department}$ of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq

 $[\]mathbf{3}_{Department\ of\ Mathematics,\ College\ of\ Science,\ Mustansiriyah\ University,\ Baghdad,\ Iraq$

$$\int_{-\pi}^{\pi} f(x) \lambda_n dx < \infty, \tag{1.1}$$

then f is called a Multiplier integrable function, λ_n , is called a Multiplier integrable sequence.

Definition (1.3) (The Multiplier Norm)

Let $f \in L_{p,\lambda_n}(X)$, where $X = [-\pi, \pi]$ then: $\|f\|_{p,\lambda_n}$ is given by the below definite integral:

$$\|f\|_{p,\lambda_n} = \left[\int_{-\pi}^{\pi} |(\lambda_n f)(x)|^p dx\right]^{\frac{1}{p}}.$$
 (1.2)

Definition (1.4) [6]

Let $f \in L_p[a,b]$, where $1 \le p \le \infty$, then the integral modulus $(L_p$ -modulus or p-modulus) of order k of the function f is the following function of $\delta \in [0,(b-a)/k]$:

$$\omega_k(f;\delta)_{L_p} = \sup_{0 \le h \le \delta} \left\{ \int_a^{b-kh} \left| \Delta_h^k f(x) \right|^p dx \right\}^{1/p} (1.3)$$

Definition (1.5)

Let $f \in L_{p,\lambda_n}(X)$, where $X = [-\pi, \pi], 1 \le p < \infty$, then:

The Multiplier integral modulus of order k of the function f where $0 \le \delta \le b - ak$, is defined by:

$$\omega_k(f,\delta)_{p,\lambda_n} = \sup_{h \in [0,\delta]} \left(\int_a^{b-kh} |\Delta_h^k(\lambda_n f)(x)|^p dx \right)^{\frac{1}{p}},\tag{1.4}$$

where

$$\Delta_h^k(\lambda_n f)(x) = \sum_{m=1}^k (-1)^{m+k} {k \choose m} (\lambda_n f)(x+mh); {k \choose m} = \frac{k!}{m!(k-m)!}.$$
 (1.5)

Definition (1.6) [6]

Let $f \in L_p(X)$; where X = [a,b] and $1 \le p \le \infty$. The local modulus of smoothness of the function f of order k at a point $x \in [a,b]$ is the following function of $\delta \in [0,(b-a)/k]$:

$$\omega_k(f, x; \delta) = \sup\{\left|\Delta_h^k f(t)\right| : t, t + kh \in \left[x - \frac{k\delta}{2}, x + \frac{k\delta}{2}\right] \cap [a, b]\}$$
 (1.6)

Definition (1.7)

If $f \in L_{p,\lambda_n}(X)$, where $X = [-\pi, \pi], 1 \le p < \infty$, then the multiplier local modulus of smoothness of a function f of order k at a point $x \in [a, b]$,

$$0 \le \delta \le \frac{b-a}{k}$$

is defined by:

$$\omega_k(f, x, \delta)_{p, \lambda_n} = \sup_{h \in [0, \delta]} \{ \Delta_h^k (\lambda_n f)(t) : t, t + kh \in [x - \frac{k\delta}{2}, x + \frac{k\delta}{2}] \cap [a, b] \}. \tag{1.7}$$

Definition (1.8) [6]

The averaged modulus of smoothness of order k (or τ -modulus) of the function $f \in M[a,b]$ is the following function of $\delta \in [0,(b-a)/k]$:

$$\tau_{k}(f;\delta)_{p} = \|\omega_{k}(f,..;\delta)\|_{L_{p}} = \left[\int_{a}^{b} (\omega_{k}(f,x;\delta))^{p} dx\right]^{\frac{1}{p}}$$
(1.8)

Definition (1.9)

If $f \in L_{p,\lambda_n}(X)$, where $X = [-\pi, \pi], 1 \le p < \infty$, then the multiplier averaged modulus of smoothness of order k of $f \in L_{p,\lambda_n}(X)$, where $X = [-\pi, \pi]$, is defined by:

$$\tau_k(f,\delta)_{p,\lambda_n} = \| \omega_k(f,.,\delta) \|_{p,\lambda_n} = \left(\int_a^b \left[\omega_k(\lambda_n f, x, \delta) \right]^p dx \right)^{\frac{1}{p}} (1.9)$$

Definition (1.10)[6]

If $f \in L_p(X)$, X = [a, b], then:

$$E_n(f)_p = \inf\{\|f - P_n\|_p : P_n \in P\}$$
(1.10)

Such that $E_n(f)_p$ is called the degree of the best monotone multiplier approximation of f by polynomial P_n .

Definition (1.11)

If $f \in L_{p,\lambda_n}(X)$, $X = [-\pi, \pi]$, then:

$$E_n(f)_{p,\lambda_n} = \inf\{ \|f - S_n\|_{p,\lambda_n} : S_n \in P\}$$
 (1.11)

Such that $E_n(f)_{p,\lambda_n}$ is called the degree of the bestmonotone multiplier approximation of f by polynomial S_n .

Definition (1.12) [6]

If $f \in L_p(X)$, Then the best one-sided approximation of f by means of trigonometric polynomails of order n in $L_p(X)$ is given by:

$$\tilde{E}_n(f)_{p,\lambda_n} = \inf\{ \|P - Q\|_{L_{-}} : P, Q \in T, Q(x) \le f(x) \le P(x); \forall x \}$$
(1.12)

Definition (1.13)

If $f \in L_p(X)$, $X = [-\pi, \pi]$, then:

$$\tilde{E}_n(f)_{p,\lambda_n} = \inf\{\|S_n - G_n\|_{p,\lambda} : S_n, G_n \in T, G_n(x) \le f(x) \le S_n(x); \forall x\}$$
(1.13)

Such that $\tilde{E}_n(f)_{p,\lambda_n}$ is called the degree of the best one-sided monotone multiplier approximation of f by polynomials S_n and S_n .

In the next section, significant lemmas will be proved.

2. AUXILIARY LEMMAS:

Let Jackson polynomial such that:

$$\varphi_{r,n}(t) = (n\sin\frac{\pi}{4n})^{2r} \left[\frac{\sin nt}{n\sin(t/2)}\right]^{2r}; \ r, n \in \mathbb{N},$$
(2.1)

Thus, $\varphi_{r,n}(t)$ is trigonometric polynomial of degree r(2n-1).

Lemma (2.1)

 $\varphi_{r,n}(t)$ has the following properties:

(1)
$$\varphi_{r,n}(t) \ge 1$$
, for every $|t| \le \frac{\pi}{2n}$.

(2)
$$\varphi_{r,n}(t) \leq c(r)$$
.

(3)
$$\sup \{ \varphi_{r,n}(t) : t \in [\frac{m\pi}{n}, \frac{(m+1)\pi}{n}] \} \le c(r)m^{-2r}; m = 1, 2, ..., n-1.$$

(4)
$$\sup \{ \varphi_{r,n}(t) : t \in \left[\frac{(m-1)\pi}{n}, \frac{m\pi}{n} \right] \} \le c(r) |m|^{-2r}; m = -n+1, -n+2, ..., -1.$$

(5)
$$\|\varphi_{r,n}(t)\|_{p,\lambda_n} \le c(r) \left(\frac{1}{n}\right)^{1/p}; 1 \le p < \infty; r > \frac{1}{p}.$$

Where $\varphi_{r,n}(t) = (n \sin \frac{\pi}{4n})^{2r} \left[\frac{\sin nt}{n \sin(\frac{t}{2})} \right]^{2r}$ for every $r, n \in \mathbb{N}$, is a trigonometric polynomial of degree

$$r(2n-1)$$
.

Proof:

To show that (1) holds, i.e., for every for every $|t| \le \frac{\pi}{2n}$, we get $\varphi_{r,n}(t) \ge 1$, where

$$\varphi_{r,n}(t) = (n\sin\frac{\pi}{4n})^{2r} \left[\frac{\sin nt}{n\sin(\frac{t}{2})}\right]^{2r}; r, n \in \mathbb{N},$$

Let
$$t = \frac{\pi}{2n}$$
, then

$$\varphi_{r,n}(t) = \left(n\sin\frac{\pi}{4n}\right)^{2r} \left[\frac{\sin n(\frac{\pi}{2n})}{\frac{\pi}{n\sin(\frac{\pi}{2n})}}\right]^{2r} = \left[n\sin\frac{\pi}{4n}\right]^{2r} \frac{\left[\sin(\frac{\pi}{2})\right]^{2r}}{\left[n\sin\frac{\pi}{4n}\right]^{2r}} = \left[\sin(\frac{\pi}{2})\right]^{2r} = 1$$
 (2.2)

Then for $t = \frac{\pi}{2n}$, $\varphi_{r,n}(t) = 1$. For $|t| < \frac{\pi}{2n}$, $t \in (-\frac{\pi}{2n}, \frac{\pi}{2n})$, $\varphi_{r,n}(t) > 1$. Which then yields that $\varphi_{r,n}(t) \ge 1$ for

every $|t| \le \frac{\pi}{2n}$. To show that (3) works for every t, it is sufficient to show that

$$\sup \{\varphi_{r,n}(t): t \in [\frac{m\pi}{n}, \frac{(m+1)\pi}{n}]\} \leq c(r)m^{-2r}; m = 1, 2, ..., n-1 \text{ where } \varphi_{r,n}(t) = (n\sin\frac{\pi}{4n})^{2r} [\frac{\sin nt}{n\sin(\frac{t}{2})}]^{2r}; r, n \in \mathbb{N}.$$

Since $\sin nt \le 1$, then

$$\varphi_{r,n}(t) \le [n\sin(\frac{\pi}{4n})]^{2r} \frac{1}{[n\sin(\frac{t}{2})]^{2r}}$$

Which then yields that

$$\varphi_{r,n}(t) \le c(r) \frac{1}{\left[n\sin(\frac{t}{2})\right]^{2r}}$$

Hence, we get:

$$\varphi_{r,n}(t) \le c(r) \frac{1}{n^{2r} \sin^{2r} (\frac{m\pi}{2n})}$$

For every $t \in \left[\frac{m\pi}{n}, \frac{(m+1)\pi}{n}\right]$. Then

$$\varphi_{r,n}(t) \le c(r)\pi^{2r} \frac{1}{n^{2r} 2^{2r} (\frac{m\pi}{2n})^{2r}} = c(r)\pi^{2r} \frac{1}{n^{2r} 2^{2r} \frac{m^{2r} \pi^{2r}}{2^{2r} n^{2r}}} = c(r) \frac{1}{m^{2r}} = c(r)m^{-2r}$$
(2.3)

Hence $\varphi_{r,n}(t) \le c(r)m^{-2r}$ for m = 1, 2, ..., n-1. Next, to show (2), from above $\varphi_{r,n}(t) \le c(r)m^{-2r}$, we have $\varphi_{r,n}(t) \le c(r)$. To show that (4) works, in the same way (3) we get:

$$\varphi_{r,n}(t) \le c(r) |m|^{-2r}$$
 for every $m = -n+1, -n+2, ..., -1$.

To show that (5) holds, it is sufficient to show that:

$$\|\varphi_{r,n}(t)\|_{P,\lambda_n} \le c(r)(\frac{1}{n})^{1/p} \text{ for } 1 \le p < \infty, \ r > \frac{1}{2p}$$

Now

$$\|\varphi_{r,n}(t)\|_{P,\lambda_{n}} = \left[\int_{-\pi}^{\pi} |\lambda_{n}\varphi_{r,n}(t)|^{p} dt\right]^{\frac{1}{p}}$$

$$\|\varphi_{r,n}(t)\|_{P,\lambda_{n}}^{p} = \int_{-\pi}^{\pi} \lambda_{n}\varphi_{r,n}^{p}(t)dt = \int_{-\pi}^{\frac{\pi}{p}} \lambda_{n}\varphi_{r,n}^{p}(t)dt + \int_{\frac{\pi}{p}}^{\pi} \lambda_{n}\varphi_{r,n}^{p}(t)dt$$

$$\|\varphi_{r,n}(t)\|_{P,\lambda_{n}}^{p} = 2\int_{0}^{\frac{\pi}{p}} \lambda_{n}\varphi_{r,n}^{p}(t)dt + \int_{\pi/p}^{\pi} \lambda_{n}\varphi_{r,n}^{p}(t)dt \le 2\frac{\pi}{n}c(r)^{p}$$
(2.5)

Since $|\varphi_{r,n}(t)| \le c(r)$, then

$$\left\| \varphi_{r,n}(t) \right\|_{P,\lambda} \le \frac{c(r)^p}{n} \tag{2.6}$$

By taking the root $\frac{1}{p}$. Hence $\|\varphi_{r,n}(t)\|_{P,\lambda_n}^P \le c(r)(\frac{1}{n})^{1/p}$.

The proof is completed.

Now let $r, n \in \mathbb{N}$, and let N = r(2n-1)

$$S_n^{\pm}(f,x) = f(x) \pm \int_{-\pi}^{\pi} \varphi_{r,n}(x-t)dt \sum_{m=0}^{k} (-1)^{k-m} {k \choose m} \sup\{f(x+mh) : x, x+mh \in [-\pi,\pi]\} \lambda_n$$
 (2.7)

Lemma (2.2)

Let $f \in L_{P,\lambda_n}(X)$, where $X = [-\pi, \pi]$ then $S_n^- \le f(x) \le S_n^+$.

Proof:

Since
$$S_n^{\pm}(f,x) = f(x) \pm \int_{-\pi}^{\pi} \varphi_{r,n}(x-t)dt \sum_{m=0}^{k} (-1)^{k-m} {k \choose m} \cdot \sup\{f(x+mh): x, x+mh \in [-\pi,\pi]\} \lambda_n$$

Where $\varphi_{r,n}(t)$ is a trigonometric polynomial of degree r(2n-1) and

$$\varphi_{r,n}(t) = (n\sin\frac{\pi}{4n})^{2r} \left[\frac{\sin nt}{n\sin(\frac{t}{2})}\right]^{2r}; r, n \in \mathbb{N},$$

First, we want to show that $f(x) \ge S_n^-$. Start with:

$$f(x) - [S_{n}^{-}(f,x)] = f(x) - [f(x) - \int_{-\pi}^{\pi} \varphi_{r,n}(x-t)dt \sum_{m=0}^{k} (-1)^{k-m} {k \choose m} \cdot \sup\{f(x+mh) : x, x+mh \in [-\pi,\pi]\} \lambda_{n}]$$

$$f(x) - [S_{n}^{-}(f,x)] = \int_{-\pi}^{\pi} \varphi_{r,n}(x-t)dt \sum_{m=0}^{k} (-1)^{k-m} {k \choose m} \sup\{f(x+mh) : x, x+mh \in [-\pi,\pi]\} \lambda_{n}$$

$$f(x) - [S_{n}^{-}(f,x)] \ge \sum_{m=0}^{k} (-1)^{k-m} {k \choose m} \sup\{f(x+mh) : x, x+mh \in [-\pi,\pi]\} \lambda_{n} \ge 0$$

Then $f(x) - [S_n^-(f, x)] \ge 0$ and hence $f(x) \ge [S_n^-(f, x)] \dots (1)$ Similarly,

$$S_{n}^{+}(f,x) - f(x) = f(x) + \int_{-\pi}^{\pi} \varphi_{r,n}(x-t)dt \sum_{m=0}^{k} (-1)^{k-m} {k \choose m} \sup\{f(x+mh) : x, x+mh \in [-\pi,\pi]\} \lambda_{n} - f(x)$$

$$S_{n}^{+}(f,x) - f(x) = \int_{-\pi}^{\pi} \varphi_{r,n}(x-t)dt \sum_{m=0}^{k} (-1)^{k-m} {k \choose m} \sup\{f(x+mh) : x, x+mh \in [-\pi,\pi]\} \lambda_{n}$$

$$S_n^+(f,x) - f(x) \ge \sum_{m=0}^k (-1)^{k-m} {k \choose m} \sup \{ f(x+mh) : x, x+mh \in [-\pi,\pi] \} \ge 0$$

$$S_n^+(f,x) - f(x) \ge 0$$
 and then we get $S_n^+(f,x) \ge f(x)$...(2)

From (1) and (2) we get: $S_n^- \le f(x) \le S_n^+$.

3. MAIN RESULTS

Theorem:

If
$$f \in L_{P,\lambda_n}(X)$$
, where $X = [-\pi, \pi]$ then $E_n(f)_{P,\lambda_n} \le ||S_n^+ - S_n^-||_{P,\lambda_n} \le c(r,n)\tau_k(f,\delta)_{P,\lambda_n}$

Proof:

First, we will show that $E_n(f)_{P,\lambda_n} \le c(r,n)\tau_k(f,\delta)_{P,\lambda_n}$. Let $r,n \in \mathbb{N}$, and N=r(2n-1).

Since
$$S_n^{\pm}(f,x) = f(x) \pm \int_{-\pi}^{\pi} \varphi_{r,n}(x-t)dt \sum_{m=0}^{k} (-1)^{k-m} {k \choose m} \cdot \sup\{f(x+mh): x, x+mh \in [-\pi,\pi]\} \lambda_n$$

Where $\varphi_{r,n}(t)$ is a trigonometric polynomial of degree r(2n-1) and

$$\varphi_{r,n}(t) = (n \sin \frac{\pi}{4n})^{2r} \left[\frac{\sin nt}{n \sin(\frac{t}{2})} \right]^{2r}; r, n \in \mathbb{N}.$$

Now

$$S_{n}^{+} - S_{n}^{-} = 2 \int_{-\pi}^{\pi} \varphi_{r,n}(x - t) dt \Box \sum_{m=0}^{k} (-1)^{k-m} {k \choose m} \sup \{ f(x + mh) : x, x + mh \in [-\pi, \pi] \} \lambda_{n}$$
 (3.1)

$$\left\| S_n^+ - S_n^- \right\|_{P,\lambda_n} \le c(r,n) \int_{-\pi}^{\pi} \sum_{m=0}^{k} (-1)^{k-m} {k \choose m} \sup \left\{ f(x+mh) : x, x+mh \in [-\pi,\pi] \right\} \lambda_n dx \tag{3.2}$$

$$\left\|S_n^+ - S_n^-\right\|_{P,\lambda_n} \le c(r,n) \int_{-\pi}^{\pi} \omega(f,\lambda_n,x,\delta) dx, \delta = \frac{1}{n}$$

$$\tag{3.3}$$

And then

$$c(r,n)\int_{-\pi}^{\pi}\omega(f,\lambda_n,x,\delta)dx = c(r,n)\tau_k(f,\delta)_{P,\lambda_n}$$
(3.4)

$$\left\|S_n^+ - S_n^-\right\|_{P,\lambda_n} \le c(r,n)\tau_k(f,\delta)_{P,\lambda_n} \tag{3.5}$$

To prove the other direction, i.e., prove $\tau_k(f,\delta)_{P,\lambda_n} \leq \frac{c}{n} \sum_{i=1}^n E_i(f)_{P,\lambda_n}$.

Since $\tilde{E}_n(f)_{p,\lambda_n} = \left\| S_n^+ - S_n^- \right\|_{P,\lambda_n}$, then:

$$\Delta_h^k(\lambda_n f)(x) = \sum_{m=0}^k (-1)^m \binom{k}{m} (\lambda_n f)(t + (k - m)h), \ x \in [-\pi, \pi], \ t, t + kh \in [x - \frac{k\delta}{2}, x + \frac{k\delta}{2}]$$

From lemma (2) we have $S_n^- \le f(x) \le S_n^+$. Hence:

$$\Delta_h^k(\lambda_n f)(x) \le \sum_{i=0}^{k/2} {k \choose 2i} S_n^+(t + (k-2i)h) - \sum_{i=0}^{k-1/2} {k \choose 2i+1} S_n^-(t + (k-2i-1)h)$$
(3.6)

Then

$$\Delta_{h}^{k}(\lambda_{n}S_{n}^{+})(t) - \sum_{i=0}^{k-1/2} \left\{ \binom{k}{2i+1}S_{n}^{-}(t + (k-2i-1)h) - S_{n}^{+}(t + (k-2i-1)h) - (S_{n}^{+}(x) - S_{n}^{-}(x)) \right\} + \sum_{i=0}^{k-1/2} \binom{k}{2i+1}(S_{n}^{+}(x) - S_{n}^{-}(x))$$

$$\leq \Delta_h^k \lambda_n S_n^+(t) + \omega_k (S_n^+ - S_n^-, \delta)_{P,\lambda_n} + 2^k (S_n^+(x) - S_n^-(x))$$

By using the property: $\omega_k(f,\delta)_{P,\lambda} \leq c(k)\omega_1(f,\delta)_{P,\lambda}$

$$\leq \Delta_h^k(\lambda_n S_n)(t) + 2^k \omega_1(S_n^+ - S_n^-, \delta)_{P,\lambda_n} + 2^k (S_n^+(x) - S_n^-(x))$$

$$= \Delta_h^k(\lambda_n S_n)(t) + 2^k k \delta \|S_n^+ - S_n^-\|_{P,\lambda} + 2^k (S_n^+(x) - S_n^-(x))$$

By taking the norm for both sides we get:

$$\omega_{k}(f,\delta)_{P,\lambda_{n}} \le \omega_{k}(S_{n}^{+},\delta)_{P,\lambda_{n}} + 2^{k} \left\| S_{n}^{+} - S_{n} \right\|_{P,\lambda_{n}}$$
(3.7)

Then

$$\omega_k(f,\delta)_{P,\lambda_n} \le \omega_k(S_n^+,\delta)_{P,\lambda_n} + 2^k \tilde{E}_n(f)_{p,\lambda_n} \tag{3.8}$$

By utilizing the fact that

$$\int_{a}^{b} f(x)dx = \frac{b-a}{n} \sum_{i=1}^{n} f(x_{i})$$
(3.9)

And by taking the norm for both sides we get:

$$\tau_{k}(f,\delta)_{P,\lambda_{n}} \leq \tau_{k}(S_{n}^{+},\delta)_{P,\lambda_{n}} + \frac{2^{k}2\pi}{n} \sum_{i=1}^{n} \tilde{E}_{n}(f(x_{i})_{p,\lambda_{n}})$$

$$(3.10)$$

By using the property:

$$\tau_{k}(f_{1} + f_{2}, \delta)_{P, \lambda_{m}} \le \tau_{k}(f_{1}, \delta)_{P, \lambda_{m}} + \tau_{k}(f_{2}, \delta)_{P, \lambda_{m}}$$
(3.11)

We get:

$$\tau_{k}(S_{n}^{+}, \delta)_{P, \lambda_{n}} \leq \sum_{i=1}^{n} \tau_{k}((S_{2^{i}}^{+} - S_{2^{i-1}}^{+}), \delta) + \tau_{k}((S_{1}^{+} - S_{0}^{+}), \delta)$$
(3.12)

And then

$$\tau_{k}(f,\delta)_{P,\lambda_{n}} \leq \sum_{i=1}^{n} \tau_{k}((S_{2^{i}}^{+} - S_{2^{i-1}}^{+}),\delta) + \frac{2^{k+1}\pi}{n} \tilde{E}_{n}(f(x)_{p,\lambda_{n}} + \tau_{k}((S_{1}^{+} - S_{0}^{+}),\delta)_{P,\lambda_{n}})$$
(3.13)

But

$$\begin{split} \tau_{k}((S_{2^{i}}^{+} - S_{2^{i-1}}^{+}), \delta)_{P, \lambda_{n}} &\leq \delta^{k} \left\| (S_{2^{i}}^{+} - S_{2^{i-1}}^{+})^{k} \right\|_{P, \lambda_{n}} \\ &\leq \delta^{k} \, 2^{ik} \left\| S_{2^{i}}^{+} - S_{2^{i-1}}^{+} \right\|_{P, \lambda_{n}} \leq \delta^{k} \, 2^{ik} \left\| (S_{2^{i}}^{+} - f) + (f - S_{2^{i-1}}^{+}) \right\|_{P, \lambda_{n}} \\ &\leq \delta^{k} \, 2^{ik} \left\| S_{2^{i}}^{+} - f \right\|_{P, \lambda_{n}} + \delta^{k} \, 2^{ik} \left\| S_{2^{i-1}}^{+} - f \right\|_{P, \lambda_{n}} \leq \delta^{k} \, 2^{i} \left\| S_{2^{i}}^{+} - S_{2^{i}}^{-} \right\|_{P, \lambda_{n}} + \delta^{k} \, 2^{i} \left\| S_{2^{i-1}}^{+} - S_{2^{i-1}}^{-} \right\|_{P, \lambda_{n}} \end{split} \tag{3.14}$$

As $S_n^- \leq f(x) \leq S_n^+$.

$$\tau_{k}((S_{2^{i}}^{+}-S_{2^{i-1}}^{+}),\delta)_{P,\lambda_{n}} \leq \delta^{k} 2^{ik} \left\|S_{2^{i}}^{+}-S_{2^{i}}^{-}\right\|_{P,\lambda_{n}} + \delta^{k} 2^{ik} \left\|S_{2^{i-1}}^{+}-S_{2^{i-1}}^{-}\right\|_{P,\lambda_{n}} = 2\delta^{k} 2^{ik} \tilde{E}_{2^{i-1}}(f)_{p,\lambda_{n}}$$
(3.15)

By utilizing 2.33 we get:

$$\tau_{k}(f,\delta)_{P,\lambda_{n}} \leq \sum_{i=1}^{n} \tau_{k}((S_{2^{i}}^{+} - S_{2^{i-1}}^{-}),\delta)_{P,\lambda_{n}} + \frac{2^{k+1}\pi}{n} \tilde{E}_{n}(f)_{p,\lambda_{n}} + \tau_{k}((S_{1}^{+} - S_{0}^{-}),\delta)_{P,\lambda_{n}}$$

$$\leq 2\delta^{k} 2^{ik} \tilde{E}_{2^{i-1}}(f)_{p,\lambda_{n}} + \frac{2^{k+1}\pi}{n} \tilde{E}_{n}(f)_{p,\lambda_{n}} + 2\delta^{k} 2^{k} \tilde{E}_{0}(f)_{p,\lambda_{n}} \tag{3.16}$$

Then

$$\tau_k(f,\delta)_{P,\lambda_n} \le \frac{c(k)}{n} \sum_{i=1}^n E_i(f)_{P,\lambda_n} \tag{3.17}$$

The proof is completed.

CONCLUSION:

Journal of Education for Pure Science- University of Thi-Qar Vol.12, No2 (December, 2022)

Website: jceps.utq.edu.iq

Email: iceps@eps.utq.edu.iq

The aim of this paper is to obtain of the degree of the best multiplier approximation of monotone unbounded periodic functions, $f \in L_{p,\lambda_n}$ —space on the closed interval $[-\pi, \pi]$ in terms of averaged multiplier modulus smoothness $\tau(f, \delta)_{p,\lambda_n}$.

REFERENCES:

- [1] **V.A.Popov**, "One-Sided Approximation of Periodic Functions of Several Variables", *Comptes Rendus de Academia Bulgare Sciences*, Vol. 35, No. 12, pp. 1639-1642, 1982
- [2] **V.H. Hristove**, "Best One-Sided Approximation and Mean Approximation by Interpolating Polynomials of Periodic Functions", *Mathematica Belakanica*, New Series, 3, 418-429, 1989
- [3] **N.M. Kassim**," On the Monotone and Comonotone Approximation", *M. Sc thesis, Kufa University, Mathematical Department, College of Eduction*, 2004
- [4] **L.Leindler**, "On the Degree of Approximation of Continuous Functions", *Acta Math. Hugar.*, 104 (1-2), 105-113,2004
- [5] Jasim S.K. and Zaboon A.H., "Approximation of Unbounded Functions by Trigonometric Polynomials in Locally-Global", *Al-Mustansiriyha University*, *Journal of Science*, Vol.25, No.3,2014
- [6] **Sendov. B.C., Popov, V.A.**," The Averaged Modulus of Smoothness", *Publ. House of the Bulg. Acad. Of Science, Sofia*, 1988
- [7] Hardy G.," Divergent Series" Clarendon Press, Oxford, First Ed,1949