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Abstrac:
The aim of this paper is to obtain the degree of the best multiplier approximation of monotone
unbounded periodic functions in L, 3 —space.
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Introduction:
There are several researchers and specialists have worked in the field of approximation theory and

have obtained results.For example; In 1982 [1] , V.A.Popov studied and got several results about one-
sided approximation of periodic function. Also, in 1989 [2] , V.H.Hristove, obtained some results of best
one-sided approximation by interpolating polynomial of periodic functions. In 2004 [3] N.M.Kassim had
studied the monotone and comonotone approximation. In 2004 [4] L.Leindler analyzed the topic
regarding the degree of approximation and got results. In 2014 [5] S.K.Jassim and Zoboon had studied
the approximation of unbounded functions by utilizing the trigonometric polynomials in locally-Global

space L, ;-

In this work, the Jackson polynomial will be utilized to study and analyze the degree of the best multiplier
approximation of monotone unbounded periodic functions in L, ; —space.

1. DEFINITONS and CONCEPTS:

Definition (1.1) [ 7 ] (A Multiplier Convergence)

0
A series Z a, 1s called a multiplier convergent series if there is a convergent sequence of real numbers
n=0

{4,}._, such that z a, A, <ocand {4} is called multiplier for the convergence.

n=0

Definition (1.2) (Multiplier Intergal)
For any real valued function f € L, ; (X), where X = [—m, ] if there is a sequence {1, };~, ,such that:
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ST f)A,dx < oo, (1.1)

then f is called a Multiplier integrable function, 4,, is called a Multiplier integrable sequence.

Definition (1.3) (The Multiplier Norm)
Let f € Ly, (X), where X = [—m, @] then: || f I, ,is given by the below definite integral:

1 F oz, = ™ [ Ouf) P, (12)

Definition (1.4) [ 6 ]
Let f e L,[a,b], where 1< p <o, then the integral modulus( L, -modulus or p -modulus ) of order & of
the function f is the following function of 6 €[0,(b—a)/k]:

b—kh

0,(118), =5uppures{ [ |ALF 0] 7 (13)

Definition (1.5)
Let f € Ly, (X), where X = [-m, m],1 < p < oo, then:
The Multiplier integral modulus of order k of the function f where 0 < § < b — ak, is defined

by:
Wi (f, 8)pa, = hz%pa](ff KR AR (P @) Pdx), (1.4)
where
A (nf)@) = They (D™ E) ) (6 +mh); () = . (1.5)

Definition (1.6) [ 6 |
Let feL,(X); where X =[a,b] and 1< p <co. The local modulus of smoothness of the function f of
order k ata point x €[a,b] is the following function of & €[0,(b—a)/k]:

,(f.%:8) =sup{|A} f(0)|: 1.t +kh € [x—%,x+?]ﬂ[a,b]}(l.6)

Definition (1.7)

If f € Lpx,(X), where X = [—m, ],1 < p < oo, then the multiplier local modulus of smoothness of a

function f of order k at a pointx € [a, b],
b—a

0<6<—
k

is defined by:
wr(f, %, 8)pa, = hzl[t%]m’g Muf)(O:tt+kh € [x =2 x+ 20 [a,b]}.  (17)
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Definition (1.8) [ 6 ]
The averaged modulus of smoothness of order & (or 7 -modulus) of the function f € M[a,b] is the

following function of 6 €[0,(b—a)/ k]:

0 (1:0), =0, (/i =[] (@,(frx:0) ) (18)

Definition (1.9)
If f € Ly, (X), where X = [—m, ],1 < p < oo, then the multiplier averaged modulus of smoothness of

order k of f € Ly, ; (X), where X = [—m, 7], is defined by:

(s )pay = 0 (fr,8) Iy, = ([ [0 (Anf, 2, 8)]de)%.(1.9)

Definition (1.10)[ 6 ]

If f € Ly(X),X = [a, b], then:
E(f),=inf{|/ - P,

Such that E,(f), is called the degree of the best monotone multiplier approximationof f* by polynomial

P

ne

p:Pn € P} (1.10)

Definition (1.11)
If f € Lpx,(X),X = [—m, ], then:

E,(f),, =inf{|/ -5,
Such that E,(f),, is called the degree of the bestmonotone multiplier approximationof f° by

LS, €P} (L.11)

P,
polynomial §, .

Definition (1.12) [ 6 ]
If f € Lp(X), Then the best one-sided approximation of f* by means of trigonometric polynomails of

order 7 in L, (X) is given by:
Eqy(f)pa, =inf{|P- Q||LP :P,0eT,0(x)< f(x)< P(x); Vx} (1.12)

Definition (1.13)
If f € L,(X), X =[-7, 7], then:

Ev(Fpa,=inf{]S, ~G,|,, :5,.G, € T.G,(x) < f(x) <5, (x); Vx} (1.13)

Such that E,(f) p.a, 18 called the degree of the best one-sided monotone multiplier approximation of

f by polynomials S, and G, .

In the next section, significant lemmas will be proved.

277



Journal of Education for Pure Science- University of Thi-Qar
Vol.12, No2 (December, 2022)

Website: jceps.utq.edu.iq Email: jceps@eps.utq.edu.iq

2. AUXILIARY LEMMAS:

Let Jackson polynomial such that:
sinnt P

o, )= (nsm—) [nsm(/) ; roneN, 2.1)

4n

Thus, @, ,(¢) is trigonometric polynomial of degree r(2n—1).

Lemma (2.1)

@, ,(t) has the following properties:
(1) @ ,(1)=1, for every |t| <2
’ 2n
(2) q’r,n (t) S C(r) *
mr (m +Dr

(3) sup{p, (1) :te[— »

(m— 1)7r m7r

B<e(rym™ ;m=1,2,..,n—1.

(4) supip, ,(t):t €[ }<c(r)|m| sm=—-n+1,-n+2,..,—-1.
1. 1
) o, 0], <et)y 7215 p<omr> L.
sy n p

sin nt . . . .
Where ¢, (1) = (nsin —)2’ " ———— T forevery r,neN, is a trigonometric polynomial of degree
4n" nsin( /

r(2n-1).
Proof:

To show that (1) holds, i.e., for every for every |t| < 21 , we get @, () =1, where
n

N
o0 =trsin LS

V4
Let t =—, then

2n

. T

sin n(—) [sin(7%/4)]*
0,,(1) = (nsinf)”[Tz”]z =[nsin " Lin7r" =[sin(%4)]"" = 22)

n n
: nsin
nsin( 2% ) [ 4n]

Then for ¢ = P o, ,(t)=1. For |t| < —, t€ (—— —) @, ,(t)>1. Which then yields that ¢,_, (1) >1 for

T . .
every |t| < 5 To show that (3) works for every ¢ , it is sufficient to show that
n
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mr (m + 1)7r s Sinnt P
supig, , (0):1 e["r S erm ™ m=1.2,.on =1 where g,,,(1)=(nsin ) [0~
n 4n" nsin( / )
r,neN.
Since sinnt <1, then
. T, 1
@, (1) <[nsin(——)]" —————
| 4n”" [nsin( /)"
1

Which then yields that ¢, (t) <c(r)——+—

’ nsin( % YW

1
Hence, we get: P, (< c(r)———
’ " sin2" (M7
n”" sin”( An)
mr (m+1)x
For every t e[—,———]. Then
n n
2r 1 2r 1 1 -2r
0, O<cr)r’ ————=c(r)x”’ ————F5—-=c(r)—5=c(r)m 2.3)
’ 2r22r(m7r) n2r22r U m
2n 22r'n21'

Hence ¢, (1) < c(rym™ for m=1,2,...,n—1. Next, to show (2), from above @, (1)< c(rym™",

we have ¢, (1) <c(r). To show that (4) works, in the same way (3) we get:
@, () < c(r)|m[™" forevery m=—-n+1,-n+2,...,~1.
To show that (5) holds, it is sufficient to show that:

]
9., (t)HM < c(r)(%)%” for1<p<o, r> ﬁ

Now

0.0, =1] o, dr” (2.4)

-

V4 % V4
0,0, = [ 40" (= [ 2,07 0)dt+ [ 2,07 0yt

A .
0,0, =2[ A" @di+ [ 4,0” (0dt <2%c(ry 2.5)
r.n P4, d nt, nt,, n

n

Since |(p,,,n (t)| <c(r), then

0.,0),, C(r) 2.6)

. 1 P 1 /
By taking the root —. Hence |, n(t)” <c(r)(=)'"’.
p > P,A, n

The proof is completed.
Now let r,neN, and let N =r(2n-1)
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S3(f,x)=f(x)+ ]E @, (x—t)dtzk: (=D "Eysup{ f(x+mh): x,x+mhe[-m,x1}4,  (2.7)

Lemma (2.2)

Let feL,, (X), where X =[-7z,7] then S, < f(x)<S, .

Proof:
Since S (f,x)=f(x)+ jf ®,,(x —t)dtzk: D" E)-sup{f(x+mh):x,x+mh e[-m,x]}A,

Where ¢, ,(¢)1s a trigonometric polynomial of degree r(2n—1) and

0, (6) = (nsin =y [ _pro e,
4n nsm(%)

First, we want to show that f(x)> S . Start with:

J) =S, (f>0)]=f ()= [f(x) - f Pr (x—t)dtZ(—l)k"" (o) -sup{f (x+mh):x,x +mh e[z, 7]} 4,]
S =LS, (f,0)]= I (ﬂr,n(x—t)dtz(—l)kfm(i;)sup{f(ﬁmh) Lx, x+mhe[-7,7]}4,

f(x)—[Sn_(f,x)]Zi(—l)k_m(';)sup{f(ermh):x,x+mhe[—iz,ﬁ]}/ln >0
Then f(x)-[S,(f,x)]=0 and hence f(x)=[S, (f,x)]...(1)

Similarly,

S, (fs0)=f(x)=f(x)+ I (Pr,n(x—f)dtZ(—l)""”(';)Sup{f(Hmh) x,x+mh e[z, 7]} A, = f(x)

SEU0) = £ = [ 0, (=0 (<1 sup G-t k) x, v+ mh e[, 7132,

k

S;(f,x)—f(x)zZ(—l)k”"(';)sup{f(x+mh):x,x+mh el-7, 7]} 20

S (f,x)-f(x)= O_and then we get S, (f,x)> f(x) ...(2)
From (1) and (2) we get: S, < f(x)< S .

3. MAIN RESULTS
Theorem:

S-S

n n

If fel,, (X),where X =[-x,7] then En(f)P,ln <

" <c(r,m)r (f,0),,

Proof:
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First, we will show that £, (f),, <c(r,n)7,(f,0),, -Let r,neN,and N =r(2n-1).

Since  S;(f,x)=f(x)+ ]i (pr’n(x—t)dti D" E)-sup{f(x+mh):x,x+mh e[-m,x]}A,

Where ¢, () 1s a trigonometric polynomial of degree »(2n—1) and

@, (t)=(nsin 41)”[3_1“—”;]2’ - r.neN.
n nsin( A)

Now

ST-8 = 2][. (pr,n(x—t)dt[lzk:(—l)k’m(fn)sup{f(x+mh):x,x+mh el-r,7]}4, 3.1

S, =S,

o, S c(r,n) ]i i (=D "¢ ysup{f (x +mh): x,x +mh € [-m, 7]} A, dx 3.2)

—g m=

S =57, Setm) | o4, %00, 5 =~ (3.3)
P.A, . n
And then

c(r,n)]r. o(f,4,,x,0)dx =c(r,n)t,(f,0),; (3.4)

St —S;

n

P2 < c(r,n)rk (f:é‘)P,/in (35)

To prove the other direction, i.e., prove 7,(f,0),, < EZE,. (ps -
ong o

Since £, (fpa, =|1S; S, ., »then:
MG =) A+ h=mh), xel-m ], ti+khe =50 x4 22
From lemma (2) we have S, < f(x) < S, . Hence:
) e
ANA LX) <D GIST(E+(k=20h) = (5,,1)S, (¢ + (k= 2i —1)h) (3.6)
Then 7 )
k-, k-,

Ay (4,80~ Z‘j {G)S, (t+(k=2i=Dh) = 8 (¢ + (k=20 =1)h) = (S, (x) = S, ()} + Z‘f Gr)(S,) (0 =S, (x))

SAAS, D+ @, (S, =S,,6),, +2°(S; (x) =S, (x))

By using the property: o, (f,5),, <c(k)o,(f,6),,
<A (4SO +2 o (S) =S,,6)p, +2°(S, (x) =S, (x))
= AL (4,80 +2 k8|S, =S, ], +2°(5;(x) =S, ()

By taking the norm for both sides we get:
& (f+0)p; S (S,,0)p, +2°

Sy =S,

(3.7)

P4,
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Then
(2 (f,é‘)P,;vn < (2 (S;aé‘)P,ﬂ” +2k En(f)p,/ln (38)

By utilizing the fact that

J =203 s x) (3.9)

n

And by taking the norm for both sides we get:

. 227 ¢ -
Tk (f:5)P,An <7,(S, ’§)P,/1,, + Z En(f (i)pay, (3.10)

i=1

By using the property:
T (i +12:0)p,, <7,(11:0)p 5, +7:(/2,0)5, (3.11)
We get:
7,(S,,0)p, < i 7, ((S} = 83.),0) +7,. (S = 5;),0) (3.12)
And then B
0 (f20),, < Zn;rk (S5 —55.).6)+

But

2k+l T

n

En(f (09 pa, 7. ((S7 =500, (3.13)

z’k((S; —S;fl ),5)1{1” <5 H(S; =S5 )kup,zn

o
,, SO 2SN+ -850,

S;"l -/ HP,/ln <o'2

< §k 2ik

+ +
S-S5,

<52k (3.14)

S: - fHM + 540"

St —Sju 4550
2 2 P, A,

.
S5, =S5 Hm

As ST< f(x)< S,

0,((S] ~55.).0),, <5'2*

S; -8, +o2"
2 2P, 4,

S5, -85, HM =26 2" Eyia(Fpa, (3.15)

zz—l

By utilizing 2.33 we get:

n . - 2k+lﬂ_ ~ N ~
Tk (fa 5)1),,1” < Z T ((SZ, - SZH )a 5)13,1,, + T En (f)p,/ln 7, ((S1 - So ), 5)1),/1”
i=l

2k+l p s

<26 2" Eyiea (fpa,, — En(Fpa, +26 2 Eo(fpa, (3.16)

Then
5.0 <SS E (D, (3.17)

The proof is completed.

CONCLUSION:
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The aim of this paper is to obtain of the degree of the best multiplier approximation of monotone
unbounded periodic functions, f € Ly, ; —space on the closed interval [, @] in terms of averaged

multiplier modulus smoothness 7(f, §)p 1, -
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