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Abstract: 
Finding motifs in DNA sequences is a current challenge and an essential step in bioinformatics. 
Processing these issues needs considerable data analysis due to technical advancements in the 
industry. Artificial Neural Networks (ANNs) are increasingly used, particularly for motif 
identification and genomic analysis. In order to find motifs in DNA sequences, this work proposed a 
supervised learning algorithm for feed-forward neural networks called Scaled Conjugate Gradient 
(SCG) algorithm. The SCG algorithm utilizes a step-size scaling mechanism that is fully automated to 
minimize time-consuming row searches during each training iteration. This algorithm was used in this 
work for motif discovery to train code patterns and to reduce a multivariate global error function 
dependent on the network weights. It trains many code patterns of lengths between 4 to 509 bases to 
find them in a database with 2,227,382 bases; many experiments were done with different numbers of 
hidden layers; our finding ten hidden layers provide the best results, with training percentage is 100%. 
Compared to the other supervised learning neural network algorithms, One Step Secant, Gradient 
Descent, Bayesian Regularization, and BFGS Quasi-Newton; our find SCG algorithm produced 
higher accuracy (100%) and less time during the training and testing phases.

Key word: Bioinformatics, Data Mining, Deoxyribonucleic Acid (DNA), Motif Discovery,    
  Artificial Neural Networks (ANNs), SCG.

1.  Introduction:
     Bioinformatics was first used by Paulien Hogeweg and Ben Hesper in 1970 to describe the study of 
informatics procedures in biological systems. It analyzes biological data (genes, genomes, proteins, cells, 
ecosystems, medical information, robotics, artificial intelligence, etc.) [1]. It blends biology, computer 
science, mathematics, statistics, physics, and engineering principles to analyze and understand biological 
data, including DNA, RNA, protein sequences, genomic analysis, and gene expression [2,3]. It combines 
principles from several disciplines as shown in Fig. 1.              
      Deoxyribose Nucleic Acid (DNA) is a molecule that contains the genetic data necessary for an 
organism's growth and operation. Nucleotides, also known as base pairs, are the four nucleic acid units 
that makeup DNA. Although they have a similar chemical structure, the nitrogenous bases in each 
nucleotide allow for differentiation: Cytosine (C), Thymine (T), Guanine (G), or Adenine (A) [4]. 
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Cytosine and Thymine are pyrimidines, while Adenine and Guanine belong to the purines group. 
Typically, their first letter stands for nucleotides, such as Adenine (A), Guanine (G), Thymine (T), or 
Cytosine (C) [5]. Knowledge discovery and data mining refer to the methods, processes, and equipment 
used to extract informational value from vast volumes of data. The entire information extraction process 
is referred to as the KDD process. Data mining is merely one phase of the whole KDD process. Data 
mining is typically used in business and marketing to view the complete KDD process [6]. Traditional 
statistical methods are combined with computer science algorithms in data mining to extract knowledge 
from massive amounts of data for application in science, computation, or industry. With a wealth of 
unstructured data and a lack of theoretical backing, data mining is one of the core topics of 
bioinformatics. The biological field makes extensive use of data mining to help extract hidden knowledge 
from sizable datasets gathered in the biological and medical fields [7]. 
 

 
 

Figure (1) : Shows how bioinformatics incorporates the 
      fundamental ideas of various fields [2]  

 
      A motif is a regularly occurring pattern of amino acids or nucleotides that are thought to have 
biological significance, such as serving as DNA binding sites for a transcription factor or other regulatory 
protein [8]. The main focus is on the two types of motifs are simple and structured. They are generated 
based on how the motif templates are arranged. Simple motifs are simpler to discover in biological 
sequences because they don't have gaps. Contrarily, structured motifs have gaps and more complex than 
simple motifs. The SCG algorithm has several main advantages. Finding the motif takes very little time, 
doesn't take up much memory, and can be done accurately in finding all the motifs occurrences even 
while searching through massive amounts of data. Compared to the rest of the supervised learning neural 
network algorithms, such as One Step Secant, Gradient Descent, Bayesian Regularization, and BFGS 
Quasi-Newton, It produced unsatisfactory results due to high time consumption, high memory 
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consumption, and low accuracy in finding all occurrences of the motifs. The problem in this paper is how 
to find all the occurrences of bio motifs in bio-databases in fast and low memory consumption with 
keeping the scalability feature [9]. 
      The main contribution of this paper is the suggestion of a set of algorithms (read motifs templates, 
motifs templates analysis, generate  pattern, code pattern, training, read dataset, segmentation, testing, 
and verify distance ) to discover biological motifs in biodata. In the training phase, a proposed algorithm 
for motif mining will be designed and implemented, characterized by inter and intra-scalability, fast, low 
memory consumption, variety, and accuracy. It depends on the partitioning of motif template MT and 
dataset segmentation.  
______________________________________________________________________________ 
2. Literature Review  
      Finding DNA motifs is crucial for studying gene control. Nowadays, neural networks are the most 
well-liked technology because of their outstanding pattern recognition performance. Although neural 
networks used for motif finding usually have numerous hidden layers in their architecture, these 
topologies might differ [10]. This section reviewed some research on DNA motif mining algorithms and 
techniques. 
      Cao et al. [11], in this study, the authors do develop DeepARC. Convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs) are used in this precise and interpretable attention-based 
hybrid technique to predict transcription factor binding sites (TFBSs). DeepARC was employed 
positional embedding techniques to extract hidden embeddings from DNA sequences. In this study 
distributed embedding from DNA2Vec and positional information from one-hot coding. They used 50 
datasets from ENCODE, chosen randomly, to execute the model training in their studies.  
      Shen et al. [12] developed a self-supervised Motif Learning Graph Neural Network (MoLGNN). 
Utilizing unlabeled chemicals on model proteins can considerably enhance the efficiency of 
computational drug screening. MoLGNN does self-learning by Utilizing network motifs and graph node 
attributes as self-generated labels. Additionally, it reconstructs edges using Graph Isomorphism Network 
Variational Auto-Encoder (GINVAE). According to experimental findings, MoLGNN performs at the 
cutting edge on several benchmarks.  
      Mohanty et al. [13] studied and analyzed the 54 most popular motif discovery procedures and 
algorithms from different techniques and also included a summary of their advantages and disadvantages. 
      Wang et al. [14] used a convolutional neural network-based architecture (CNN) that incorporates 
embedding layers and GloVe. In this study, every sequence in the ChIP-seq dataset was divided into 
several subsequences called k-mers by CNN using sliding windows and then encoded k-mers into 
relatively low-dimensional vectors by GloVe. Experiments demonstrate that this architecture could 
successfully discover motifs. 
      Lee et al. [15] suggested a method an improved solution for a three-step DNA motif prediction 
method. Only a portion of the input sequences was used in the three-step method's initial motif 
prediction. The remaining non-overlapping input subsets are used for position detection using the 
resulting starting motifs. This method, known as DeepFinder, constructs motif models using deep 
learning neural networks containing binding site-linked characteristics. Compared to current solutions, 
the results demonstrate a significant improvement. 
      Lanchantin et al. [16] suggested Deep Motif Dashboard. With the help of this toolset, you can classify 
transcription factor binding (TFBS) by extracting motifs or sequence patterns from deep neural network 
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models. Convolutional, recurrent, and convolutional-recurrent networks, three significant DNN models, 
are visualized and explained using examples. According to experimental findings, the convolutional-
recurrent architecture performs the best among his three architectures. Utilizing visualization tools, it can 
be seen that CNN-RNN models both motivations and the relationships between them to create 
predictions. 
     G.S.pugalendhi [17] used self-organizing maps (SOM) and neural networks to find new and old 
regulatory motifs in DNA sequences. Based on a novel intra-node soft competition approach, this system 
maximizes the separation of motif signals from background signals in the data set. To more accurately 
represent these two classes of signals, intra-node competition is based on an adaptive weighting technique 
for two alternative signal models. Researchers can uncover motif sequences for various natural and 
synthetic datasets using the system, which is being developed as a motif analysis tool. The planned 
project determines the positions and weights of adenine, guanine, thymine, and cytosine. As a result, 
these positions can be used to determine transcription factor binding sites and transcription factors. 
Compared to ongoing initiatives, turnaround time is quick.  
_________________________________________________________________________________ 
3. Theoretical Basis     
     The motif template consists of a bases sequence and lower and upper numbers of gaps that don't care 
about bases that could include any characters. A simple motif composed of nucleotides in the DNA 
sequence. The general structure of the motif template is represented by the Backus-Naur form (BNF) in 
Eq. (1) as follows [18]: 

1{[ 1, 1]2{[ 2, 2]3}{. [ , ]}  + 1}           (1)  
Where:  
S1: first simple motif. 
l1: low limit of gap. 
u1: upper limit of gap. 
Consider the DNA motif in the example below: 

AATATA[3, 5]CTG[2, 4]AATGCCG 
A complex motif includes simple triple motifs of DNA bases that match the following pattern: 

S1 {[l1, u1] S2 {[l2, u2] S3  such that: 
S1 is AATATA, a simple motif containing 6 bases. 
S2 is CTG, a simple motif containing 3 bases. 
S3 is AATGCCG, a simple motif containing 7 bases. 
[3,5] is a first gap, the distance between two simple motifs, with unspecified lower bases equal to 3 and 
unspecified upper bases equal to 5. 
[2,4] is a second gap, the distance between two simple motifs, with unspecified lower bases equal to 2 
and unspecified upper bases equal to 4. 
The lower limit must have an integer value that is less than or equal to the higher limit. Motif discovery 
systems typically use motif templates to find the motifs that match the input template. 
 
       Motif mining in biological sequences can be defined as the problem of finding sets of short similar 
conserved sequence elements ('motifs') that are often short similar in nucleotide sequences with a 
standard biological function [19, 20].  
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     The research problem is finding an algorithm that discovers all the occurrences of bio motifs in bio-
databases in fast and low memory consumption while keeping the scalability feature. Structure or 
compound mining is more difficult because it contains gaps, and the gap gives results of varying lengths 
depending on the lower and upper limits of the gap. To show the complexity of compound motif mining, 
suppose that the DNA is a nibble numeric system with four digits A, C, G, and T, then the number of 
base four is calculated as follows: 

[40 41 42 43 44 …. 4n] 
Accordingly, the possible numbers that a gap can represent in Eq. (2) as follows: 

 
Number of possible motif = 4^L +4^L+1+ 4upper   (2) 

For example, the possible motifs that can be represented by the [2, 4] are: 
 

(4^2 +4^3 +4^4) motifs 
Therefore, the possible DNA motifs according to a submitted motif template are defined in Eq. (3) as 
follows:     =  +  ( (4 ))    (3) 

Where   
n: the number of simple in the Motif template (MT). 
M: the number of gaps in MT. 
L: the lower limit in the gap. 
H: the upper limit in the gap. 
 
     The most recent challenging and exciting trend in bioinformatics is motif mining in biological 
databases because of its importance in many applications, including detecting the predisposition to 
diseases, diagnostics, forensic medicine, prosthesis laboratories, criminal laboratories, corpses 
identification, medicines manufacturing, uncovering chemical and nuclear environmental pollution 
causing genetic mutations. Despite significant progress to date, discovering motif in biological data 
continues to be a difficult task for biologists and computer scientists. Researchers have developed motif 
discovery algorithms using various methods, and the progress made in this area of research is very 
encouraging. In order to mine simple and gaped DNA patterns, was developed a scalable, reliable, and 
effective algorithm. Numerous suggested algorithms for motif template parser and type checker, motif 
template analyzer, as well as algorithms to generate patterns, generate variance patterns, code patterns, 
training patterns, parsing dataset, dataset segmentation, testing of coded segmented data, and verify 
distance of complex motifs, will be used to complete the motif discovery process. 
 
3.1 Artificial Neural Networks (ANNs) 
     The study of biological brain processing served as the basis for the computing architecture known as 
the artificial neural network. Numerous neural networks vary in complexity from somewhat simple to 
highly sophisticated [21].  We start by describing a layered feed-forward neural network as shown in Fig. 
2. The processing elements in a layered feed-forward neural network are organized into layers or 
subgroups. A layer of processing elements independently computes the data that has been received and 
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forwards the results to another layer [22]. The following layer can perform its calculations and 
communicate the results to the layer beyond. Finally, a subset of one or more processing elements 
determines the network's output. Based on the weighted sum of its inputs, each processing component 
computes. The input layer is the first layer, and the output layer is the last [23]. Hidden layers come after 
the first layer and before the last layer. The processing element is called an artificial neuron because it is 
thought to be the same unit as a neuron in the human brain [24].

  

Figure (2) : Feed-Forward Neural Network

4. The Proposed System
      In the structured motif mining process, the objects to be mined are undetermined, but they are 
described in a template covering several motifs. The number of motifs depends on many factors, such as 
the number of simple motifs, the sizes of simple motifs, the number of gaps, and the sizes of the gaps. In 
this research, we suggest training ANNs on the motif template patterns and not the contents of the DNA 
databases. We outline the architecture of the suggested system in this section. 
      The proposed approach was divided into five phases (motif preprocessing, training, dataset 
preprocessing, testing, and verifying distance), as presented in Fig. 3. The process's input during the motif 
preprocessing phase is a motif template. As a result, we require a computational model that generates 
patterns that are concealed within templates. Our suggested method generates a neural network for each 
simple motif based on a Scaled Conjugate Gradient (SCG) algorithm for training the extracted patterns 
from the motif template. As a result, we will receive N machines, each dedicated to a simple motif. We 
will go over numerous processes in the motif preprocessing phase in more detail later, such as reading 
and parsing the motif templates to check the template’s correct writing and finding any syntactic and 
semantic errors. Also, it is required to determine the type of motif template, such as whether it contains 
only a simple motif or is structured. 
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Figure 
(3) : General 

Architecture of the Proposed System

      In the proposed approach, several patterns were learned; they are generated according to the 
simple motifs available in the motif template. The number of simple motifs and their length will 
affect the number of machines and the size of the input vectors for each machine. Suppose that there 
is one machine for each simple motif SM, and the length of SM is i bases; then the size of the 
training space equals 4i because 4 bases represent the DNA sequences: A, C, G, and T. In the case of 
lengthened simple motifs, a biased sample of patterns from the training space is used. The patterns 
should be binary-coded before the training and testing phases. The DNA database is used only during 
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the testing phase. The dataset preprocessing phase includes several different processes, which we 
will review in more depth later, including reading and parsing the dataset from the fasta file. The 
database is queried for segments based on the lengths of simple motifs in the motif template. These 
segments are submitted to the testing phase.  
      Let's trace an illustrative example. Suppose that the submitted motif template, MT, is: 
"AAACCTCCCCGCTCTGTGGCGCGC[1,3]ACGGGCCCAA" 
      Accordingly, the mined motifs of length 35-37 bases. This MT is in the correct form. It contains 
two simple motifs and one gap. The simple motif AAACCTCCCCGCTCTGTGGCGCGC contains 
24 bases; therefore, it requires three dynamic ANNs, the first two machines of which will be trained 
to recognize AAACCTCCCC and GCTCTGTGGC. It will be fed a negative sample drawn from 
1,048,576 patterns. The number of inputs to this ANN is a vector of 20 binary bits because A, C, G, 
and T will be coded as 00, 01, 10, and 11, respectively. The third ANN related to the first simple 
motif will be built to recognize GCGC. It is eight bits vector and will be trained using 44 patterns, 
while ACGGGCCCAA contains 10 bases. The coding process will produce the sequences presented 
in Table 1.  
The gap [1,3] can be substituted by 1, 2, or 3 DNA bases. These possibilities will frequently be 
checked when a simple motif or fragment of a simple motif is recognized. After the training process 
of the ANNs, they are ready for the mining process of a DNA database. Suppose that the database to 
be mined is: 
"GGAAACCTCCCCGCTCTGTGGCGCGCCACGGGCCCAAAAAGGAAACCTCCCCGCTCTG
TGGCGCGCCCCACGGGCCCAAACCTCCCGCTCTGTGGCGCGCTTACGGGCCCAACCCC". 

 
Table 1.  Motif Binary Coding 

Sequence Motifs Motif's Binary Coding ANNs 
1 AAACCTCCCC  1st simple motif 00000001011101010101 1st ANN 
2 GCTCTGTGGC  1st simple motif 10011101111011101001 2nd ANN 
3 GCGC  1st simple motif 10011001 3rd ANN 
4 ACGGGCCCAA   2nd simple motif 00011010100101010000 4rd ANN 

 
After the suggested motif mining process explained in Section 3, there are three discovered motifs, 
as shown in Table 2. 

Table 2. Illustrative Results 
Sequence Motif Sequence Start 

Positio
n 

End 
Positio

n 

Motif 
Length 

1 AAACCTCCCCGCTCTGTGGCGCGCCACGGGC
CCAA 

3 37 35 

2 AAACCTCCCCGCTCTGTGGCGCGCCCCACGG
GCCCAA 

43 79 37 

3 AAACCTCCCCGCTCTGTGGCGCGCTTTACGG
GCCCAA 

75 111 37 

 
     The suggested method divides the process of discovering DNA motifs into nine parts, each with 
its proposed algorithm. They are as follows: 
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First step: Read Motif Template, Parsing, and Type Checker 
     This step's input is a motif template, which can be taken from a text file or the keyboard. The 
motif template should be written using the syntax specified in the motif template. The next step is to 
parse the motif template to check for actual writing errors and catch both syntax and semantic errors. 
Additionally, the DNA bases are changed to uppercase letters. For more explanation, suppose that 
the input motif template is AAG!@(#$%)^7[1,40]*=AATCG[2,20] aaccGGAC [25, 50] ttAC357, 
the parsing of the motif template removes special characters (!@(#$%)7*=), numerals (357), and 
changes the lower-case letters (aacctt) within DNA bases to upper-case letters (AACCTT). This 
module performs its duties according to the algorithm presented in Algorithm 1. 
 

Algorithm (1) Read Motifs Templates, Parsing, and Type Checker 
Input: Motifs Templates, MT; 
Output: Correct Motifs Templates, CMT;    
  {    
      Read MT; 
      CMT = upper case (MT); 
      Remove all characters not in ['A,' 'C', 'G', 'T', '[', ']', '0', '1', '2', '3', '4', '5', '6', '7',    
      '8', '9'] from CMT; 
   }  

 
Second step: Motifs Templates Analysis 
      This step involves analyzing the motif templates to determine if they are simple or complex 
(compound). Determine the simple motif included in the complex motif template in the first instance, 
the number of gaps, and each gap's lower and upper limits. In the second scenario, where the motif 
template is simple, we count the bases for this motif before sending it to generate a pattern. This step 
is essential since the outcomes impact the following steps. For example, in the training step, a 
learning model will be generated and learned for each simple motif in parallel. For more explanation, 
consider that the input motif template is CAT[2,4]TATG[1,50]AGC. 
     The motif template analysis classified CAT, TATG, and AGC as simple motifs. Additionally, it 
will identify [2, 4] and [1, 50] as gaps, with 2 and 1 as the lower limits of the first and second gaps, 
while 4 and 50 are the upper limits of the first and second gaps. Remember that the gap [2,4] can 
match 42 + 43 + 44 = 336 patterns with any bases, whereas the gap [1,50] can match [41 + 42 + 43 +... 
+ 449 + 450] patterns with any bases. This module performs its duty according to the algorithm 
presented in Algorithm (2). 
 

Algorithm (2) Motifs Templates Analysis 
Input: Correct Motifs Templates, CMT; 
Output: Simple Motif, SM; Lower Gap, LG; Upper Gap, UG; 
  {   
       open bracket-index = find the index of ('['); 
       close bracket-index = find the index of (']'); 
       comma index = find the index of (','); 
       calculate the number of gaps from the open   
       bracket number; 
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[ 4
0
 4

1
 4

2
 4

3   
4

4   …. 
4

n 
] 

         if number of gaps = zero then 
  { 
      SM {1} = CMT; 
      LG = [ ]; 
      UG = [ ]; 
  }    
 else 
      SM {1} = CMT (1 to open bracket (1) – 1); 
    for each gap i 
     { 
         SM {i+1} = motif (close bracket (i) + 1 to open bracket (i+1)-1); 
         LG (i) = eval (motif (open bracket (i) + 1 to comma (i) -1)); 
         UG (i) = eval (motif (comma (i) + 1 to close bracket (i) -1)); 
      }   
return SM, LG, UG; 

} 
 
Third step: Generate Pattern  
     After the acquisition of simple motifs from the previous step, all patterns are generated according 
to the number of characters in each simple motif, as seen below: 
 
 
 
For example: if ACT is the simple motif. There are (43)=64 total probabilities. Then, we substitute  
characters for the numbers. 

Algorithm (3) Generate Pattern 
Input: Simple Motif, SM; 
Output: All Patterns, AP;    
  {    
      if the number of characters in SM  > 10 
      { 
                //generate sample of random number array // 
          sampleindx= randi ([1,4 exponent number of characters in SM], 1000000, 1);  
               //get the probability for each random  number // 
        AP= string (permn (['A' 'C' 'G' 'T'], number of characters  in SM, sampleindx));          
               // generate variance pattern // 
        varpat=varpattern SM, call algorithm (3.1) ;   
              // union the random pattern with the variance pattern // 
       AP= merge (AP, varpat);   
       } 
         else 
           AP=string (permn(['A' 'C' 'G' 'T'], number of characters in SM));  
           falsepat=  setdiff (AP, SM); 
          AP=[SM, falsepat]; 
          output=[1, zeros ([number of characters in falsepat, 1])]; 
     return Ap; 
  }   
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Generate Variance Pattern 
      With this algorithm, we generate the variance patterns by exchanging each letter with all of the 
probabilities that are still there when the other characters are left unchanged. This module performs its 
duty according to the algorithm presented in Algorithm (3.1). 
 

Algorithm (3.1) Generate Variance Pattern  
Input: Simple Motif, SM; 
Output: Variance Patterns, VP;    
  {    
       k= 0;   

    for each i character in SM 
     { 
         a = SM (i); 

   b = remove a from ['A', 'C', 'G', 'T']; 
}   

             for each element j in b 
              { 
                   k = k + 1; 
                   newpattern=replace character a with the jth charachtar in b; 
                   add the new pattern to VP; 
               } 

return VP; 
} 
 
Fourth step: Code Pattern 
      The input for this module comes from the simple motifs produced from the motif template analysis. 
This module will change the bases of a simple motif to its binary representation according to the 
following code: 

Table 3. Base binary representation 
No. Base Binary Code 
1 A 00 
2 C 01 
3 G 10 
4 T 11 

 
Accordingly, the representation of simple motifs will be: 
 

Table 4. The binary representation of some simple motifs 
 
 

 

This module performs its duty according to the algorithm presented in Algorithm (4). 
 

No. Simple Motifs Binary Code 
1 CAT 010011 
2 TATG 11001110 
3 AGC 001001 



JJournal of Education for Pure Science- University ofThi-Qar 
Vol.13, No.1 (March., 2023) 

Website:jceps.utq.edu.iq                                                                                                  Email:jceps@eps.utq.edu.iq 

  67 

 
 
 
 

 

 

 

 

 

 

 

 
Fifth step: Training 
    The scaled conjugate gradient (SCG) is chosen to train the ANNs. The ANNs are trained in parallel 
according to the patterns generated in the previous step. Many experiments are done with different 
numbers of hidden layers, but ten hidden layers provide the best results; therefore, they will be adopted in 
this paper. The ANNs' parameters are set in Algorithm 5, such as training percentage, number of hidden 
layers, input vector size, etc. This module performs its duty according to the algorithms presented in (5) 
and (5.1). 
 
 
 

 

 

 

 

 

Scaled Conjugate Gradient (SCG) Algorithm  
       Despite being based on conjugate directions, SCG does not execute a line search with each iteration, 
in contrast to other Conjugate Gradient (CG) algorithms that do. SCG is faster than other previously 
proposed quadratic algorithms since it is fully automated and uses a step-size scaling method to prevent 
time-consuming line searches at each learning iteration. The SCG algorithm is more reliable and less 
reliant on user-defined parameters because the step size is a function of the error function's second-order 
approximation. There are several methods used to estimate the step size. The SCG algorithm is proposed 

Algorithm (4) Code Pattern 
Input: All Patterns, AP; 
Output: Code Patterns, CP;    
   { 

    for each ith pattern in the AP 
     { 

     pat = AP {i}; 
             pat = replace 'A' with '00' in pat;  

   pat = replace 'C' with '01' in pat; 
   pat = replace 'G' with '10' in pat; 
   pat = replace 'T' with '11' in pat; 

            CP {i,1} = pat; 
        } 
   return CP; 
  }   

Algorithm (5) Training 
Input: Code Patterns, CP; Exact Output, EO; 
Output: Training Function Net, TFN;    
  {       
      set the number of hidden layers to 10. 
      set the training method as SCG call algorithm (5.1). 
      initialize the neural network by the method and hidden layer. 
      set all patterns as training data (net.divideparam.trainRatio = 100/100). 
      use the SCG method to find the TFN. 
  return TFN.  
   }   
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as a new solution to the problem of failures in the Conjugate Gradient (CG) algorithm to minimize the 
global error function E ( ). One call to the global error function E ( ) and two calls to the gradient to 
the global error function E' ( )are made for each iteration, resulting in calculation complexity O (7N2). 
Because the calculations of E ( )may be incorporated into one of the calculations of E'( ) , this 
complexity can be decreased to O (6N2) when the algorithm is implemented. We employ this algorithm in 
motif discovery to train code patterns to reduce a multivariate global error function dependent on the 
network weights. This algorithm's inputs are code patterns and exact output, and its output is weight. The 
SCG algorithm is displayed as follows in [25]: 

Algorithm (5.1) Scaled Conjugate Gradient (SCG)  
Input: Code Patterns, CP; Exact Output, EO; 
Output: weights, w;    
  {       
       Choose weight vector -4

1  -6,  =0 ;   
       Set  =  = ( ),  k =1 and success = true ; 

            // is a weight vector in the N-dimensional euclidean  space RN, where N is the number of    
               1  Are the factors not crucial to SCG performance?   
               Due to this, SCG does not appear to include any user-dependent parameters whose values   
               are essential to the algorithm's performance. A clear advantage exist in comparing this to   
               line search-based algorithms that use those parameters. 1 . when the   
               value of is small ( -4) we observe that the average performance of SCG is not   
               significantly affected. For -4, the number of failures (local minima) was in the range   
               0-2 and the standard deviation 330. When -12, round off errors began to   
               have an effect.  ,  are set of non zero weight vectors in RN.  ( )is the negative    
               gradient to global error function. k is counter // 
 
        ( ) = CP * w1 – EO ;    
            // ( )is global error function depending on all the weights and biases is attached to the      
             neural network // 
     If success = true, then calculate second order information:                =  | |  ;  // set of non zero weight vector in // 

              =  ( + ( )  ;   //  which is referred to as the scaling factor;  is not strictly necessary// 

         =      ; //  is iteration// 

 
         Scale  :  = +  | |   ;                                                                                              //  is scale the step size, the bigger of the value, the smaller the step size// 
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        If  positive definite: 

       = 2  | |   ; 
      =   +  | |    ; 
      =    ; 
      Calculate step size:                  ;   //  is steepest descent direction//               =   ;  //  is step size//   
         Calculate the comparison parameter:            =  [ ( ) (  )]   ;            //  is a measure of how well ( ) approximates ( +  ) in the sense that   
             the closer is to 1 , the better is the approximation // 
        If  
                 =  +    ;   
                 =  ( )   ;    //  the current steepest descent direction//  
     = 0, success = true. 
 If  k  mod  N = 0 then restart algorithm:    
      =    ;    
                else:   

                   =  (| |  )   ;  //  new conjugate direction// 

        =  +   ; 
                If  

     =     ; 
                else: 

                    =     ; 
           Success = false. 
                If < 0.25, then increase the scale parameter: 

          =  + (  )| |  ; 
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                    If the steepest descent direction  0,   = + 1                            = ,  calculate second order information else terminate and return                      as the desired minimum. 
return w 
}                                                                              
 

       . Experiments show 
small -4  )

result, SCG does not appear to include user-dependent parameters, which are crucial to the algorithm's 
effectiveness. This is a significant advantage compared to line-search-based algorithms involving those 
parameters.  
 
Sixth step: Read, Parsing and Coding Dataset  
      Read the dataset from the fasta file in this step. The next step is to parse a dataset to look for actual 
writing, remove any special characters, and identify any syntax or semantic errors. Furthermore, change 
every lowercase letter of a DNA base to an uppercase letter. Finally, we use a type checker to determine 
that the dataset's data type is DNA. This module performs its duty according to the algorithms presented 
in Algorithm (6). Usually, the DNA sequences are stored in FASTA format. Preprocessing includes 
removing special characters and identifying syntax or semantic errors. In addition, another operation on 
the dataset is needed, such as converting the bases to their uppercase and binary codes, which can be 
accomplished as a preprocessing step or during the testing phase. This module performs its duty 
according to the algorithms presented in Algorithm (6).  
 

Algorithm (6) Read, Parsing, and Coding Dataset 
Input: fasta file (path and file); 
Output: coded data set (coded data);     
  {        
     fastadata = fastaread (fullfile (path, file)) ; 
     for each ith sequence in a fasta file 
      { 

   data {i} = fasta data.sequence ; 
   dat = upper (data {i}) ; 

         s= remove all characters not in ['A' 'C' 'G' 'T'] ; 
         for each character in dat 

       { 
  dat = replace 'A' with '00' in pat;  

     dat = replace 'C' with '01' in pat; 
     dat = replace 'G' with '10' in pat; 
     dat = replace 'T' with '11' in pat; 

           } 
              coded data{i,1} = dat; 
      } 
 }  
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Seventh step: Segmentation 
       In this step, we use the sliding window approach to cut the dataset at the same length as the simple 
motif; the simple motif's length equals the window's length. The sliding window method computes the 
statistic over the data in the window as a window of a defined length (Len) slides over the data character 
by character. This method considers the overlapping in the dataset until you check all the occurrences of 
the simple motif. For example, suppose that the simple motif ACCGTA consists of six characters or 
bases according to the sliding window method. We cut the first six characters from the dataset and moved 
on to characters in line window character after another to reach the last character in the dataset. The result 
is a binary representation of bits according to the algorithm (4), with each pair of 2 bits standing for a 
character and all bits representing a data segment. This module performs its duty according to the 
algorithm presented in Algorithm (7).

Algorithm (7) Segmentation 
Input: coded Data set, coded data; simple motif, SM; 
Output: Segmented Data, SD;     
  {        
     for each ith SM 
      { 
        m = number of characters of the ith SM ; 
        n = number of characters of coded data; 
        get the first odd sequence from D (1:2:n- 2*m+1) ; 
     for j = 2 to 2*m 
      { 
          add coded data (j:2:n-2*m+j) to the previous sequences; 
      } 
    SD = reshape the repeated sequences matrix as [n/2-m+1, 2*m]; 
     } 
 return SD; 
 }   

 

Eighth step: Testing 
      In this step, the results of multiplying the values of the weights by the values of the code-segmented 
data equal 0 (which means the simple motif does not exist in the dataset). Alternatively, the outcome is 1 
(indicating that the dataset contains the simple motif). This module performs its duty according to the 
algorithm presented in Algorithm (8). 

Algorithm (8) Testing of coded segmented data 
Input: Coded Segmented Data (CSG); 
            Training function net (TFN), which is a function of  Y1 and wi, i =1 to k 
Output: predicted output (PY);     
  {        

 Y= Y1 + w1* CSG1 + w2* CSG2 +…+ wkCSGk ; 
        PY= round of Y; 
return PY; 
  }   
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Ninth step: Verify Distance 
      In this step, we find the complex motif by verifying the condition of the gaps' limits. Added to the end 
of simple motif upper and lower limits of a gap for testing the next simple motif that falls within these 
limits. This module performs its duty according to the algorithm presented in Algorithm (9). 

Algorithm (9) Verify Distance 
Input: Dataset, D; Predicted Output, PO;     
            Predicted Output of Simple Motif, POSM; 
Output: Result, R;     
  {      
      if number of gaps = zero then 
       { 
          Calculate the number of characters in SM ; 
          Index = index of (PO equal to one) ; 
       } 
   else 
       for i =1 to the number of SM  
       Calculate the number of characters in the ith SM ; 
        if i =1 then 
        Index = index of (PO of first SM equal to one) ; 
        else 
        for j =1 to the number of index 
        Indx = Read PO of the ith SM ; 
        Index = union (index, indx ((indx>=ind1 (j))  & (indx<=ind2 (j)))) ; 
        ind = indg ; 
       if ii < number of characters in SM 
       {  
          ind1= indx+numel (SM{ii}) + lower gap (ii) ; 
          ind2= indx+numel(SM {ii}) + upper gap (ii) ; 
          motifstart = ind-sum (charno (1: end-1))-sum (uppergap) ; 
          motifend = ind + strlength (SM {end})-1 ; 
          indx = find (PO {1}==1) ; 
        } 
        if the number of (lower gap) >=1 
        indx2 = find (po{2}==1) ; 
        else 
        indx2 = ind ; 
        k=0 ; 
        for ii =1 to number of (motif start) 
        motif begin = intersect ([motif start (ii): motif end (ii)], indx) ; 
        for j = 1 to numel (motif begin) 
     if ~ is empty (intersect ([motifbegin (j): motif end (ii)], indx2)) 
     k = k+1 ; 
     R (k).segment = extract segment from location motif begin (j) to motif end (ii)) ; 
return R; 
 }   
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5. Results and Discussion 
     The experimental findings from comparing the Scaled Conjugate Gradient (SCG), One Step 
Secant, Gradient Descent, Bayesian Regularization, and BFGS Quasi-Newton algorithms are 
presented in this section. In actual data collection, these algorithms are evaluated for the results 
obtained using Homo sapiens dystrophin (DMD); RefSeqGene (LRG 199) on chromosome X, this 
dataset included 2,227,382 DNA bases, and they can be downloaded at 
https://www.ncbi.nlm.nih.gov/nuccore/256355061. Compared to the other supervised learning neural 
network algorithms, such as One Step Secant, Gradient Descent, Bayesian Regularization, and BFGS 
Quasi-Newton, the proposed SCG algorithm produced higher accuracy (100%) and less time during 
the training and testing phases. For more explanation, Table 6 shows ten motif templates and one 
result for each motif template, which contains the start position, end position, and motif length. 
  

Table 6. The Experiments Results of Motif Templates 
No. of 

Templates Motif  Templates Mined Motif Start 
Position 

End 
Position 

Motif 
Length 

Template1 CAT[2,4]TATG[1,50]AGC CATAATATGAAAGC 1 13 13 
Template2 TAC[1,30]GTAT[2,10]CAG TACCCGTATTCCAG 1359 1372 14 

Template3 AAG[1,40]AATCG[2,20]G
GAC[25,50]AC 

AAGAAATCGCGGGA
CAAAAACCCCCGG 

… 
471515 471583 69 

Template4 AAG[1,60]AATCG[2,20]G
GAC[25,70]AC 

AAGCAGGAAAGGGT
CGGTGATGAA… 471422 471583 162 

Template5 AAAGG[1,100]CTCA AAAGGCCATTTATG
AAAAACTCA 373 395 23 

Template6 ATTCCGGA ATTCCGGA 176436 176443 8 

Template7 AAAGG[1,150]CTCA AAAGGAAAACCAAT
TCTAACTCA 373 395 23 

Template8 ACGC ACGC 1080 1083 4 

Template9 

ACACT[1,10]CCAGGC[1,2
0]ACACTAC 

[1,30]AAAAATCC[1,40]AA
AGG[1,50]T 

ACACTGGCACCAAA
GCCAGGCAAAGATA
CCACAATAAAAGAA 

… 

21 151 131 

Template10 AAAGG[1,500]CTCA AAAGGATTATATAC
CATGATCAGGT… 145 395 251 

 
       Table 7 compares each template’s training and testing times for the following algorithms: SCG, One 
Step Secant, Gradient Descent, Bayesian Regularization, and BFGS Quasi-Newton. This reveals that the 
SCG algorithm takes the least time overall. 
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Table 7. The Comparison between training and testing times in seconds for five algorithms 
 

No. of 
Templates 

SCG One Step 
Secant 

Gradient 
Descent 

Bayesian 
Regularization 

BFGS Quasi-
Newton 

T
raining 
T

im
e

 T
esting 
T

im
e

 T
raining 
T

im
e

 T
esting 
T

im
e

 T
raining 
T

im
e

 T
raining 
T

im
e

 T
raining 
T

im
e

 T
esting 
T

im
e

 T
raining 
T

im
e

 T
esting 
T

im
e

 

Template1 2.773 2.102 12.609 2.677 6.385 6.385 3.402 2.54 6.385 2.491 
Template2 2.707 1.945 11.361 2.675 4.562 4.562 4.655 2.484 4.562 2.585 
Template3 3.025 2.539 15.897 3.494 6.917 6.917 5.369 3.221 6.917 3.546 
Template4 2.949 2.608 13.53 3.281 5.498 5.498 5.646 3.159 5.498 3.383 
Template5 2.471 1.525 12.831 1.811 3.114 3.114 4.82 2.041 3.114 1.543 
Template6 3.580 1.063 138.55

7 1.431 5.931 5.931 13.927 1.396 5.931 1.057 

Template7 2.479 1.429 11.993 1.853 4.897 4.897 3.274 2.015 4.897 1.521 
Template8 1.928 0.793 3.378 0.960 2.202 2.202 3.147 0.974 2.202 0.830 
Template9 5.323 4.681 197.68

9 6.149 21.075 21.075 40.287 5.79 21.075 4.957 

Template10 2.478 1.411 13.1 1.842 3.497 3.497 4.881 1.721 3.497 1.484 
 

       Table 8 shows the results for the SCG algorithm in terms (No. of Simple Motifs, No. of Gaps, Motif 
Length, No. of Results, and Verify Distance Time). 
 

Table 8. Illustrative results 

 
 

6. Conclusion 
       In this study, we used five algorithms (SCG, One Step Secant, Gradient Descent, Bayesian 
Regularization, and BFGS Quasi-Newton) to search in DNA database with 2,227,382 bases for patterns 
that ranged in length from 4 to 509 bases. After extensive testing and experimentation with a variety of 
patterns, we came to the conclusion that Scaled Conjugate Gradient (SCG) is the best algorithm when 
compared to the rest of supervised learning neural network algorithms because it includes the following 
major benefits: Finding the motif takes very little time, doesn't take up much memory, and can be done 

No. of 
Templates 

No. of Simple 
Motifs 

No. of 
Gaps 

Motif 
Length 

No. of 
Results 

Verify 
Distance 

Time (second) 
Template1 3 2 13 369 6.194 
Template2 3 2 14 452 5.207 
Template3 4 3 69 7 4.102 
Template4 4 3 162 11 4.190 
Template5 2 1 23 1337 2.453 
Template6 1 0 8 3 0.015 
Template7 2 1 23 1950 3.497 
Template8 1 0 4 971 1.419 
Template9 6 5 131 17 3.924 
Template10 2 1 251 5121 7.405 
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high accurately (100%) in finding all the motifs occurrences even while searching through massive 
amounts of data. The rest of algorithms produced unsatisfactory results due to high time consumption, 
high memory consumption, and low accuracy in finding all occurrences of the motifs. 
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