DOI: http://doi.org/10.32792/utq.jceps.10.01.01

Stress - Strength Reliability Estimation for Parallel Redundant System Based on

Weibull-Ryleigh Distribution

Mohammad I. Alwan¹, Nada S. Karam²

^{1,2}Department of Mathematics, College of Education, Mustansiriyah University, Baghdad, Iraq

Received 10/4/2023, Accepted 8/5/2023, Published 11/6/2023

This work is licensed under a <u>Creative Commons Attribution 4.0 International License.</u>

Abstract:

Estimation for reliability of a parallel redundant system with independent stress and strength Weibull-Ryleigh probability density functions is considered. Estimation of the reliability parameters was conducted according to three methods, namely maximum likelihood, moments and percentiles methods. Finally, the reliability estimate was calculated and the best method for estimation for each case was given using the mean squared error criteria. It was found that the best estimation method is the percentiles method.

Keywords: Weibull-Ryleigh distribution, Reliability, Stress- Strength, Reliability Estimation.

Introduction

Several studies have been conducted in terms of the stress-strength reliability. In (2020) N. S. Karam et.al. [1] studied the reliability of a multicomponent system based on the Lomax stress-strength model. In (2021) F. GülceCüran [2], the reliability of a redundant system with exponentially distributed stress and strength variables. In (2021) N. S. Karam [3], estimated the reliability a stress-strength model based on the Generalized Inverted Kumaraswamy distribution. The same year, S. A. Jabr and N. S. Karam [4] discussed the estimation of the reliability for Gompertz Fréchet stress-strength model. E. Sh. M. Haddad and F. Sh. M. Batah (2021) [5] studied the reliability estimation of the stress-strength Power Rayleigh model.

The subject of this work is the Weibull-Rayleigh distribution which is a continuous probability distribution found in life testing experiments, reliability analysis, applied statistics and clinical studies.

Several generalizations have been studied by authors for the Weibull-Rayleigh distribution, one of which is the subject of this work and is expressed as $X \sim WRD(a, k)$. The probability density is given by [7]:

$$f(x,a,k) = \begin{cases} \frac{2a}{k^a} x^{2a-1} e^{-\left(\frac{x^2}{k}\right)^a} & , x > 0, a, k > 0 \\ 0 & o.w. \end{cases}$$
(1)

Where, a and k are respectively shape and scale parameters which are real numbers greater than zero. The cumulative distribution is given by:

$$F(x, a, k) = \begin{cases} 1 - e^{-\left(\frac{x^2}{k}\right)^a} & , x > 0, a, k > 0 \\ 0 & o.w. \end{cases}$$
(2)

The System Stress- Strength Reliability

A parallel system (redundant system) is composed of r components which is the limit state does not necessarily indicate a system failure. Reliability and redundancy have been the subject of numerus studies such as [8].

Assuming that the two random variables X and Y represent the strength and the stress respectively are independent with $X \sim WRD(a_2, k_2)$ and $Y \sim WRD(a_1, k_1)$, then:

$$f_{x}(x, a_{2}, k_{2}) = \begin{cases} \frac{2a_{2}}{k_{2}^{a_{2}}} x^{2a_{2}-1} e^{-\left(\frac{x^{2}}{k_{2}}\right)^{a_{2}}} & , x > 0, a_{2}, k_{2} > 0\\ 0 & 0. w. \end{cases}$$
(3)

and

$$f_{y}(y, a_{1}, k_{1}) = \begin{cases} \frac{2a_{1}}{k_{1}^{a_{1}}} y^{2a_{1}-1} e^{-\left(\frac{y^{2}}{k_{1}}\right)^{a_{1}}} & , y > 0, a_{1}, k_{1} > 0 \\ 0 & o. w. \end{cases}$$
(4)

The cumulative distribution for each is then given by:

$$F_{y}(y, a_{1}, k_{1}) = \begin{cases} 1 - e^{-\left(\frac{y^{2}}{k_{1}}\right)^{a_{1}}} & , y > 0, a_{1}, k_{1} > 0 \\ 0 & o. w. \end{cases}$$
(5)

And

$$F_{x}(x, a_{2}, k_{2}) = \begin{cases} 1 - e^{-\left(\frac{x^{2}}{k_{2}}\right)^{a_{2}}} & , x > 0, a_{2}, k_{2} > 0 \\ 0 & o.w. \end{cases}$$
(6)

The stress-strength (s-s) reliability can be found if we consider the formula given in [9]:

$$R_0 = \int_0^\infty R_p(y) f_y(y) dy \tag{7}$$

Where, $R_p(y) = 1 - [1 - R_x(y)]^r$ is the parallel system reliability.

$$F_x(y) = 1 - e^{-\left(\frac{y^2}{k_2}\right)^{\alpha_2}} \quad y > 0, \qquad a_2, k_2 > 0$$
(8)

And

$$R_x(y) = 1 - F_x(y) = e^{-\left(\frac{y^2}{k_2}\right)^{a_2}}$$
(9)

$$R_p(y) = 1 - [1 - R_x(y)]^r = 1 - \left[1 - e^{-\left(\frac{y^2}{k_2}\right)^{a_2}}\right]^r$$
(10)

Journal of Education for Pure Science- University of Thi-Qar

Vol.13, No.2 (June., 2023)

Website: jceps.utq.edu.iq

Email: jceps@eps.utq.edu.iq

Figure 1: R_0 as plotted against different values of the parameters a_1, a_2, k_1, k_2 .

So, using the binomial expansion

$$(x+y)^{r} = \sum_{i=0}^{r} C_{i}^{r} x^{r-i} y^{i}$$
(11)

Then

$$R_{p}(y) = 1 - \sum_{i=0}^{r} C_{i}^{r} \left(-\exp\left[-\frac{y^{2a_{2}}}{k_{2}^{a_{2}}}\right] \right)^{i} = 1 - \sum_{i=0}^{r} C_{i}^{r} (-1)^{i} \exp\left[\frac{-i}{k_{2}^{a_{2}}}y^{2a_{2}}\right]$$
(12)

Where, r is the number of components. The overall reliability of parallel redundant system under stress can be found using equations (4) and (12) by [10]:

$$R_{0} = \int_{0}^{\infty} \left(R_{P}(y) \cdot f_{y}(y) \right) dy = \int_{0}^{\infty} \left(1 - \sum_{i=0}^{r} C_{i}^{r} (-1)^{i} \exp\left[\frac{-i}{k_{2}^{a_{2}}} y^{2a_{2}}\right] \right) f_{y}(y) dy$$
$$R_{0} = 1 - \sum_{i=0}^{r} C_{i}^{r} (-1)^{i} \int_{0}^{\infty} \exp\left[\frac{-i}{k_{2}^{a_{2}}} y^{2a_{2}}\right] \frac{2a_{1}}{k_{1}^{a_{1}}} y^{2a_{1}-1} \exp\left(\frac{y^{2}}{k_{1}}\right)^{a_{1}} dy$$

So that:

129Page

$$R_0 = 1 - \sum_{i=0}^r C_i^r (-1)^i \frac{2a_1}{k_1^{a_1}} \int_0^\infty y^{2a_1 - 1} \exp\left[\frac{-i}{k_2^{a_2}} y^{2a_2}\right] \exp\left[\frac{y^2}{k_1}\right]^{a_1} dy$$
(13)

Where $a_i, k_i > 0$ and $k \in \mathbb{Z}^+$, and the integration above can be calculated using the MATLAB command "integral". The behavior if the system reliability R_0 is plotted against each of the parameters in Figure 1.

Estimation Methods

In this section, three estimators for R_0 are discussed. The estimators are the maximum likelihood (MLE), moment (MO) and the Percentiles estimators. As the three derived estimators require initial values, the regression method is used to acquire them.

1.1 Regression Method

If the cumulative function given in 5 is considered, then

$$1 - F = e^{-\frac{x^{2a}}{k^a}} \Rightarrow k^{-a} x^{2a} = -\ln(1 - F)$$
(14)

Taking the natural logarithm of 14 and solving for $\ln x$ give:

$$\ln x = \frac{1}{2} \ln k + \frac{1}{2a} \ln(-\ln(1-F))$$
(15)

To acquire an approximate value for the parameters a, k it is possible to compare equation 15 to the linear regression equation[11]:

$$A = \Phi + \theta B + \epsilon \tag{16}$$

The problem here is to estimate *F*. To that end, consider random sample $X_i \sim WRD(a, k)$ i = 1, ..., nand consider y_i to be the order statistic. Then a good estimation for $F(y_i)$ is the plot position $p_i = \frac{i}{n+1}$ especially since $E(F(y_i)) = p_i$ [12]. Considering this, then

$$\ln y_i = \frac{1}{2} \ln k + \frac{1}{2a} \ln(-\ln(1-p_i))$$
(17)

And if we compare this to

$$A_i = \Phi + \theta B_i + \epsilon \tag{18}$$

We have
$$A_i = \ln y_i$$
, $\Phi = \frac{1}{2} \ln k$, $\theta = \frac{1}{2a}$ and $B_i = \ln(-\ln(1-p_i))$ so that
 $\hat{a}_0 = \frac{1}{2\hat{\theta}}$
(19)

$$\hat{k}_0 = e^{2\hat{\Phi}} \tag{20}$$

Such that

$$\widehat{\Phi} = \sum_{i=1}^{n} \frac{A_i}{n} - \widehat{\theta} \sum_{i=1}^{n} \frac{B_i}{n}$$
(21)

$$\hat{\theta} = \frac{n \sum_{i=1}^{n} A_i B_i - \sum_{i=1}^{n} A_i \sum_{i=1}^{n} B_i}{n \sum_{i=1}^{n} B_i^2 - (\sum_{i=1}^{n} B_i)^2}$$
(22)

1.2 Maximum Likelihood Estimator (MLE)

For a random sample $X_i \sim WRD(a, k)$ i = 1, ..., n, then the likelihood function is given by:

$$L = 2^{n} a^{n} k^{-na} \prod_{i=1}^{n} x_{i}^{2a-1} \exp\left(-\frac{\sum_{i=1}^{n} x_{i}^{2a}}{k^{a}}\right)$$
(23)

So, the log-likelihood become

$$\ln L = n \ln 2 + n \ln a - na \ln k + (2a - 1) \sum_{i=1}^{n} x_i - \frac{\sum_{i=1}^{n} x_i^{2a}}{k^a}$$
 24

Differentiating equation 24 with respect to *a* and equating to zero we obtain:

$$\frac{\partial \ln L}{\partial a} = \frac{n}{a} - n \ln k + 2 \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \left(\frac{x_i^2}{k}\right)^a \ln \frac{\sum_{i=1}^{n} x_i^2}{k}$$
$$\frac{n}{a} = n \ln k - 2 \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} \left(\frac{x_i^2}{k}\right)^a \ln \frac{\sum_{i=1}^{n} x_i^2}{k}$$

and

$$\hat{a}_{MLE} = n \left[n \ln \hat{k}_0 - 2 \sum_{i=1}^n x_i + \sum_{i=1}^n \left(\frac{x_i^2}{\hat{k}_0} \right)^{\hat{a}_0} \ln \frac{\sum_{i=1}^n x_i^2}{\hat{k}_0} \right]^{-1}$$
(25)

Where \hat{a}_0 , \hat{k}_0 are as given in equations 19 and 20. On the other hand, differentiating equation 24 with respect to k and equating to zero gives

$$\frac{\partial \ln L}{\partial k} = -\frac{na}{k} - (-ak^{-a-1}) \sum_{i=1}^{n} x_i^{2a}$$

$$\frac{na}{k} = \frac{a}{k^{a+1}} \sum_{i=1}^{n} x_i^{2a} \Rightarrow n = \frac{1}{k^a} \sum_{i=1}^{n} x_i^{2a} \Rightarrow k^a = \frac{1}{n} \sum_{i=1}^{n} x_i^{2a}$$

$$\hat{k}_{MLE} = \left(\frac{1}{n} \sum_{i=1}^{n} x_i^{2a_0}\right)^{\frac{1}{a_0}}$$
(26)

And the estimator for *k* is Where \hat{a}_0 is as given in equation 19

1.3 Moments Method (MO)

The r^{th} moment of a random variable $X \sim WRD(a, k)$ is given by [7] $E(x^r) = k^{\frac{r}{2}} \Gamma\left(\frac{r}{2a} + 1\right) = k^{\frac{r}{2}} \frac{r}{2a} \Gamma\left(\frac{r}{2a}\right)$

$$E(x) = k^{\frac{1}{2}} \frac{1}{2a} \Gamma\left(\frac{1}{2a}\right)$$
(27)

So, the first and second moments are given by:

Email: jceps@eps.utq.edu.iq

$$E(x^2) = \frac{k}{a} \Gamma\left(\frac{1}{a}\right)$$
(28)

$$\bar{x} = k^{\frac{1}{2}} \frac{1}{2a} \Gamma\left(\frac{1}{2a}\right) \tag{29}$$

$$\frac{\sum_{i=1}^{n} x_i^2}{n} = \frac{k}{a} \Gamma\left(\frac{1}{a}\right) \tag{30}$$

$$\hat{k}_{MO} = \frac{\hat{a}_0 \sum_{i=1}^n x_i^2}{n\Gamma\left(\frac{1}{\hat{a}_0}\right)}$$
(31)

Equating equations 27 and 28 with \bar{x} and $\frac{\sum_{i=1}^{n} x_{i}^{2}}{n}$ we obtain: Form equation 30 we get Also form equation 29

$$\hat{a}_{MO} = \left(\hat{k}_{MO}\right)^{\frac{1}{2}} \frac{\Gamma\left(\frac{1}{2\hat{a}_0}\right)}{2\bar{x}} \tag{32}$$

Again, \hat{a}_0 and \hat{k}_0 are as given in equations 19 and 20.

1.4 Percentiles (PE)

The method was first implemented 1959 by Kao, J [13]. The aim is to minimize P where:

$$P = \sum_{i=1}^{n} \left[\ln y_i - \frac{1}{2} \ln k - \frac{1}{2a} \ln(-\ln(1-p_i)) \right]^2$$
(33)

Here, y_i , i = 1, 2, ..., n is the order statistic and $p_i = \frac{i}{n+1}$ is the plot position as discussed in section 3.1.

Now differentiating equation 33 with respect to k and equating to 0 gives:

$$0 = -\frac{2}{2k} \sum_{i=1}^{n} \left[\ln y_i - \frac{1}{2} \ln k - \frac{1}{2a} \ln(-\ln(1-p_i)) \right]$$
(34)

To solve 34 for k we have

$$0 = \sum_{i=1}^{n} \ln y_i - \frac{n}{2} \ln k - \frac{1}{2a} \sum_{i=1}^{n} [\ln(-\ln(1-p_i))]$$
$$\ln k = \frac{2}{n} \sum_{i=1}^{n} \ln y_i - \frac{1}{na} \sum_{i=1}^{n} [\ln(-\ln(1-p_i))]$$

And so, by exponentiating both sides

$$\hat{k}_{PE} = \exp\left[\frac{2}{n}\sum_{i=1}^{n}\ln y_i - \frac{1}{n\hat{a}_0}\sum_{i=1}^{n}\left[\ln(-\ln(1-p_i))\right]\right]$$
(35)

132Page

Again differentiating equation 33 with respect to *a* and equating to 0 gives:

$$0 = \left(\frac{2}{2a^2}\right) \sum_{i=1}^{n} \left[\ln y_i - \frac{1}{2} \ln k - \frac{1}{2a} \ln(-\ln(1-p_i)) \right] \ln(-\ln(1-p_i))$$
(36)

Solving 36 for a gives

$$0 = 2\sum_{i=1}^{n} [\ln y_i \ln(-\ln(1-p_i))] - \sum_{i=1}^{n} [\ln k \ln(-\ln(1-p_i))] - \frac{1}{a} \sum_{i=1}^{n} [\ln(-\ln(1-p_i))]^2$$
$$-\frac{1}{a} \sum_{i=1}^{n} [\ln(-\ln(1-p_i))]^2 = 2\sum_{i=1}^{n} [\ln y_i \ln(-\ln(1-p_i))] - \sum_{i=1}^{n} [\ln k \ln(-\ln(1-p_i))]$$

Dividing and taking the reciprocal give:

$$\hat{a}_{PE} = \frac{\sum_{i=1}^{n} [\ln(-\ln(1-p_i))]^2}{2\sum_{i=1}^{n} [\ln y_i \ln(-\ln(1-p_i))] - \sum_{i=1}^{n} [\ln \hat{k}_0 \ln(-\ln(1-p_i))]}$$
(37)

Where \hat{a}_0 and \hat{k}_0 are as given in equations 19 and 20.

Simulation

A simulation study of size (1000) is used to compare the reliability estimators. To that end, MATLAB(2018b) is used to generate a complete type data the data was then used to acquire the reliability estimates based on methods given in section 3. A comparison was then made to test for performance using the mean square error (MSE) criteria. The procedure was done as follows:

• From Equation 5 and 6, we let $U_x = F_x(x), U_y = F_y(y)$ where U_x, U_y are uniformly distributed over (0,1). And the random sample is generated by:

$$U_x = 1 - e^{-\left(\frac{x^2}{k_1}\right)^{a_1}} \Rightarrow \ln(1 - U_x) = -\left(\frac{x^2}{k_1}\right)^{a_1} \Rightarrow \frac{x^2}{k_1} = (-\ln(1 - U_x))^{\frac{1}{a_1}}$$

Therefore, we get

$$x = k_1^{\frac{1}{2}} (-\ln(1 - U_x))^{\frac{1}{2a_1}}$$
(38)

A similar argument gives:

$$y = k_2^{\frac{1}{2}} \left(-\ln(1 - U_y) \right)^{\frac{1}{2a_2}}$$
(39)

- A random sample of size m, n are generated for x_i and y_j using equations 38 and 39 where m = 15,30,90 and n = 15,30,90. The real values of the parameters a₁, a₂, k₁, k₂ were taken to be (a₁, a₂, k₁, k₂) = (0.3,0.2,2,2), (0.2,0.3,2,2), (0.6,1.2,2,3), (1.2,0.6,3,2), (1.2,1.2,3,2), (1.2,1.2,2,3), (2,1.5,3,2) and (2,1.5,2,3) the resulting data sets became 72 data sets for each x and y.
- The real values of the reliability R_0 was calculated according to equation 13 with r = 3.
- Parametric estimation was then conducted for each data sets according to equations 24 and 25 for the MLE method, equations 31 and 32 for the moments method and equations 35 and 37 for

the percentiles method. For each case the reliability of the system was estimated according to equation 13 resulting in 72 system reliability data sets of size 1000.

- The mean of the data sets for each case was calculated and is given for each case in the tables (1-8).
- The mean squared error (MSE) was also calculated according to the relation $MSE = \frac{1}{N} \sum_{i=1}^{N} (\hat{R}_i R_0)^2$, where N = 1000. The values are also given in the tables (1-8) along with the best method corresponding to the minimum value of the MSE.

Meth	od	\widehat{R}_{ML}	\widehat{R}_{MO}	\widehat{R}_{PE}	Best
<i>n</i> = 15	Mean	0.725427723	0.685266775	0.716997959	DE
m = 15	MSE	0.011599541	0.024536106	0.006931972	I IL
<i>n</i> = 15	Mean	0.736146331	0.729956546	0.717753536	DE
m = 30	MSE	0.010727076	0.025682836	0.007080227	I IL
<i>n</i> = 15	Mean	0.738242384	0.818832564	0.706009726	DE
<i>m</i> = 90	MSE	0.010085151	0.029505895	0.007018601	PE PE
<i>n</i> = 30	Mean	0.70852365	0.622347177	0.715410347	DE
m = 15	MSE	0.009104063	0.027065504	0.005902622	I IL
<i>n</i> = 30	Mean	0.721387009	0.659187367	0.716748472	DE
m = 30	MSE	0.00661468	0.022046637	0.004897644	L L
n = 30	Mean	0.730231856	0.733861917	0.713706039	DE
<i>m</i> = 90	MSE	0.00502794	0.019370446	0.004060103	L L
<i>n</i> = 90	Mean	0.699525486	0.610961124	0.724282167	DE
m = 15	MSE	0.006127226	0.018820701	0.004234506	I IL
<i>n</i> = 90	Mean	0.709785948	0.603026364	0.720967376	DE
m = 30	MSE	0.003169194	0.021947457	0.002536999	I L
<i>n</i> = 90	Mean	0.725321633	0.635277861	0.720585552	DE
<i>m</i> = 90	MSE	0.001864314	0.018004095	0.001537166	ГĽ

Table 1: Estimation results with $a_1 = 0.3, a_2 = 0.2, k_1 = 2, k_2 = 2, R_0 = 0.72137$

Table 2: Estimation results with $a_1 = 0.2, a_2 = 0.3, k_1 = 2, k_2 = 2, R_0 = 0.77272$

Metho	od	\widehat{R}_{ML}	\widehat{R}_{MO}	\widehat{R}_{PE}	Best
n = 15	Mean	0.742904996	0.765343513	0.761155887	DE
m = 15	MSE	0.016244867	0.01553541	0.009049138	ГĽ
n = 15	Mean	0.760372446	0.839319733	0.761717762	DE
m = 30	MSE	0.008654624	0.014278443	0.005560738	ГĽ
n = 15	Mean	0.780205537	0.919711233	0.765174988	DE
<i>m</i> = 90	MSE	0.005449882	0.025034133	0.004176806	1 E
n = 30	Mean	0.73766086	0.730887084	0.762232566	DE
m = 15	MSE	0.014708028	0.016497485	0.008141508	1 E
n = 30	Mean	0.758790775	0.798704453	0.765913642	DE
<i>m</i> = 30	MSE	0.007050964	0.010271753	0.004888321	1 L

Email: jceps@eps.utq.edu.iq

Method		\widehat{R}_{ML}	\widehat{R}_{MO}	\widehat{R}_{PE}	Best
<i>n</i> = 30	Mean	0.771539828	0.8852018	0.766144389	DE
<i>m</i> = 90	MSE	0.003193065	0.016864612	0.002514476	FE
<i>n</i> = 90	Mean	0.736984319	0.692683356	0.768821566	DE
m = 15	MSE	0.012080289	0.017035419	0.006925474	FE
<i>n</i> = 90	Mean	0.75517679	0.742025757	0.772516863	DE
m = 30	MSE	0.005471655	0.008039589	0.003861285	FL
<i>n</i> = 90	Mean	0.766273924	0.822098504	0.770702919	DE
<i>m</i> = 90	MSE	0.002096387	0.006413651	0.001538846	ΓĽ

Table 3: Estimation results with $a_1 = 0.6$, $a_2 = 1.2$, $k_1 = 3$, $k_2 = 2$, $R_0 = 0.85396$

Metho	od	\widehat{R}_{ML}	\hat{R}_{MO}	\widehat{R}_{PE}	Best
<i>n</i> = 15	Mean	0.826425091	0.712812326	0.830317301	DE
m = 15	MSE	0.01054421	0.031125267	0.006055252	PE
<i>n</i> = 15	Mean	0.846847684	0.827018489	0.838683979	DE
m = 30	MSE	0.00512953	0.008874599	0.003881895	ΓĽ
<i>n</i> = 15	Mean	0.856232854	0.975615693	0.842911397	DE
<i>m</i> = 90	MSE	0.002354445	0.015284516	0.002007658	ΓĽ
<i>n</i> = 30	Mean	0.823285017	0.641045371	0.834477307	DE
m = 15	MSE	0.01087478	0.052887585	0.005950361	PE
<i>n</i> = 30	Mean	0.844125329	0.722312293	0.844268731	DE
m = 30	MSE	0.004607594	0.024192644	0.003038611	I L
<i>n</i> = 30	Mean	0.854598705	0.911742528	0.846350696	DE
<i>m</i> = 90	MSE	0.001719305	0.00529187	0.001513335	I L
<i>n</i> = 90	Mean	0.81661566	0.589320949	0.835707148	DE
<i>m</i> = 15	MSE	0.010894013	0.073055122	0.005595336	I L
<i>n</i> = 90	Mean	0.834049334	0.60549	0.840513329	DE
m = 30	MSE	0.004178154	0.064029992	0.002821787	ΤĽ
<i>n</i> = 90	Mean	0.848548811	0.727522298	0.846611717	DE
<i>m</i> = 90	MSE	0.00130747	0.01880961	0.001107668	ГĽ

Table 4: Estimation results with $a_1 = 1.2, a_2 = 0.6, k_1 = 2, k_2 = 3, R_0 = 0.6181$

Metho	od	\widehat{R}_{ML}	\widehat{R}_{MO}	\hat{R}_{PE}	Best
<i>n</i> = 15	Mean	0.612163539	0.725408676	0.619473515	DE
m = 15	MSE	0.015198416	0.017887647	0.009589614	L L
<i>n</i> = 15	Mean	0.625515617	0.810371749	0.621429266	DE
m = 30	MSE	0.0148263	0.041473865	0.008730195	L L
<i>n</i> = 15	Mean	0.649759682	0.923524262	0.62823111	DE
<i>m</i> = 90	MSE	0.01390237	0.094974841	0.008010675	
<i>n</i> = 30	Mean	0.610048054	0.646448027	0.628548041	MOM
m = 15	MSE	0.008781301	0.005832998	0.006324822	INICINI
<i>n</i> = 30	Mean	0.617643491	0.726487679	0.61999902	DE
m = 30	MSE	0.00693799	0.01612949	0.004817349	L L

Email: jceps@eps.utq.edu.iq

Method		\widehat{R}_{ML}	\hat{R}_{MO}	\widehat{R}_{PE}	Best
<i>n</i> = 30	Mean	0.629079982	0.862434536	0.620743315	DE
<i>m</i> = 90	MSE	0.00718289	0.061481297	0.004892279	PE PE
<i>n</i> = 90	Mean	0.59907573	0.542270366	0.626373522	DE
<i>m</i> = 15	MSE	0.004628496	0.008680029	0.00345837	L L
<i>n</i> = 90	Mean	0.610964958	0.599469044	0.62360424	MOM
m = 30	MSE	0.003207352	0.002653597	0.002933778	MOM
<i>n</i> = 90	Mean	0.617710036	0.729818257	0.618468118	DE
<i>m</i> = 90	MSE	0.002107393	0.013833818	0.001794575	ГE

Table 5: Estimation results with $a_1 = 1.2$, $a_2 = 1.2$, $k_1 = 3$, $k_2 = 2$, $R_0 = 0.86387$

Metho	od	\widehat{R}_{ML}	\hat{R}_{MO}	\widehat{R}_{PE}	Best
<i>n</i> = 15	Mean	0.853309601	0.817182358	0.836508333	DE
<i>m</i> = 15	MSE	0.00900365	0.01741069	0.006760778	1 L
<i>n</i> = 15	Mean	0.869334094	0.952357167	0.841460726	DE
m = 30	MSE	0.005167792	0.010371861	0.004658162	ΓĽ
<i>n</i> = 15	Mean	0.882041747	0.998944159	0.845918512	MIE
<i>m</i> = 90	MSE	0.003336358	0.018254459	0.003398954	WILL
<i>n</i> = 30	Mean	0.853038132	0.672986075	0.84690759	DE
<i>m</i> = 15	MSE	0.005983375	0.049465143	0.004638418	ΓĒ
<i>n</i> = 30	Mean	0.860137998	0.840844006	0.847628452	DE
m = 30	MSE	0.003484878	0.00765907	0.002782311	ΓĽ
<i>n</i> = 30	Mean	0.873639621	0.992158863	0.85097136	MIE
<i>m</i> = 90	MSE	0.002008538	0.016551882	0.002059506	IVILL
<i>n</i> = 90	Mean	0.845608764	0.482753327	0.854060678	DE
<i>m</i> = 15	MSE	0.004817874	0.150760052	0.003102701	ΓĽ
<i>n</i> = 90	Mean	0.854080171	0.581361231	0.853898782	DE
m = 30	MSE	0.002649958	0.086083904	0.002010359	ΓĽ
<i>n</i> = 90	Mean	0.865244778	0.859275259	0.857196735	DE
<i>m</i> = 90	MSE	0.001075093	0.002646136	0.000990661	ΓĽ

Table 6: Estimation results with $a_1 = 1.2$, $a_2 = 1.2$, $k_1 = 2$, $k_2 = 3$, $R_0 = 0.60686$

Metho	od	\widehat{R}_{ML}	\widehat{R}_{MO}	\widehat{R}_{PE}	Best
<i>n</i> = 15	Mean	0.576595217	0.599370904	0.62082802	DE
m = 15	MSE	0.021116208	0.028023029	0.011330403	L L
<i>n</i> = 15	Mean	0.593732483	0.797573784	0.613241449	DE
m = 30	MSE	0.014256942	0.05080499	0.009323139	L L
<i>n</i> = 15	Mean	0.61578725	0.987152757	0.613368482	DE
<i>m</i> = 90	MSE	0.010913067	0.144859798	0.006928251	L L
<i>n</i> = 30	Mean	0.576403407	0.444672568	0.62425912	DE
m = 15	MSE	0.013980277	0.042916607	0.008641735	I L
n = 30	Mean	0.589930901	0.604317338	0.617374229	DE
m = 30	MSE	0.008751599	0.015486118	0.00687228	1 L

Email: jceps@eps.utq.edu.iq

Method		\widehat{R}_{ML}	Â _{MO}	\widehat{R}_{PE}	Best
<i>n</i> = 30	Mean	0.607272782	0.918979618	0.612279103	DE
<i>m</i> = 90	MSE	0.006625888	0.099793877	0.0045877	FE FE
<i>n</i> = 90	Mean	0.568429039	0.313655187	0.621998843	DE
m = 15	MSE	0.010281187	0.093086992	0.00743745	ΓĽ
<i>n</i> = 90	Mean	0.583488326	0.353369201	0.614492018	DE
m = 30	MSE	0.00610869	0.070342069	0.004315439	ΓĽ
<i>n</i> = 90	Mean	0.596905763	0.597498181	0.612877187	DE
<i>m</i> = 90	MSE	0.002820167	0.007361019	0.002200717	ГĽ

Table 7: Estimation results with $a_1 = 2, a_2 = 1.5, k_1 = 3, k_2 = 2, R_0 = 0.88568$

Metho	od	\widehat{R}_{ML}	\hat{R}_{MO}	\widehat{R}_{PE}	Best
<i>n</i> = 15	Mean	0.892401207	0.906945167	0.863236499	DE
m = 15	MSE	0.005620087	0.007839361	0.004891529	P.E.
<i>n</i> = 15	Mean	0.902817734	0.995903044	0.866095421	MIE
m = 30	MSE	0.004196372	0.01222198	0.004234508	WILL
<i>n</i> = 15	Mean	0.907328501	0.999968713	0.863410204	MIE
<i>m</i> = 90	MSE	0.003091883	0.013062101	0.003521717	WILL
<i>n</i> = 30	Mean	0.882777828	0.657255068	0.866813981	DE
m = 15	MSE	0.003438798	0.069519978	0.003417402	PE
<i>n</i> = 30	Mean	0.891710462	0.927882348	0.872349429	DE
m = 30	MSE	0.002798417	0.004507294	0.002626945	1 L
<i>n</i> = 30	Mean	0.89895694	0.999926801	0.870716167	MIE
<i>m</i> = 90	MSE	0.001985264	0.013052499	0.002174852	IVILL
<i>n</i> = 90	Mean	0.873873459	0.299452693	0.876116435	DE
<i>m</i> = 15	MSE	0.002757303	0.35185998	0.002069535	I L
<i>n</i> = 90	Mean	0.884130781	0.497805145	0.877391835	DE
m = 30	MSE	0.001623176	0.159618302	0.001382318	ΤĽ
n = 90	Mean	0.888945034	0.943119918	0.878822802	DE
<i>m</i> = 90	MSE	0.000958345	0.003898799	0.0008167	ΓĽ

Table 8: Estimation results with $a_1 = 2, a_2 = 1.5, k_1 = 2, k_2 = 3, R_0 = 0.531997$

Metho	od	\widehat{R}_{ML}	\widehat{R}_{MO}	\widehat{R}_{PE}	Best
n = 15	Mean	0.50590801	0.57944516	0.550437265	DE
m = 15	MSE	0.019542376	0.036281064	0.011334603	ΓĽ
n = 15	Mean	0.51224202	0.887219323	0.536811541	DE
m = 30	MSE	0.015802702	0.132785144	0.009224038	ΓĽ
n = 15	Mean	0.526933331	0.999399924	0.536988123	DE
<i>m</i> = 90	MSE	0.012273367	0.218476945	0.008554037	I L
n = 30	Mean	0.498928784	0.307767657	0.547641853	DE
m = 15	MSE	0.011883189	0.069372146	0.008187573	I L
n = 30	Mean	0.513898161	0.585464044	0.543155661	DE
m = 30	MSE	0.008984441	0.021394788	0.005692368	1 L

Email: jceps@eps.utq.edu.iq

Method		\widehat{R}_{ML}	Â _{MO}	\widehat{R}_{PE}	Best
<i>n</i> = 30	Mean	0.533094974	0.985378984	0.544020037	DE
<i>m</i> = 90	MSE	0.006250318	0.205766133	0.004512653	FL FL
<i>n</i> = 90	Mean	0.503580099	0.107162184	0.552086771	DE
<i>m</i> = 15	MSE	0.0073134	0.183698489	0.005788737	ΓĽ
<i>n</i> = 90	Mean	0.512920049	0.186333714	0.542326788	DE
m = 30	MSE	0.004876205	0.125083702	0.003665313	ΓĽ
<i>n</i> = 90	Mean	0.52153936	0.577460818	0.53518021	DE
<i>m</i> = 90	MSE	0.002764141	0.009909256	0.002291603	ГĽ

Result Discussion

For the majority of the results, the PE method seems to perform better in terms of the MSE criterion. Some rare exception can be found however in Table 4 with the MO method performed better in two occasions. Again in Table 5 and Table 7 we see better performance for the MLE method in 2 and 3 occasions respectively.

Conclusion and Recommendation

Estimation of the reliability parameters was conducted according MLE, MO and PE methods for a parallel redundant system based on Weibull-Ryleigh distribution. The data was generated using a size 1000 simulation with a different value for the parameters a_1 , k_2 and a_2 , k_2 and components k = 3. The result shown PE method performed better in the majority of the experiments. It is therefore recommended to use the PE method for this particular distribution.

References

- N. S. Karam, S. M. Yousif, and B. J. Tawfeeq, "Multicomponent Inverse Lomax Stress-Strength Reliability," *Iraqi Journal of Science*, pp. 72–80, May 2020, doi: 10.24996/ijs.2020.SI.1.10.
- [2] F. GülceCüran, "Estimation of stress-strength reliability of a parallel system with cold standby redundancy at component level," *Journal*, vol. 13, no. 2, pp. 74–87, 2021.
- [3] H. H. Hamad and N. S. Karam, "Estimating the Reliability Function of some Stress- Strength Models for the Generalized Inverted Kumaraswamy Distribution," *Iraqi Journal of Science*, pp. 240–251, Jan. 2021, doi: 10.24996/ijs.2021.62.1.23.
- [4] S. A. Jabr and N. S. Karam, "Gompertz Fréchet stress-strength Reliability Estimation," *Iraqi Journal of Science*, pp. 4892–4902, Dec. 2021, doi: 10.24996/ijs.2021.62.12.27.
- [5] E. Sh. M. Haddad and F. Sh. M. Batah, "On Estimating Reliability of a Stress Strength Model in Case of Rayleigh Pareto Distribution," *Iraqi Journal of Science*, pp. 4847–4858, Dec. 2021, doi: 10.24996/ijs.2021.62.12.23.
- [6] A. A. J. Ahmed and F. Sh. M. Batah, "On the Estimation of Stress-Strength Model Reliability Parameter of Power Rayleigh Distribution," *Iraqi Journal of Science*, pp. 809–822, Feb. 2023, doi: 10.24996/ijs.2023.64.2.27.

- [7] E. E. Akarawak, I. A. Adeleke, and R. Okafor, "The Weibull-Rayleigh Distribution and Its Properties," *The Journal of Engineering Research*, vol. 18, 2016.
- [8] N. Sabah, "Estimation of Reliability for a Parallel Redundant System," *Journal of College of Education*, no. 1, pp. 158–243, 2008.
- [9] B. S. Dhillon, "Stress—strength reliability models," *Microelectronics Reliability*, vol. 20, no. 4, pp. 513–516, Jan. 1980, doi: 10.1016/0026-2714(80)90599-5.
- [10] A. M. Breipohl, "Statistical independence in reliability equations," in 8th Nat. Symp. Rel. Qual. Contr., 1962.
- [11] W. Mendenhall, R. J. Beaver, and B. M. Beaver, *Introduction to probability and statistics*. Cengage Learning, 2012.
- [12] S. Abid, "The fréchet stress-strength model," *International Journal of Applied Mathematical Research*, vol. 3, no. 3, Jun. 2014, doi: 10.14419/ijamr.v3i3.2198.
- [13] K. J. H. Kao, "A Graphical Estimation of Mixed Weibull Parameters in Life-Testing of Electron Tubes," *Technometrics*, vol. 1, no. 4, p. 389, Nov. 1959, doi: 10.2307/1266719.