DOI http://doi.org/10.32792/utq.jceps.10.01.01:

THE PROBLEM OF BEST ONE SIDED APPROXIMATION IN WEIGHTED $L_{p, \beta}(X)$

Raheam A. Al-Saphory ${ }^{1, *}$
saphory@tu.edu.iq
Alaa adnan Auad ${ }^{2} \quad$ Abdullah A. Al-Hayani ${ }^{3}$
alaa.adnan.auad.@uoanbar.edu.iq
${ }^{1,3}$ Department of Mathematics; College of Education for Pure Sciences; Tikrit University, Salahaddin; IRAQ.
${ }^{2}$ Department of Mathematic; College of Education for Pure Sciences University of Anbar; Ramadi; IRAQ.
Received 22/7/2023, Accepted 16/8/2023, Published 21/9/2023

This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract

The aim objective of this article, we introduced the problem of one-sided approximation of unbounded functions in weighted space $L_{p, \beta}(X)$ by using some liner operators in terms the average modulus of smoothness. In addition we established the relation between K-functional and average modulus of smoothness. Also, we show that unbounded functions in weighted space $L_{p, \beta}(X)$ to approximate by algebraic and trigonometric polynomials.

Keywords: unbounded functions, algebraic (trigonometric) polynomial, average modulus of smoothness and weighted space.

1. Introduction

Hans [1] in [1982] presented described the finite-dimensional subspaces G of the space of continuous or differentiable functions which have a unique best one-sided L_{1}-approximation. Thus, Gardiner, Rogge and Armitage et al. [2]1998 studied best one-sided L^{1} approximation by harmonic functions. Moreover, Dryanov and Petrov in 2002 studied the problem of best one-sided L^{1}-approximation by blending functions of order (2,2) [3]. So, Motornaya, Motornyi and Nitiema in 2010 found an accurate estimate of the best one-sided approximation of a step by algebraic polynomials in the space L_{1} [4]. Thus, Al-Saidy and Husain 2011 found the Degree of best approximation of unbounded functions by bernstein operators [5]. Also, Jorge, Jose and Reinaldo

Journal of Education for Pure Science- University of Thi-Qar
 Vol.13, No. 3 (Sept.2023)

Website: iceps.utq.edu.iq
[6] 2012 explained the polynomial operators for one-sided approximation to functions in $W_{p}^{r}[0,1]$ by algebraic polynomials. Thus, Babenko et al. [7] 2013 resented the one-sided approximation in L of the characteristic function of an interval by trigonometric polynomials. Alaa and Jassim in [2014] [8] obtained the order of convergence of the weighted area by polynomial interpolation on $[-\pi, \pi]$. Viswanathan and Navascues [9] 2016 presented associate fractal functions in L^{p}-spaces and in one-sided uniform approximation. Thus, Torgashova [10] 2017 is achieved solution to the problem of one-sided approximation in $L(-1,1)$ to the characteristic function of the interval $(-\sqrt{3} / 5,2 / 5)$ by fifth-degree algebraic polynomials. So, Deikalova and Torgashova [11] 2020 found the problems of the best one-sided approximation (from below and from above) in the space $\operatorname{Lv}(-1,1)$ to the characteristic function of an interval $(\mathrm{a}, \mathrm{b}),-1<a<b<1$, by the set of algebraic polynomials of degree not exceeding a given number. Also, Ioannis et al. [2020] Hybrid Block Successive Approximation for One-Sided Non-Convex Min-Max Problems Algorithms and Applications [12] and in [2021] Al-Jawari et al. studied best one-sided multiplier approximation of unbounded functions by algebraic Polynomials operators in space $L_{p, \varphi n}(X)$ by terms averaged modulus[13]. Furthermore, Fedunyk and Hembars'ka [14]2022 found best orthogonal trigonometric approximations of the Nikol'skii-Besov-type classes of periodic functions of one and several variables.

2. Preliminaries

We shall consider unbounded functions defined on X, where $X=[0,1]$, or $X=[0,2 \pi)$ for 2π periodic functions. We consider R as a normed vector space with elements $x, y, z . x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, and norm $|x|=\left\{\left|x_{k}\right|: k=1,2, \ldots, n\right\}$.
α, β, ϵ are multyindices. $|\alpha|=\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}$ is the length of α, where $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$. $\alpha \leq \beta$ means $\alpha_{k} \leq \beta_{k}$ for every k and $\left(\frac{\alpha}{\beta}\right)=\prod_{k=1}^{n} \quad\left(\frac{\alpha_{k}}{\beta_{k}}\right)$ Where $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$. By D^{α} denotes a differential function in R.

Let H_{k} the set of all algebraic and trigonometric polynomials with degree not greater than $k . A_{k}$ denotes the set of all operators of exponential type k.

Let $L_{p, \beta}(X), 1 \leq p<\infty$, the space of all unbounded functions that defined on X , with any function in this space has the norm given by
$\|\xi\|_{p, \beta}=\left(\int_{X}|\xi(x)|^{p} \beta(x)\right)^{\frac{1}{p}}<\infty$.
$\tilde{E}_{k}(\xi, x)_{p, \beta}$ be the degree of best one-sided approximation in $L_{p, \beta}(X), 1 \leq p<\infty$, of unbounded function as ξ by operators $m_{k} \& n_{k}$ given

$$
\begin{equation*}
\tilde{E}_{k}(\xi, x)_{p, \beta}=\inf \left\{\left\|m_{k}-n_{k}\right\|_{p, \beta}\right\} \tag{2}
\end{equation*}
$$

such that $n_{k}, m_{k} \in H_{k}, n_{k} \leq \xi \leq m_{k}$.
Let $\Delta_{\delta}^{k} \xi(x)$ denote the $\mathrm{k}^{\text {th }}$ finite difference with step k of ξ in the point x. We denoted by

Journal of Education for Pure Science- University of Thi-Qar

Vol.13, No. 3 (Sept.2023)

$$
\begin{equation*}
\omega_{k}(\xi, x, \delta)=\sup \left\{\left|\Delta_{\delta}^{k} \xi(x)\right|: x, x+k \delta \in X\right\} \tag{3}
\end{equation*}
$$

The local modulus of ξ. The Modulus of smoothness is given by

$$
\begin{aligned}
& \omega_{k}(\xi, \delta)_{p, \beta}=\sup \left\|\Delta_{\delta}^{k} \xi(x)\right\|_{p, \beta} \text { such that } \\
& \Delta_{\delta}^{k}(\xi, x)=\sum_{i=0}^{k} \quad(-1)^{i+k}\binom{k}{i} \xi(x+i \delta) .
\end{aligned}
$$

And the average modulus of smoothness we denote by

$$
\begin{equation*}
\tau_{k}(\xi, \delta)_{p, \beta}=\left\|\omega_{k}\left(\xi_{,}, \delta\right)\right\|_{p, \beta} \tag{4}
\end{equation*}
$$

where $\left\|\xi-n_{k}\right\|_{p, \beta} \leq c \tau_{k}(\xi, \delta)_{p, \beta}$.
Let k, m and n are determined numbers and c is a positive constant that may depend only on k, m and n. the numbers $d=\left[\frac{m}{n]+1}\right.$ and $l=\max \{k, d\}$ are also determined.

We show the one-sided K-functional as quantity
$\widetilde{K}_{k}\left(\xi, t^{k}\right)_{p, \beta}=\inf \left\{\left\|m_{k}-n_{k}\right\|_{p, \beta}+t^{|\alpha|}\left\|D^{\alpha} m_{k}\right\|_{p, \beta}+\left\|D^{\alpha} n_{k}\right\|_{p, \beta}\right\}$
Where $n_{k}, m_{k} \in L_{p, \beta}(X)$ such that $n_{k} \leq \xi \leq m_{k}$.
From (5) we have only the sum for $|\alpha|=k$ when $k>\frac{m}{n}$ and the sum for $|\alpha|=k$ and $|\alpha|=l$ when $k \leq \frac{m}{n}$. The last part is of importance for the multivariate case.

3. Auxiliary Lemmas

In this part, we find an one-sided approximation of unbounded functions by trigonometric polynomials.

We consider the 2π periodic state, i.e. $x=[0,2 \pi)$.
Let $F_{k}(u)=\frac{\sin ^{2} \frac{\pi}{2 k \sin ^{2} \frac{k u}{2}}}{\sin ^{2} \frac{u}{2}} \in T_{k-1}$ be Fejer kernel (normalized in an appropriate way).

We shall use the following properties of F_{k}

$$
\begin{align*}
& F_{k}(u)>0, \text { for every } x \in R, \tag{6}\\
& F_{k}(u) \geq 0, \text { for every }|u| \leq \frac{\pi}{k} \tag{7}\\
& \int_{-\pi}^{\pi} \quad F_{k}(u) d u=2 \pi k \sin ^{2} \frac{\pi}{2 k} \leq \frac{c}{k}, \tag{8}\\
& \sum_{i=1}^{k-1} \quad F_{k}\left(u-\frac{2 i \pi}{k}\right)=\left(k \sin ^{2} \frac{\pi}{2 k)^{2} \leq c}\right. \tag{9}
\end{align*}
$$

For $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in R$ put

$$
\begin{equation*}
\Psi_{k}(x)=\prod_{i=1}^{k} \quad F_{k}(x i) \in T_{k-1} . \tag{10}
\end{equation*}
$$

We set

$$
G(x)=\{0,1,2, \ldots, n-1\} .
$$

Lemma 3.1: Let $\left\{\alpha_{k}\right\}_{k \in G(x)}$, be a sequence and $0 \leq \alpha_{k}<\infty$. Then

$$
\| \alpha_{k} \Psi_{k}\left(.-\frac{2 \pi}{k)} \|_{p, \beta} \leq c\left(\left(\frac{2 \pi}{\left.k) \alpha_{k}^{p}\right)^{\frac{1}{p}}} .\right.\right.\right.
$$

Proof: From (9), (10) and Jensen inequality, since

$$
\left\lvert\, \alpha_{k} \Psi_{k}\left(x-\frac{2 \pi}{k)\left.\right|^{p}} \leq\left(k \operatorname { s i n } \frac { \pi } { 2 k) ^ { 2 (p - 1) } \alpha _ { k } ^ { p } } \Psi _ { k } \left(x-\frac{2 \pi}{k)^{\prime}}\right.\right.\right.\right.
$$

which together with (8) and (10) proves the lemma.
We shall also use Jackson kernels

$$
J_{l, k}(u)=\gamma_{l, k}\left(\left(\sin \frac{k u}{2 \frac{\hat{\prime}}{\sin }} \frac{u}{2)^{2 l+2}} \in T_{(l+1)(k-1),},\right.\right.
$$

where $\gamma_{l, k}$ is chosen so that $\int_{-\pi}^{\pi} J_{l, k}(u) d u=1$. The following property of Jackson kernels is well known (see e.g. [12, p. 193])

$$
\begin{equation*}
\int_{-\pi}^{\pi} \quad J_{l, k}(u)|u|^{n} d u=c k^{-n} \text { for } n=0,1, \ldots, 2 l . \tag{11}
\end{equation*}
$$

For $x \in R$ put

$$
\begin{equation*}
L_{l, k}(x)=J_{l, k}\left(x_{1}\right) J_{l, k}\left(x_{2}\right) \ldots J_{l, k}\left(x_{n}\right) \in T_{(l+1)(k-1)} \tag{12}
\end{equation*}
$$

Consider the function

$$
\begin{equation*}
Q_{k}(\zeta, x)=\int_{X} \quad \sum_{n=1}^{k} \quad(-1)^{n+1} c \zeta(x+n s) L_{l, k}(s) d s . \tag{13}
\end{equation*}
$$

$Q_{k}(\zeta) \in T_{(l+1)(k-1)}$ and $Q_{k}(\zeta)$ is a polynomial which understand the order of singledirectional approximation of ζ

$$
\begin{gathered}
\left.\left\|\zeta-Q_{k}(\zeta)\right\|_{p, \beta}=\left(\int_{X}\left|\zeta(x)-Q_{k}(\zeta)\right|^{p} \beta(x) d x\right)^{p}\right)^{\frac{1}{p}} \\
=\left(\int_{X}\left|\zeta(x)-l_{k}(\zeta)+l_{k}(\zeta)-Q_{k}(\zeta)\right|^{p} \beta(x) d x\right)^{\frac{1}{p}} \\
\leq\left.\left(\int_{X}\left|\zeta(x)-l_{k}(\zeta)\right|^{p} \beta(x) d x\right)\right|^{\frac{1}{p}}+\left(\int_{x}\left|l_{k}(\zeta)-Q_{k}(\zeta)\right|^{p} \beta(x) d x\right)^{\frac{1}{p}}
\end{gathered}
$$

and then,

$$
\begin{align*}
\left\|\zeta-Q_{k}(\zeta)\right\|_{p, \beta} & \leq\left\|\zeta-l_{k}(\zeta)\right\|_{p, \beta}+\left\|l_{k}(\zeta)-Q_{k}(\zeta)\right\|_{p, \beta} \\
& \leq \frac{2}{(1-h)^{\frac{1}{p}}} \tau_{k}(\zeta, h)_{p, \beta}+\varphi_{k}\left\|l_{k}(\zeta)\right\|_{p, \beta} \\
& \leq\left(\frac{2}{(1-h)^{\frac{1}{p}}}+\frac{3 \varphi_{k}}{h}\right) \tau_{k}\left(\zeta, k^{-1}\right)_{p, \beta} \\
& \leq\left(\frac{2}{1-h}+\frac{3 \varphi_{k}}{h}\right) \tau_{k}\left(\zeta, k^{-1}\right)_{p, \beta}, \text { where } c=\frac{2}{1-h}+\frac{3 \varphi_{k}}{h} \\
& =c \omega_{k}\left(\zeta, k^{-1}\right)_{p, \beta} . \tag{14}
\end{align*}
$$

For the validity of (14) it is enough to choose in (13) any $l \geq k$, but for our next purposes we need $l=\{k, d\}$.

Using Q_{k} we construct our one sided operators as follows:

$$
\begin{align*}
& \left\{P_{k}(\zeta, x)=Q_{k}(\zeta, x)-\Psi_{k}\left(x-\frac{2 \pi}{k)} \sup \sup \left\{\left|\zeta(s)-Q_{k}(\zeta, s)\right|\right\}, q_{k}(\zeta, x)=Q_{k}(\zeta, x)+\right.\right. \\
& \Psi_{k}\left(x-\frac{2 \pi}{k)} \sup \sup \left\{\left|\zeta(s)-Q_{k}(\zeta, s)\right|\right\} .\right. \tag{15}
\end{align*}
$$

4. Main Results

In this section we show that the one-sided K-functional (5) and the average of modulus are equivalent.

Theorem 4.1: Let $\zeta \in L_{p, \beta}(X), 1 \leq p<\infty, k \in N, X=[0,1]$. Then there is positive constant c such that

$$
\begin{equation*}
c \tau_{k}(\zeta, t)_{p, \beta} \leq \widetilde{K}_{k}\left(\zeta, t^{k}\right) \leq c \tau_{k}(\zeta, t)_{p, \beta} . \tag{16}
\end{equation*}
$$

Proof:

We see from (5) that is enough to construct two functions n_{k}, m_{k} from $L_{p, \beta}(X)$ satisfying the conditions:
i) $\quad n_{k}(\zeta) \leq \zeta(x) \leq m_{k}(\zeta)$, for any $x \in X=[0,1]$,
ii) $\quad\left\|m_{k}(\zeta)-n_{k}(\zeta)\right\|_{p, \beta} \leq c \tau_{k}(\zeta, x)_{p, \beta}$,
iii) $\quad\left\{\left\|D^{\beta} m_{k}\right\|_{p, \beta} \leq c t^{-|\beta|} \tau_{k}(\zeta, x)_{p, \beta}, \quad\left\|D^{\beta} n_{k}\right\|_{p, \beta} \leq\right.$

$$
c t^{-|\beta|} \tau_{k}(\zeta, x)_{p, \beta}, \text { for any } k \leq|\beta| \leq l .
$$

Let t be a positive constant. Put $\delta=\frac{t}{4}$ when $x=R, n=\left[\frac{4}{t}\right]+1, \delta=\frac{1}{n}$ when $x=[0,1]$ and $n=\left[\frac{8 \pi}{t}\right]+1, \delta=\frac{2 \pi}{n}$ when $x=[0,2 \pi]$. Denote

$$
G(x)=\{G=\{0, \pm 1, \pm 2, \ldots\}, \quad x=R, \quad\{0,1,2, \ldots, n\}, \quad x=
$$

$$
[0,1], \quad\{0,1,2, \ldots, n-1\}, \quad x=[0,2 \pi]
$$

Journal of Education for Pure Science- University of Thi-Qar

Vol.13, No. 3 (Sept.2023)

For every $k=\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in G$ we consider the following cubs in R.

$$
\begin{align*}
& X_{k}=\{x \in R:|x-k \delta| \leq \delta\}, \tag{17}\\
& X_{k}^{\prime}=\left\{x \in X_{k}: x_{i} \geq \delta k_{i}\right\} .
\end{align*}
$$

Let U be a positive constant operator such that $U(x)=0$ for $x \leq 0, U(x)=1$, for $1 \leq x<$ $\infty, \quad 0<U(x)<1$ for $0<x<1$. For every X_{k} put
$U_{k}(x)=\prod_{i=1}^{k} \quad U\left(\frac{x i}{\delta-k i+1}\right)\left(1-U\left(\frac{x i}{\delta-k i}\right)\right)$.
We can find some properties of operators, which defined as:
$0 \leq U_{k}(x) \leq 1$ for every $x \in R, U_{k}(k \delta)=1$,
$U_{k}(x)=0, x \in X_{k}$,
$U_{k}(x)=1, x \in R$.
For $k \in G(x)$ put
$\tilde{E}_{k}(\zeta, x)_{p, \beta}=\inf \left\{\|\zeta-\eta\|_{p, \beta}: \eta \in H_{k-1}\right.$,
where $\eta_{k} \in H_{k-1}$.
Remark: For the case $X=[0,1]$ and k such that $k \delta$ is on the boundary of X, we instead X_{k} by $X_{k} \cap X$ in (21).

From the Whitney's theorem (see e.g. [6]) since

$$
\begin{equation*}
\tilde{E}_{k}(\zeta, x)_{p, \beta} \leq c \omega_{k}(\zeta, x)_{p, \beta}, \text { for every } x \in X_{k} \tag{22}
\end{equation*}
$$

Put $\Psi_{k}(x)=\eta_{k}(x)-\tilde{E}_{k}(\zeta, x)$ and

$$
\begin{align*}
& \Phi_{k}(x)=\eta_{k}(x)+\tilde{E}_{k}(\zeta, x) . \text { For every } x \in X_{k}=[0,1] \text { since } \\
& \Psi_{k}(x) \leq \zeta(x) \leq \Phi_{k}(x) . \tag{23}
\end{align*}
$$

To finish we known

$$
\begin{equation*}
\left\{m_{k}(\zeta)=U_{k}(x) \Psi_{k}(x) \in L_{p, \beta}(X), n_{k}(\zeta)=U_{k}(x) \Phi_{k}(x) \in L_{p, \beta}(X)\right. \tag{24}
\end{equation*}
$$

Now i) follows from equations (24), (23) and (17) - (21). From (24) we obtain
$m_{k}(\zeta)-n_{k}(\zeta)=2 U_{k}(x) \tilde{E}_{k}(\zeta, x)$ and so,
$0 \leq m_{k}(\zeta)-n_{k}(\zeta) \leq c \omega_{k}(\zeta, x)$ by (22), (18), and (20).

Journal of Education for Pure Science- University of Thi-Qar

Vol.13, No. 3 (Sept.2023)
Website: jceps.utq.edu.iq

Now ii) from the above inequality. Take $\beta, k \leq|\beta| \leq l$.
Let $x \in X_{k}^{\prime}$. Then from equations (19), (20) and (24) we obtain

$$
n_{k}(\zeta)=\Phi_{k}(x)+U_{k+\epsilon}(x)\left(\Phi_{k+\epsilon}(x)-\Phi_{k}(x)\right)
$$

and so,

$$
D^{\beta} n_{k}(x)=D^{\beta} \Phi_{k}(x)+c D^{\beta-\alpha} U_{k+\epsilon}(x) D^{\alpha}\left(\Phi_{k+\epsilon}(x)-\Phi_{k}(x)\right) .
$$

Having in mind the definitions of η_{k} and U_{k}, (22) and Markov's inequality we obtain

$$
\begin{aligned}
\left\|D^{\beta} n_{k}\right\|_{p, \beta} & \leq c\left\|D^{\beta-\alpha} U_{k+\epsilon}\right\|_{p, \beta}\left\|D^{\alpha}\left(\Phi_{k+\epsilon}-\Phi_{k}\right)\right\|_{p, \beta} \\
& \leq c t^{-|\beta-\alpha|} x^{-|\alpha|}\left\|\left(\Phi_{k+\epsilon}-\Phi_{k}\right)\right\|_{p, \beta} \\
& \leq c t^{-|\beta|}\left\{\left\|\left(\Phi_{k+\epsilon}-\zeta\right)\right\|_{p, \beta}+\left\|\Phi_{k}-\zeta\right\|_{p, \beta}\right\} \\
& \leq c t^{-|\beta|}\left\|\omega_{k}(\zeta, x)\right\|_{p, \beta} .
\end{aligned}
$$

Summating on $k \in G(x)$ the above inequality we obtain iii). This completes the proof of the second inequality in (16).

Let $X=[0,1], k \in L_{p, \beta}(X), D^{\alpha} k \in L_{p, \beta}(X)$ (generalized derivatives) for every $\alpha,|\alpha|=l$ (recall $l>\frac{m}{n}$). The k is equivalent to $R \in L_{p, \beta}(X)$ and

$$
\begin{equation*}
\|R\|_{p, \beta} \leq c\left\{\|k\|_{p, \beta}+\left\|D^{\alpha} k\right\|_{p, \beta}\right\} . \tag{25}
\end{equation*}
$$

Making a liner change of the variables in (25) we obtain for every $x \in X$ and δ positive constant

$$
\begin{equation*}
\|R\|_{p, \beta} \leq c \delta^{\frac{-m}{n}}\left\{\|k\|_{p, \beta}+\delta^{l}\left\|D^{\alpha} k\right\|_{p, \beta}\right\} \tag{26}
\end{equation*}
$$

Let $m_{k}, n_{k} \in L_{p, \beta}(X), m_{k} \leq \zeta \leq n_{k}$. Since

$$
\begin{equation*}
\tau_{k}(\zeta, x)_{p, \beta} \leq \tau_{k}\left(\zeta-m_{k}, x\right)_{p, \beta}+\tau_{k}\left(m_{k}, x\right)_{p, \beta} \tag{27}
\end{equation*}
$$

From (26) and $R=k=n_{k}-m_{k}$ since

$$
\begin{align*}
\omega_{k}\left(\zeta-m_{k}, x\right) & \leq 2^{k}\left\|\zeta-m_{k}\right\|_{p, \beta} \leq 2^{k}\left\|n_{k}-m_{k}\right\|_{p, \beta} \tag{28}\\
& \leq c t^{-\frac{m}{n}}\left\|n_{k}-m_{k}\right\|_{p, \beta}+t^{l}\left\|D^{\alpha}\left(n_{k}-m_{k}\right)\right\|_{p, \beta}
\end{align*}
$$

Noticing that

Journal of Education for Pure Science- University of Thi-Qar

$$
\begin{equation*}
t^{-\frac{m}{n}}\|R\|_{p, \beta} \leq k^{\frac{m}{n}}\|R\|_{p, \beta} \tag{29}
\end{equation*}
$$

for every $R \in L_{p, \beta}(X)$, from equation (28) we obtain

$$
\begin{equation*}
\tau_{k}\left(\zeta-m_{k}, x\right)_{p, \beta} \leq c\left\{\left\|n_{k}-m_{k}\right\|_{p, \beta}+t^{|\alpha|}\left(\left\|D^{\alpha} n_{k}\right\|_{p, \beta}+\left\|D^{\alpha} m_{k}\right\|_{p, \beta}\right)\right\} . \tag{30}
\end{equation*}
$$

For estimating the second term in the right hand side of (27) we consider two cases.
i) $\frac{k>m}{n}$, i.e. $k \geq d$. From Theorem 1 in [5] we obtain

$$
\tau_{k}\left(m_{k}, x\right)_{p, \beta} \leq c t^{\frac{m}{n}} \int_{0}^{t} \quad \omega_{k}\left(m_{k}, s\right)_{p, \beta} s^{\frac{-m}{n-1}} d s
$$

$$
\leq c t^{\frac{m}{n}} \int_{0}^{t} \quad\left\|D^{\alpha} m_{k}\right\|_{p, \beta} s^{k-\frac{m}{n-1}} d s
$$

$$
=c t^{k}\left\|D^{\alpha} m_{k}\right\|_{p, \beta}
$$

ii) $\frac{k \leq m}{n \text {, i.e. } k<d=l .}$ From a generalization Whitney theorem (see [6]) there is $\eta_{k} \in H_{k-1}$

$$
\left\|m_{k}-\eta_{k}\right\|_{p, \beta} \leq c \omega_{k}\left(m_{k}, x\right)_{p, \beta}
$$

From this inequality and (26) we obtain

$$
\omega_{k}\left(m_{k}, x\right)=\omega_{k}\left(m_{k}-\eta_{k}, x\right) \leq 2^{k}\left\|m_{k}-\eta_{k}\right\|_{p, \beta}
$$

$$
\leq c t^{\frac{-m}{n}}\left\{\left\|m_{k}-\eta_{k}\right\|_{p, \beta}+t^{d}\left\|D^{\alpha}\left(m_{k}-\eta_{k}\right)\right\|_{p, \beta}\right\} \leq c t^{\frac{-m}{n}}\left\{\omega_{k}\left(m_{k}, x\right)_{p, \beta}+t^{d}\left\|D^{\alpha} m_{k}\right\|_{p, \beta}\right\} .
$$

Taking $L_{p, \beta}(X)$ norm with respect to x in the above inequality and from (29) we obtain

$$
\begin{align*}
\tau_{k}\left(m_{k}, x\right)_{p, \beta} & \leq c\left\{\omega_{k}\left(m_{k}, x\right)_{p, \beta}+t^{d}\left\|D^{\alpha} m_{k}\right\|_{p, \beta}\right\} \tag{32}\\
& \leq c\left\{t^{k}\left\|D^{\beta} m_{k}\right\|_{p, \beta}+t^{d}\left\|D^{\alpha} m_{k}\right\|_{p, \beta}\right\} .
\end{align*}
$$

From equations (27), (30), (31), and (32) we get

$$
\tau_{k}(\zeta, x)_{p, \beta} \leq c\left\{\left\|n_{k}-m_{k}\right\|_{p, \beta}+t^{|\alpha|}\left(\left\|D^{\alpha} n_{k}\right\|_{p, \beta}+\left\|D^{\alpha} m_{k}\right\|_{p, \beta}\right\}\right.
$$

Taking infimum on $m_{k}, n_{k} \in L_{p, \beta}(X), m_{k} \leq \zeta \leq n_{k}$, in the above inequality we compete the proof of (16).

Theorem 4.2: Let ζ an unbounded function in weighted space $L_{p, \beta}(X)$. Then the following statements are holds

$$
\begin{align*}
& P_{k}(\zeta), q_{k}(\zeta) \in T_{(l+1)(k-1)}, \tag{33}\\
& P_{k}(\zeta, x) \leq \zeta(x) \leq q_{k}(\zeta, x) \text { for every } x \in X, \tag{34}\\
& \left\|q_{k}(\zeta)-P_{k}(\zeta)\right\|_{p, \beta} \leq c \tau_{k}(\zeta, x)_{p, \beta} . \tag{35}
\end{align*}
$$

Proof : From (15), (10) and (13) we obtain (33). From (7) and (10) since
$\Psi_{k}(x) \geq 1$ for $|x| \leq \frac{\pi}{k}$, which together with the positivity of Ψ_{k} gives (34).

From (13) since

$$
\begin{aligned}
\sup \left|\zeta(s)-Q_{k}(\zeta, s)\right| & \leq \sup \left|\int_{X} \quad \Delta_{\delta}^{k} \zeta(s) L_{l, k}(y) d y\right| \\
& \leq \int_{X} \quad \sup \left|\Delta_{\delta}^{k} \zeta(s)\right| L_{l, k}(y) d y \\
& \leq \int_{X} \quad \omega_{k}\left(\zeta, \frac{2 \pi}{k)} L_{l, k}(y) d y\right.
\end{aligned}
$$

from Lemma 3.1 and $\alpha_{k}=\int_{X} \quad \omega_{k}\left(\zeta, \frac{2 \pi}{k)} L_{l, k}(y) d y\right.$,
Minkovski's inequality, (12) and (11) we obtain

$$
\begin{aligned}
\left\|q_{k}(\zeta)-P_{k}(\zeta)\right\|_{p, \beta} & \leq 2 \| \Psi_{k}\left(.-\frac{2 \pi}{k)} \sup \sup \left|\zeta(s)-Q_{k}(\zeta, s)\right| \|_{p, \beta}\right. \\
& \leq 2 \| \Psi_{k}\left(.-\frac{2 \pi}{k)} \|_{p, \beta}\right. \\
& \leq c\left(\left(\frac{2 \pi}{k)} \alpha_{k}^{p}\right)^{\frac{1}{p}}\right. \\
& \leq c\left(\int_{X} \quad\left(\int_{X} \quad\left(\omega_{k}(\zeta, x) L_{l, k}(y) d y\right)^{p} d x\right)^{\frac{1}{p}}\right. \\
& \leq c\left(\int_{X} \quad\left(\int_{X} \quad \omega_{k}(\zeta, x)^{p} d x\right)^{\frac{1}{p}} L_{l, k}(y) d y\right. \\
& =c \int_{X} \quad \tau_{k}(\zeta, x)_{p, \beta} L_{l, k}(y) d y \\
& \leq c \int_{X} \quad L_{l, k}(y) d y \tau_{k}\left(\zeta, \frac{1}{k}\right)_{p, \beta} \\
& =c \tau_{k}\left(\zeta, \frac{1}{k}\right)_{p, \beta} .
\end{aligned}
$$

Theorem 4.3: Let ζ be an unbounded function in weighted space $L_{p, \beta}(X), 1 \leq p<\infty$ and n natural number. Then

$$
\tilde{E}_{k}\left(\Phi_{n}, \zeta\right)_{p, \beta} \leq c \tau_{k}\left(\zeta, \frac{1}{n}\right)_{p, \beta}
$$

Proof : using Theorem 4.2 with $k=\left[\frac{n}{l+1}\right]+1$, we obtain

$$
\begin{align*}
& \tilde{E}_{k}\left(\Phi_{n}, \zeta\right)_{p, \beta} \leq\left\|q_{k}(\zeta)-P_{k}(\zeta)\right\|_{p, \beta} \leq c \tau_{k}\left(\zeta, \frac{1}{k}\right)_{p, \beta} \leq c \tau_{k}\left(\zeta, \frac{l+1}{n}\right)_{p, \beta} \\
& \leq c \tau_{k}\left(\zeta, \frac{1}{n}\right)_{p, \beta} \\
& \tau_{k}\left(\zeta, \frac{1}{n}\right)_{p, \beta} \leq \frac{c}{n^{k}} \sum_{z=0}^{n} \quad(z+1)^{k-1} \tilde{E}_{k}\left(\Phi_{z}, \zeta\right)_{p, \beta} . \tag{36}
\end{align*}
$$

Journal of Education for Pure Science- University of Thi-Qar

Vol.13, No. 3 (Sept.2023)
Website: jceps.utq.edu.iq.

5. one-sided approximation by entire operators of exponential type.

In this section we get for entire operators parallel to those from section 3 .
Let $x \in R, G(x)=G$. Put

$$
\begin{aligned}
& F_{k}(u)=\left(\frac{\pi}{k)^{2}\left(\operatorname { s i n } \left(\frac{k u}{u)^{2}} \in A_{k}\right.\right.}\right. \text { and } \\
& J_{l, k}(u)=\gamma_{l, k}\left(\left(\sin \frac{(k u}{2} \frac{)}{u)^{2 l+2}} \in A_{k(l+1)} .\right.\right.
\end{aligned}
$$

Now, $L_{l, k}, Q_{k}, P_{k}$ and q_{k} are given by (22), (24), (25) and (27) respectively (n replaced by k).
Theorem 4.4: Let $\zeta \in L_{p, \beta}(X), \zeta$ be an unbounded and $\tau_{k}(\zeta, k)<\infty$. Then

$$
\begin{aligned}
& P_{k}(\zeta), q_{k}(\zeta) \in A_{k(l+1)} \\
& P_{k}(\zeta, x) \leq \zeta(x) \leq q_{k}(\zeta, x) \text { for every } x \in R \text { and } \\
& \left\|q_{k}(\zeta)-P_{k}(\zeta)\right\|_{p, \beta} \leq c \tau_{k}\left(\zeta, k^{-1}\right)_{p, \beta} .
\end{aligned}
$$

The proof follows along the lines of the proof of Theorem 4.2.

REFERENCES

[1] H. Strauß "Unicity of best one-sided L_{1}-approximations" Numerische Mathematik, volume 40, p.p. 229-243, (1982).
[2] D. Armitage, J. Gardiner, W. Haussmann and L. Rogge "Best one-sided L_{1}-approximation by harmonic functions" Manuscripta Mathematica, volume 96, p.p. 181-194, (1998).
[3] D. Dryanov and P. Petrov "Best One-Sided L^{1}-Approximation by Blending Functions of Order (2, 2)" Journal of Approximation Theory,

Volume 115, Issue 1, (2002), p.p. 72-99.
[4] O. Motornaya, V. Motornyi and P. Nitiema "One-sided approximation of a step by algebraic polynomials in the mean" Ukrainian Mathematical Journal 62(3), p.p. 467-482, (2010).
[5] S. Al - Saidy and L. Husain "The Degree of Best Approximation of unbounded Functions by Bernstein operators" Al-Mustansiriyah J. Sci, 22(5), (2011).
[6] J. Bustamante, J. Quesada and M. Reinaldo "Polynomial operators for one-sided approximation to functions in $W_{p}^{r}[0,1] "$ Journal of Mathematical Analysis and Applications 393(2), p.p. 517-525, (2012).
[7] G. Babenko, V. Kryakin and A. Yudin "One-sided approximation in L of the characteristic function of an interval by trigonometric polynomials" Proceedings of the Steklov Institute of Mathematics, volume 280, p.p. 39-52, (2013).

Journal of Education for Pure Science- University of Thi-Qar

Vol.13, No. 3 (Sept.2023)
[8] S. Jassim and A. Auad "On Best One-Sided Approximation By Interpolation Polynomials in Space $L_{p, w}(\mathrm{X}) "$ Mathematical Theory and Modeling, 4(4), (2014).
[9] P. Viswanathan, A. Navascués and B. Chand "Associate fractal functions in L^{p}-spaces and in one-sided uniform approximation" Volume 433, Issue 2, (2016), p.p. 862-876.
[10] A. Torgashova "One-sided integral approximation of the characteristic function of an interval by algebraic polynomials" Proceedings of the Steklov Institute of Mathematics, 296(S1), p.p. 228-235, (2017).
[11] M. Deikalova and A. Torgashova "Best One-Sided Approximation in the Mean of the Characteristic Function of an Interval by Algebraic Polynomials" Proceedings of the Steklov Institute of Mathematics, volume 308, p.p. 68-82 (2020).
[12] Songtao Lu, I. Tsaknakis and M. Hong et al. "Hybrid Block Successive Approximation for One-Sided Non-Convex Min-Max Problems: Algorithms and Applications" IEEE Transactions on Signal Processing, Volume 68, p.p. 3676 - 3691, (2020).
[13] S. A-Saidy, N. Al-Jawari and R. Hassan "Best One-Sided Multiplier Approximation of Unbounded Functions by

Trigonometric Polynomials" Al-Nahrain Journal of Science, 24 (4), (2021), p.p. 40-45.
[14] O. Fedunyk and S. Hembars'ka "Best orthogonal trigonometric approximations of the Nikol'skii-Besov-type classes of periodic functions of one and several variables" Carpathian Math, 14 (1), p.p. 171-184, (2022).

