Abstract:

In this paper, we study hesitant fuzzy soft HX set and some of its properties. We introduce the notions of hesitant fuzzy soft HX ideal, hesitant fuzzy soft HX prime ideal of a HX ring and hesitant fuzzy soft HX strongly prime ideal with some results about the hesitant fuzzy soft HX prime ideal of a HX ring.

Key words: Hesitant fuzzy soft HX set (HFSHXS), hesitant fuzzy soft HX ideal of a HX ring (HFSHXI(M)), hesitant fuzzy soft HX prime ideal of a HX ring (HFSHXPI(M)).

1. Introduction.

the remainder of the paper is organized as follows: in section two, we recall some definition along with some results about them. In section three, we study hesitant fuzzy soft HX ideal of a HX ring, hesitant fuzzy soft HX prime ideal and hesitant fuzzy soft HX strongly prime ideal of a HX ring and introduced homomorphism on hesitant fuzzy soft HX prime ideal of HX ring.
2. Definition and preliminaries

In this section, we will discuss the following definitions as well as some of the findings that will be expected in the following pages.

2.1 Definition [4]

Let \(R \) be a ring and \((\tilde{F}, E)\) be a fuzzy soft set defined on \(R \) and \(M \subset 2^R - \{\emptyset\} \) be HX ring on \(R \), the fuzzy soft HX set \((G^F, E) : G^F : E \rightarrow I^M \) on \(M \) defined as follows:

For all \(e \in E \), \(G^F_e(A) = \max \{ F_e(x) / \text{for all } x \in A \subseteq R \} \).

2.2 Definition

Let \(R \) be a ring and let \((H\tilde{F}, E)\) be a hesitant fuzzy soft set defined on \(R \), \(M \subset 2^R - \{\emptyset\} \) be a HX ring of \(R \), the hesitant fuzzy soft set is called hesitant fuzzy soft HX set on \(M \), if for all \(A \in M \).

\[H^F_e(A) = \bigcup \{ F_e(x) / x \in A \subseteq R \}. \]

2.3 Example

Let \((Z_2, +, \cdot)\) be a ring and \((H\tilde{F}, E)\) be a hesitant fuzzy soft set on \(Z_2 \), \(E = \{e_1, e_2\} \), \(M = \{\{0\}, \{1\}\} \) clearly \(M \) is a HX ring.

\[H\tilde{F}: E \rightarrow HF(z_2) , \tilde{F}e_1(0)=[0.2 , 0.6], \tilde{F}e_1(1)=[0.2 , 0.3] \]
\[\tilde{F}e_2(0)=(0.4,0.8],\tilde{F}e_2(1)= [0.3,0.6] \]

\[(\tilde{H}^F_e , E) : \tilde{H}^F : E \rightarrow HF(M) \]

\[(\tilde{H}^F_e , E) = \{< e_1 , \{ \frac{0}{0.6}, \frac{1}{0.3} > , < e_2 , \{ \frac{0}{0.8}, \frac{1}{0.6} > \} \} \]

Thus, \((\tilde{H}^F_e , E) \) is a hesitant fuzzy soft HX set of \(M \).

3. Hesitant fuzzy soft HX prime ideal.

3.1 Definition

Let \(R \) be a ring and let \((H\tilde{F}, E)\) be a hesitant fuzzy soft set defined on \(R \), \(M \subset 2^R - \{\emptyset\} \) be a HX ring on \(R \), the hesitant fuzzy soft HX set is called

1) hesitant fuzzy soft HX subring (in short; HFSHXR) on a HX ring \(M \) if for all \(A, B \in M \):

i. \(\tilde{H}^F_e(A - B) \supseteq \tilde{H}^F_e(A) \cap \tilde{H}^F_e(B) \).

ii. \(\tilde{H}^F_e(A + B) \supseteq \tilde{H}^F_e(A) \cap \tilde{H}^F_e(B) \).
2) hesitant fuzzy soft HX ideal (in short ; HFSHXI) of M if for all A, B ∈ M:
 i. \(\overline{F}_e(A - B) \supseteq \overline{F}_e(A) \cap \overline{F}_e(B) \).
 ii. \(\overline{F}_e(A \cup B) \supseteq \overline{F}_e(A) \).
 iii. \(\overline{F}_e(A \cup B) \supseteq \overline{F}_e(B) \).

If (i) and (ii) are satisfied then it is called hesitant fuzzy soft HX right ideal of M, if (i) and (iii) are satisfied then it is called hesitant fuzzy soft HX left ideal of M.

Where \(\overline{F}_e(A) = \bigcup \{ F_e(x) / x \in A \subseteq \mathbb{R} \} \)

3.2 Example

Let \((Z_2,+,\cdot)\) be a ring, \(M = \{\{0\},\{1\}\} \) be HX ring and \(\overline{F}_e = < A, \overline{F}_e(A) > \) be a hesitant fuzzy soft HX set of M,

\[
\overline{F}_e(A) = \begin{cases}
0,1 & \text{if } A = \{0\} \\
\emptyset & \text{if } A = \{1\}
\end{cases}
\]

Then \(\overline{F}_e \) is a hesitant fuzzy soft HX ideal of HX ring.

3.3 Definition

A hesitant fuzzy soft HX ideal of a HX ring M is said to be hesitant fuzzy soft HX prime ideal of a HX ring M, if for all A, B ∈ M, then

\(\overline{F}_e(A \cdot B) \subseteq \overline{F}_e(A) \cup \overline{F}_e(B) \)

\(*\) will denote the set of all hesitant fuzzy soft HX prime ideal in M as HFSHXPI(M).

3.4 Example

Let \((Z_2,+,\cdot)\) be a ring and \(M = \{\{0\},\{1\}\} \) be HX ring

\(\overline{F}_e(\{0\}) = \{0.6\} \), \(\overline{F}_e(\{1\}) = \{0.3\} \)

Then we can easily show that \(\overline{F}_e \in \text{HFSHXI}(M) \).

Then \(\overline{F}_e \in \text{HFSHXPI}(M) \).

3.5 Proposition
Let \tilde{H}^F_e be HFSHXS of a HX ring M, such that $(\tilde{H}^F_e)_a$ is a prime ideal of M, for all $\alpha \subseteq [0, 1]$, then \tilde{H}^F_e is HFSHXPI of a HX ring M.

Proof:

Let \tilde{H}^F_e is HFSHXs of M such that $(\tilde{H}^F_e)_a$ is a prime ideal of a HX ring M.

Suppose that \tilde{H}^F_e is not HFSHXPI of a HX ring M.

Then there exist $A, B \in M$ such that

$\tilde{H}^F_e (AB) \supsetneq \tilde{H}^F_e (A) \cup \tilde{H}^F_e (B)$

Choose $\alpha \subseteq [0,1]$ such that $\tilde{H}^F_e (AB) \supsetneq \alpha \supset \tilde{H}^F_e (A) \cup \tilde{H}^F_e (B)$

This implies $AB \in (\tilde{H}^F_e)_a$ but $A \not\in (\tilde{H}^F_e)_a$ and $B \not\in (\tilde{H}^F_e)_a$

Which is contradiction with $(\tilde{H}^F_e)_a$ is a prime ideal of M

Hence, \tilde{H}^F_e is HFSHXPI of a HX ring M.

3.6 Definition

A hesitant fuzzy soft HX ideal of a HX ring M is said to be a hesitant fuzzy soft HX strongly prime ideal of M (in short, HFSHXSPI) if for all $A, B \in M$, such that

$\tilde{H}^F_e (AB) = \tilde{H}^F_e (A) \text{ or } \tilde{H}^F_e (AB) = \tilde{H}^F_e (B)$

* Will denote the set of all hesitant fuzzy soft HX strongly prime ideal in M as HFSHXSPI(M).

3.7 Example

Let $(Z_2 ,+ ,\cdot)$ be a ring and $M = \{\{0\}, \{1\}\}$ is a HX ring

$\tilde{H}^F_e (\{0\}) = \{0.7\}$, $\tilde{H}^F_e (\{1\}) = \{0.5\}$

Then we easily show that \tilde{H}^F_e is HFSHXI (M)

Thus, $\tilde{H}^F_e \in$ HFSHXSPI (M).

3.8 Theorem

Every hesitant fuzzy soft HX strongly prime ideal of M is a hesitant fuzzy soft HX prime ideal of M.

Proof:

Suppose that \tilde{H}^F_e is a hesitant fuzzy soft HX strongly prime ideal
of M. Let $A, B \in M$, since \tilde{H}_e is a hesitant fuzzy soft HX strongly prime ideal of M, then

$$\tilde{H}_e(AB) = \tilde{H}_e(A) \quad \text{or} \quad \tilde{H}_e(AB) = \tilde{H}_e(B)$$

If $\tilde{H}_e(AB) = \tilde{H}_e(A) \subseteq \tilde{H}_e(A) \cup \tilde{H}_e(B)$

If $\tilde{H}_e(AB) = \tilde{H}_e(B) \subseteq \tilde{H}_e(A) \cup \tilde{H}_e(B)$

Then, $\tilde{H}_e(AB) \subseteq \tilde{H}_e(A) \cup \tilde{H}_e(B)$

Hence, $\tilde{H}_e \in \text{HFSHXPI}(M)$.

The converse of theorem above may not to be true. As seen the following example

3.9 Example

Let $(Z_3,+,{\cdot})$ be a ring and $M= \{\{0\} , \{1\} , \{2\}\}$ be a HX ring

Let \tilde{H}_e be a hesitant fuzzy soft HX set of M such that

$$\tilde{H}_e(T) = \begin{cases} [0,1] & \text{if } T= \{0\} \\ \varnothing & \text{if } T = \{1\} , \{2\} \end{cases}$$

We can easily prove that $\tilde{H}_e \in \text{HFSHXI}(M)$

Hence, $\tilde{H}_e \in \text{HFSHXPI}(M)$

But $\tilde{H}_e(\{1\}) = \tilde{H}_e(\{1\})$, hence $\{2\} \neq \{1\}$

Then $\tilde{H}_e \notin \text{HFSHXSPI}(M)$.

3.10 Theorem

Let M be a HX ring and $\tilde{H}_e^F , \tilde{H}_e^G \in \text{HFSHXSPI}(M)$ then $\tilde{H}_e^F \cap \tilde{H}_e^G \in \text{HFSHXSPI}(M)$

Proof:

Suppose that $\tilde{H}_e^F , \tilde{H}_e^G \in \text{HFSHXSPI}(M)$ and $A, B \in M$

$$(\tilde{H}_e^F \cap \tilde{H}_e^G) (AB) = \bigcup_{S_1 \in \tilde{H}_e^F (AB)} \bigcup_{S_2 \in \tilde{H}_e^G (AB)} \min \{S_1 , S_2\}$$

$= \bigcup_{S_1 \in \tilde{H}_e^F (A)} \bigcup_{S_2 \in \tilde{H}_e^G (A)} \min \{S_1 , S_2\}$$
= (\(\tilde{H}^F \cap \tilde{H}^G \)) (A)

Then, \((\tilde{H}^F \cap \tilde{H}^G)(AB) = (\tilde{H}^F \cap \tilde{H}^G)(A)\)

Thus, \((\tilde{H}^F \cap \tilde{H}^G) \in \text{HFHXSPI}(M)\).

or

\((\tilde{H}^F \cap \tilde{H}^G)(AB) = \bigcup_{S_1} \tilde{H}^F (AB), S_2 \tilde{H}^G (AB) \min \{S_1 , S_2\}\)

\(= \bigcup_{S_1} \tilde{H}^F (B), S_2 \tilde{H}^G (B) \min \{S_1 , S_2\}\)

\(= (\tilde{H}^F \cap \tilde{H}^G) (B)\)

Then \((\tilde{H}^F \cap \tilde{H}^G)(AB) = (\tilde{H}^F \cap \tilde{H}^G) (B)\)

Thus, \((\tilde{H}^F \cap \tilde{H}^G)(AB) \in \text{HFHXSPI}(M)\).

3.11 Proposition

Let \(\tilde{H}^F \in \text{HFHXSPI} (M) \) and \((\tilde{H}^F) = \{ A \in M : \tilde{H}^F (A) = \tilde{H}^F (Q) \} \). Then \((\tilde{H}^F)\) is strongly prime ideal of \(M \).

Proof:

suppose that \(\tilde{H}^F \in \text{HFHXSPI} (M) \), since \(Q \in M \), then \(\tilde{H}^F (Q) = \tilde{H}^F (Q) \)

this means \(Q \in (\tilde{H}^F) \). Thus \((\tilde{H}^F) \neq \emptyset \)

Let \(A , B \in M \), \(A (\tilde{H}^F) B \subseteq (\tilde{H}^F) \), and \(AB \in (\tilde{H}^F) \) implies

\(\tilde{H}^F (AB) = \tilde{H}^F (Q) \)

since \(\tilde{H}^F \in \text{HFHXSPI} (M) \), then

\(\tilde{H}^F (AB) = \tilde{H}^F (A) = \tilde{H}^F (Q) \), then \(\tilde{H}^F (A) = \tilde{H}^F (Q) \)

implies that \(A \in (\tilde{H}^F) \)

If \(\tilde{H}^F (AB) = \tilde{H}^F (B) = \tilde{H}^F (Q) \), then \(\tilde{H}^F (B) = \tilde{H}^F (Q) \)

implies that \(B \in (\tilde{H}^F) \)

So , \(A , B \in M \), \(A (\tilde{H}^F) B \subseteq (\tilde{H}^F) \), and \(AB \in (\tilde{H}^F) \)

imply \(A \in (\tilde{H}^F) \) or \(B \in (\tilde{H}^F) \)

Then \((\tilde{H}^F)\) is strongly prime ideal of \(M \).

3.12 Proposition
Let $f : M \rightarrow M^*$ be an onto homomorphism of a HX rings and $HFSHXPI(M)$, then $f(\tilde{H}_e^F) \in HFSHXPI(M^*)$.

Proof:

Let $\tilde{H}_e^F \in HFSHXPI(M)$

Let $A, B \in M^*$, since f onto homomorphism, then there exist $C, D \in M$ such that $f(C) = A$, $f(D) = B$

$f(\tilde{H}_e^F)(AB) = \cup f(C) = A, f(D) = B \tilde{H}_e^F(CD)$

\[
\subseteq \cup f(C) = A, f(D) = B \{ \tilde{H}_e^F(C) \cup \tilde{H}_e^F(D) \} \\
= \{ \cup f(C) = A \tilde{H}_e^F(C) \} \cup \{ \cup f(D) = B \tilde{H}_e^F(D) \} \\
= \{ \cup C \in f^{-1}(A) \tilde{H}_e^F(C) \} \cup \{ \cup D \in f^{-1}(B) \tilde{H}_e^F(D) \} \\
= f(\tilde{H}_e^F)(A) \cup f(\tilde{H}_e^F)(B)
\]

Hence, $f(\tilde{H}_e^F) \in HFSHXPI(M^*)$.

3.13 Proposition

Let $f : M \rightarrow M^*$ be a homomorphism of a HX rings and $\tilde{H}_e^F \in HFSHXPI(M^*)$, then $f^{-1}(\tilde{H}_e^F) \in HFSHXPI(M)$.

Proof:

Let $\tilde{H}_e^F \in HFSHXPI(M^*)$ and $A, B \in M$, thus

$f^{-1}(\tilde{H}_e^F)(AB) = \tilde{H}_e^F(f(AB)) = \tilde{H}_e^F(f(A) f(B))$ [f hom.]

\[
\subseteq \tilde{H}_e^F(f(A)) \cup \tilde{H}_e^F(f(B)) \\
= f^{-1}(\tilde{H}_e^F)(A) \cup f^{-1}(\tilde{H}_e^F)(B)
\]

Then, $f^{-1}(\tilde{H}_e^F)(AB) \subseteq f^{-1}(\tilde{H}_e^F)(A) \cup f^{-1}(\tilde{H}_e^F)(B)$

Hence, $f^{-1}(\tilde{H}_e^F) \in HFSHXPI(M)$.

References

