DOI: http://doi.org/10.32792/utq.jceps.10.01.011

On Fuzzy SBA-Ideal of AB-Algebra

Lecture Showq Mohammed.E¹, Lecture Alaa Saleh Abed²

^{1,2}Faculty of Education for Girls, Department of Mathematics, University of kufa, Najaf, Iraq

Received 1/7/2019 Accepted 27/8/2019 Published 20/1/2020

This work is licensed under a Creative Commons Attribution 4.0 International

Abstract:

License.

Ο

In this paper, we introduce and study ideal in AB- Algebra, it is called SBA-ideal, we give some examples, properties and theorems about it .Also, we study the direct product of SBA-ideals finaly, we introduce and study fuzzy SBA –ideal of AB-Algebra.

Keywords: AB-algebra, fuzzy AB- ideal, the equivalence calss, level cut.

Introducing:

The notion of fuzzy subsets was defined by Zadeh in 1965 [7]. Then Y. Imai and K. Iseki introduced two classes of abstract algebras were BCK-algebras and BCI-algebras [5,6]. After that several papers have been published by mathematicians to defined the classical mathematical concepts and fuzzy mathematical concepts. In 2018 A.T. Hameed introduced a new notion, called a AB- algebra [1,2]. In this paper we itemized the ideas as we talk about in the abstract.

1-Preliminaries;

Definition (1.1) [7];

Let \wp be a non-empty set a mapping $\mu : \wp \to [0,1]$ is named a fuzzy subset of \wp .

Definition (1.2) [7];

Let ∇ be a fuzzy subset of \wp . If ∇ (y) = 0 for every $y \in \wp$ then ∇ is named empty fuzzy set.

Definition (1.3) [3];

Let ∇ , ∂ be two fuzzy sets of set AB-Algebra (\wp ;•,0) Then :

 $1 - (\nabla \bigcap \partial)(x) = \min \{\nabla(x), \partial(x)\}, \forall x \in \wp \quad 2 - (\nabla [\neg \partial)(x) = \max \{\nabla(x), \partial(x)\}, \forall x \in \wp.$

Definition (1.4) [2];

An AB-algebra is a nonempty set \wp with a constant 0 and a binary operation • satisfying three axioms: $1 - ((x \bullet y) \bullet (z \bullet y)) \bullet (x \bullet z) = 0, \forall x, y, z \in \wp$ $2 - 0 \bullet x = 0$, $\forall x \in \wp$ $3 - x \bullet 0 = x$

Definition (1.5) [1];

A non-empty subset I of an AB-algebra (\wp ;•,0) is named an AB-ideal of \wp if the following two conditions are hold :

 $1-0 \in I$ $2-(x \bullet y) \bullet z \in I$ and $y \in I \to x \bullet z \in I, \forall x, y, z \in \wp$.

Proposition (1.6) [1];

Let $\{I_j\}_{j\in\hbar}$ be a family of AB-ideals of AB-algebra (\wp ;•,0) then $\bigcap I_j$ is an AB-ideal of \wp .

Proposition (1.7) [2]:

Let $\{I_j\}_{j \in \hbar}$ be a family of AB-ideals of AB-algebra ($\wp; \bullet, 0$) where $I_j \subseteq I_{j+1}, \forall j \in \hbar$ then $\bigcup I_j$

is AB-ideal of \wp .

Definition (1.8) [2]:

Let $(\wp; \bullet, 0)$ and $(G; \bullet', 0')$ be two AB-algebras .A homomorphism from \wp into G is a mapping $f: (\wp; \bullet, 0) \to (G; \bullet', 0')$ such that $f(x \bullet y) = f(x) \bullet' f(y) \forall x, y \in \wp$. The set ker $(f) = \{x \in X \mid f(x) = 0'\}$ is called the kernel of f.

Definition (1.9) [1]:

Let I be an AB-ideal of AB-algebra \wp . Given $x \in \wp$, the equivalence calss $[x]_t$ of \wp is defined as the set of all element of \wp that are quivalent to x that $[x]_t = \{y \in \wp: x \sim y\}$, we define the set $\wp/I = \{x\}_t : x \in \wp\}$ and a binary operation (•) on \wp/I by $[x]_t • [y]_t = [x \cdot y]_t$

Definition (1.10) [1]:

Let $f:(\wp;\bullet,0) \to (\sqrt[\wp]{I};\bullet',0')$ be an outo homomorphism, I be an AB-ideal of AB-algebra \wp . Then f is named the natural AB- homomorphism of \wp onto $\sqrt[\wp]{I}$ if $f(x) = [x]_{I}, \forall x \in \wp$.

Definition (1.11) [2]:

A fuzzy subset ∇ of AB-algebra \wp is known fuzzy AB- ideal of \wp if satifies the following: $1 - \nabla(0) \ge \nabla(x), \quad \forall x \in \wp$ $2 - \nabla(x \bullet z) \ge \min{\{\nabla((x \bullet y) \bullet z), \nabla(y)\}, \forall x, y, z \in \wp}.$ **Theorem (1.12) [2]:** Let ∇ be a fuzzy subset of AB-algebra \wp . Then ∇ is a fuzzy AB- ideal of \wp if and only if, $\forall \iota \in [0,1], \nabla_{\iota}$ then either empty or an AB-ideal of \wp .

Definition (1.13) [4]:

Let ∇ be a fuzzy subset of a set \wp . For any $t \in [0,1]$, the set

 $\nabla_t = U(\nabla, t) = \{ x \in \wp : \nabla(x) \ge t \}$ is called a level set (upper level cut) of ∇ .

Theorem (1.14) [2]:

Let $(\wp; \bullet, 0)$ and $(G; \bullet', 0')$ be two AB-algebras and $\varpi : (\wp; \bullet, 0) \to (G; \bullet', 0')$ be an onto homomorphism. Then if ∇ is a fuzzy AB - ideal of \wp , then $\varpi(\nabla)$ is a fuzzy AB - ideal of G.

Definition (1.15) [9]:

Let ∇ be a fuzzy ideal of \wp and $f:(\wp;\bullet,0) \to (G;\bullet',0')$ then we called ∇ is f-invariant if and only if for all $z, y \in \wp$, f(z) = f(y) implies $\nabla(z) = \nabla(y)$.

Definition (1.16) [8]:

Let $\{\nabla_{\varepsilon}, \varepsilon \in \varpi\}$ be a family of fuzzy subsets of a set \wp . Define the fuzzy subset of \wp (intersection) by: $\bigcap_{\varepsilon \in \varpi} \nabla_{\varepsilon}(x) = \inf_{\varepsilon \in \varpi} \{\nabla_{\varepsilon}(x)\}, \forall x \in \wp$, define the fuzzy subset of \wp (union) by $\bigcup_{\varepsilon \in \varpi} \nabla_{\varepsilon}(x) = \sup_{\varepsilon \in \varpi} \{\nabla_{\varepsilon}(x), \forall x \in \wp$.

2-Mean Results:

In this section we introduce the notion SBA-ideal of AB- algebra \wp . We will discuse proposition about the image of it under onto homomorphism.

Definition (2.1):

An AB- ideal S of AB- algebra \wp is named SBA-ideal if it satisfies two conditions : for all $a, m \in \wp$: $1-0 \in S$,

 $2-a \in S \land a \bullet m \in S \to a \bullet (m \bullet a) \in S.$

Example (2.2):

Consider AB-algebra $\wp = \{0, 1, 2, 3, 4, 5\}$ that is defined by following table:

•	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	0	0	0	0	1
2	2	2	0	0	1	1
3	3	2	1	0	1	1
4	4	4	4	4	0	1
5	5	5	5	5	5	0

Let $S=\{0,1,2\}$, then S is SBA-ideal of \wp .

Theorem (2.3):

Let $\{S_j : j \in \hbar\}$ be a family of SBA-ideals of AB-algebra \mathcal{O} , then $\bigcap_{i \in \hbar} S_j$ is an SBA-ideal of AB-algebra

℘.

 $\begin{array}{l} \underline{\operatorname{Proof}}\\ \text{Since } S_{j} \quad \forall \mathbf{j} \in \hbar \text{ is SBA-ideal} \rightarrow S_{j} \quad \forall \mathbf{j} \in \hbar \text{ is an ideal that means } \bigcap_{j \in \hbar} S_{j} \text{ is an ideal by using}\\ \text{Proposition (1.7) and } 0 \in \bigcap_{j \in \hbar} S_{j} \text{ .}\\ \text{Let } a, m \in \wp \text{ such that } a \in \bigcap_{j \in \hbar} S_{j} \text{ , } a \bullet m \in \bigcap_{j \in \hbar} S_{j} \text{ this implies } a, m \bullet a \in S_{j}, \forall \mathbf{j} \in \hbar \text{ .amd we have}\\ S_{j} \quad \forall \mathbf{j} \in \hbar \text{ is SBA-ideal of } \wp \text{ then } a \bullet (m \bullet a) \in S_{j} \quad \forall \mathbf{j} \in \hbar, \text{we get } a \bullet (m \bullet a) \in \bigcap_{j \in \hbar} S_{j}. \text{ Thus } \bigcap_{j \in \hbar} S_{j} \end{array}$

is SBA-ideal.

Theorem (2.4):

Let $\{S_j\}_{j \in \hbar}$ be a chian of SBA-ideals of \mathcal{O} where $S_j \subseteq S_{j+1}$, $\forall j \in \hbar$, then $\bigcup_{j \in \hbar} S_j$ is SBA-ideal \mathcal{O}

Proof

Let $\{S_j\}_{j \in \hbar}$ be a chain of SBA-ideal of $\mathfrak{D} \to \bigcup_{i \in \hbar} S_j$ is an ideal of \mathfrak{D} by using Proposition (1.7) and

$$0 \in \bigcup_{j \in \hbar} S_j \; .$$

Let $a, m \in \mathcal{O}, a \in \bigcup_{j \in \hbar} S_j \land a \bullet m \in \bigcup_{j \in \hbar} S_j$, then there exist $S_k \in \{S_j\}_{j \in \hbar}$ such that $a \in S_k \land a \bullet m \in S_k \Longrightarrow a \bullet (m \bullet a) \in S_k$. Since \mathcal{O} ideal of -is SBA S_k

$$\rightarrow a \bullet (m \bullet a) \in \bigcup_{i \in \hbar} S_j \Longrightarrow \bigcup_{i \in \hbar} S_j \text{ is SBA-ideal of } \wp$$

Theorem (2.5):

Let $\zeta : (\wp_1, \bullet, 0) \to (\wp_2, \bullet', 0')$ be an AB- onto homomorphism , S be SBA-ideal of \wp_1 then is $\zeta(S)$ SBA -ideal of \wp_2 .

Proof

Let S be a SBA-ideal of \wp_1 we have $\zeta(S) = \{\zeta(i) : i \in S\}$ is an ideal of \wp_2 . To prove -is SBA $\zeta(S)$ ideal.

let $0' \in \zeta(S)$, $\zeta(a) \in \zeta(S)$, $\zeta(a) \bullet \zeta(m) \in \zeta(S)$ then $\zeta(a) \in \zeta(S) \land \zeta(a \bullet m) \in \zeta(S) \Rightarrow$ $a \in S$ and $a \bullet m \in S \to a \bullet (m \bullet a) \in S$ since S is SBA-ideal of \wp_1 thus $\zeta(a \bullet (m \bullet a)) \in \zeta(S)$ $\zeta(a) \bullet'(\zeta(m) \bullet' \zeta(a)) \in \zeta(S)$ Then $\zeta(S)$ is SBA -ideal of \wp_2 .

Proposition (2.6):

Let $\zeta : (\wp_1, \bullet, 0) \to (\wp_2, \bullet', 0')$ be an AB- outo homomorphism, \angle be SBA-ideal of \wp_2 , then $\zeta^{-1}(\angle)$. ker $\zeta \subseteq \zeta^{-1}(\angle)$, where \wp_1 ideal of -is SBA

Proof

Let \angle is a SBA –ideal of \mathscr{G}_2 and $\zeta^{-1}(\angle) = \{a \in \mathscr{G}_1 : \zeta(a) \in \angle\}$ is an ideal of \mathscr{G}_1 , since

 $0' \in \angle, \text{ we have}$ $\zeta^{-1}(0') = 0 \in \zeta^{-1}(\angle).$ Let $a \in \zeta^{-1}(\angle) \land a \bullet m \in \zeta^{-1}(\angle)$ $\rightarrow \zeta(a), \zeta(a \bullet m) \in \angle.$ Since \angle is SBA-ideal of \wp_2 $\zeta(a) \bullet' \zeta(m) \bullet' \zeta(a) \in \angle.$ $\zeta(a \bullet (m \bullet a)) \in \angle \rightarrow \zeta^{-1}(\zeta(a \bullet (m \bullet a))) \in \zeta^{-1}(\angle)$ $\rightarrow a \bullet (m \bullet a) \in \zeta^{-1}(\angle)$ $\zeta^{-1}(\angle)$ is SBA -ideal of \wp_1 .

Proposition (2.7):

Let $\{ \wp_j \}_{j \in \hbar}$ a family of AB- algebras and S_j be a SBA –ideal of $\wp_j \quad \forall j \in \hbar$, then $\prod S_j$ be SBA –

ideal of direct product $\prod_{j \in \hbar} \wp_j$. Where $\prod_{j \in \hbar} \wp_j = \{(x_j) : x_j \in \wp_j, \forall j \in \hbar\}$.

Proof

Let $a_j, m_j \in \prod_{j \in \hbar} \wp_j$ If $a_j \in \prod_{j \in \hbar} S_j$, $a_j \bullet m_j \in \prod_{j \in \hbar} S_j$ Then $a_j \in S_j$, $a_j \bullet m_j \in S_j$ S_j is SBA-ideal of \wp_j $\forall j \in \hbar$ $\rightarrow a_j \bullet (m_j \bullet a_j) \in S_j$ $a_j \bullet (m_j \bullet a_j) \in \prod_{j \in \hbar} S_j$ $\cdot \prod_{j \in \hbar} \wp_j$ ideal of -is SBA thus $\prod_{j \in \hbar} S_j$

Proposition (2.8):

Assume \Im be a normal subalgebra of AB –algebra \wp . If S is a SBA –ideal of \Im , then S_{\Im} is SBA-ideal

of
$$\frac{\wp}{3}$$

Proof

Let S is a SBA – ideal, that means S is an ideal of $\wp \Rightarrow \frac{S}{\Im}$ is an ideal of $\frac{\wp}{\Im}$.

Then $[0]_{\mathfrak{I}} \in S/\mathfrak{F}$, since $0 \in S$ Let $[a]_{\mathfrak{I}}, [m]_{\mathfrak{I}} \in S/\mathfrak{F}$, So $[a]_{\mathfrak{I}}, [a]_{\mathfrak{I}} \bullet [m]_{\mathfrak{I}} \in S/\mathfrak{F}$ Then $[a]_{\mathfrak{I}}, [a \bullet m]_{\mathfrak{I}} \in S/\mathfrak{F}$ Thus $[a]_{\mathfrak{I}} \in S/\mathfrak{F} \wedge [m \bullet a]_{\mathfrak{I}} \in S/\mathfrak{F} \Rightarrow a \in S \wedge a \bullet m \in S$, but S is SBA - ideal _ then $a \bullet (m \bullet a) \in S$. It followes $[a \bullet (m \bullet a)]_{\mathfrak{I}} = [a]_{\mathfrak{I}} \bullet ([m]_{\mathfrak{I}} \bullet [a]_{\mathfrak{I}}) \in S/\mathfrak{F}$ Hence S/\mathfrak{F} is SBA - ideal of

Theorem (2.9):

If $\zeta: (\wp_1, \bullet, 0) \to (\wp_2, \bullet', 0')$ be a hommorphism from commutative AB-algebra \wp_1 into AB-algebra \wp_2 , then ker (ζ) is a SBA-ideal of \wp_1 .

Proof

 $\zeta(0) = 0'$

Let $a \in ker(\zeta) \land a \bullet m \in ker(\zeta)$, $\forall a, m \in \wp_1$

then $\zeta(a) = 0' \land \zeta(a \bullet m) = 0'$

 $\zeta(a) \bullet \zeta(m \bullet a) = 0' \bullet \zeta(m \bullet a) = 0'$ by using def AB - Algebra (2)

So $\zeta(a \bullet (\mathbf{m} \bullet \mathbf{a})) = 0'$

 $a \bullet (\mathbf{m} \bullet \mathbf{a}) \in \ker(\zeta)$

Thus ker(ζ) is a SBA-ideal of \wp_1 .

3-Fuzzy SBA-Ideal:

In this section, we introduce the concept of a fuzzy SBA-ideal of AB- algebra \wp . We will discuse proposition about its the image of it under onto homomorphism.

Definition (3.1):

A fuzzy ideal ∇ of AB-algebra \wp is named a fuzzy SBA –ideal and denoted it by F-SBA -ideal of \wp if $\forall a, m \in \wp$ $\nabla(a \bullet (m \bullet a)) \ge \min\{\nabla(a), \nabla(a \bullet m)\}$

Example (3.2):

Let $\wp = \{0, \varepsilon, \tau, \partial\}$ be a set with the accompanying table:

Е τ 0 д • 0 0 0 0 0 Е \mathcal{E} 0 0 0 τ $\tau \quad \varepsilon \quad 0$ 0 ∂ au ∂ τ 0

Then $(\wp, \bullet, 0)$ is an AB-algebra and defined fuzzy set $\nabla : \wp \to [0,1]$, when

$$\nabla = \begin{cases} 1 & , x = 0 \\ 0.5 & , x = \{\varepsilon, \tau, \partial\} \end{cases} \text{ is F-SBA - ideal of } \wp$$

Theorem (3.3):

Let S be a SBA –ideal on \wp , ∇ be a fuzzy subset of AB-algebra \wp . For $\iota \in (0,1)$, there exists a F-SBA -ideal of \wp such that $\nabla_{\iota} = S$

Proof

Let $t \in (0,1)$, defined $\nabla : \wp \to [0,1]$ by $\nabla(a) = t$ if $a \in S$ and $\nabla(a) = 0$ when $a \notin S$, $\nabla_t = \{a \in \wp : \nabla(a) \ge t\} \implies \nabla_t = \{a \in \wp : \nabla(a) = t\} = S$, suppose ∇ is not F-SBA -ideal of \wp $a \in S, a \bullet m \in S \to a \bullet (m \bullet a) \in S$ $\to \nabla(a) = t$ and, $\nabla(a \bullet m) = t$ then we have $\nabla(a \bullet (m \bullet a)) \le \min\{\nabla(a), \nabla(a \bullet m)\}$ $\to t \le \min\{t, t\}$ $\to t \le t$

This is contradiction ∇ is F-SBA -ideal of \wp

Theorem (3.4):

Let ∇ be a fuzzy subset of an AB-algebra \wp , and ∇ is a F-SBA -ideal of \wp . Then ∇_* is SBA -ideal of \wp . where $\nabla_* = \{x \in \wp | \nabla(x) = \nabla(0)\}.$

Proof

Let $a, m \in \wp$ such that $a, a \bullet m \in \nabla_*, \nabla(a) = \nabla(0), \nabla(a \bullet m) = \nabla(0)$ since ∇ is F-SBA -ideal of \wp $\nabla(a \bullet (m \bullet a)) \ge \min{\{\nabla(a), \nabla(a \bullet m)\}}$ $\nabla(a \bullet (m \bullet a)) = \nabla(0) \Longrightarrow a \bullet (m \bullet a) \in \nabla_*$ Then ∇_* SBA -ideal of \wp .

Proposition (3.5):

Let ∇ be F-SBA -ideal of AB- algebra \wp , then ∇_t is SBA -ideal for $t \in [0, \nabla(0)]$ <u>Proof</u> By using definition ∇ we have $\nabla = \{\tau \in \wp : \nabla(\tau) \ge t\}, \forall a, m \in \wp, a \in \nabla, a \bullet m \in \nabla$

By using definition ∇_i we have $\nabla_i = \{\tau \in \wp : \nabla(\tau) \ge i\}, \forall a, m \in \wp, a \in \nabla_i, a \bullet m \in \nabla_i \\ \nabla(a) \ge i, \nabla(a \bullet m) \ge i \text{ since } \nabla \text{ is F-SBA - ideal of } \wp \text{ that mean} \\ \nabla(a \bullet (m \bullet a)) \ge \min\{\nabla(a), \nabla(a \bullet m)\} \ge i \\ \text{then } a \bullet (m \bullet a) \in \nabla_i \\ \nabla_i \text{ is SBA - ideal of } \wp.$

proposition (3.6):

Let $\zeta : (\wp_1, \bullet, 0) \to (\wp_2, \bullet', 0')$ be an onto homomorphism, let ∇ be a fuzzy ideal of a \wp_1 . For $\iota \in [0, \nabla(0)]$ if ∇_ι is SBA - ideal of \wp_1 , then $\zeta(\nabla_\iota)$ is SBA - ideal of \wp_2 .

Proof

By using Theorem (2.5) we can prove that $\mathcal{J}(\nabla_{\iota})$ is SBA -ideal of \wp_2 obviously.

Proposition (3.7):

Let $\zeta: (\wp_1, \bullet, 0) \to (\wp_2, \bullet', 0')$ be an onto homomorphism, it is f-invaluent, then ∇ is F-SBA -ideal of \wp_2 if and only if $\zeta^{-1}(\nabla)$ is F- SBA -ideal of \wp_1 . $Proof \rightarrow$ Suppose that ∇ is a F- SBA -ideal of \wp_2 $\mathcal{Z}^{-1}(\nabla)(a) = \nabla(\mathcal{Z}(a))$ and $\mathcal{I}^{-1}(\nabla)(a \bullet m) = \nabla(\mathcal{I}(a \bullet m))$ $= \nabla(\mathcal{J}(a \bullet (m \bullet a))) \ge \min\{\nabla(\mathcal{J}(a)), \nabla(\mathcal{J}(a \bullet m))\}$ then $\mathcal{J}^{-1}(\nabla)(a \bullet (m \bullet a)) \ge \min{\{\mathcal{J}^{-1}(\nabla)(a), \mathcal{J}^{-1}(\nabla)(a \bullet m)\}}$ So \wp_1 ideal of -SBA -is F ζ_1^{-1} Proof \leftarrow Assume that $\zeta^{-1}(\nabla)$ is F- SBA -ideal of \wp_1 , let $\zeta(a), \zeta(a \bullet m) \in \wp_2, \ \forall a, \ a, m \in \wp_1$ $\nabla(\mathcal{J}(a) \bullet' (\mathcal{J}(m) \bullet' \mathcal{J}(a))) = \nabla(\mathcal{J}(a \bullet (m \bullet a)))$ $= \mathcal{J}^{-1}(\nabla)(a \bullet (m \bullet a)) \geq \min{\{\mathcal{J}^{-1}(\nabla)(a), \mathcal{J}^{-1}(\nabla)(a \bullet m)\}}$ Since $\zeta^{-1}(\nabla)$ is F-SBA -ideal of \wp_1 $\nabla(\mathcal{J}(a) \bullet'(\mathcal{J}(m) \bullet' \mathcal{J}(a))) \ge \min\{\nabla(\mathcal{J}(a)), \nabla(\mathcal{J}(a \bullet m))\}$ So ζ is SBA -ideal of \wp_2 .

Theorem (3.8):

Let $\{\nabla_{\varepsilon}\}_{\varepsilon\in\sigma}$ be a family of F- SBA –ideals of \wp , then $\bigcap \nabla_{\varepsilon}$ is F-SBA –ideal \wp .

Proof

Let $a, m \in \wp$, $\bigcap_{\varepsilon \in \varpi} \nabla_{\varepsilon} (a \bullet (m \bullet a))) = \inf_{\varepsilon \in \varpi} \{ \nabla_{\varepsilon} (a \bullet (m \bullet a)) \} \text{ by Definition}(1.16)$ $\inf_{\varepsilon \in \varpi} \{ \nabla_{\varepsilon} (a \bullet (m \bullet a)) \} \ge \inf_{\varepsilon \in \varpi} \{ \min\{ \nabla_{\varepsilon} (a), \nabla_{\varepsilon} (a \bullet m) \} \}, \text{since } \nabla_{\varepsilon} \text{ is } F \text{ - SBA - ideal}$ $= \min\{ \inf_{\varepsilon \in \varpi} \{ \nabla_{\varepsilon} (a) \}, \inf_{\varepsilon \in \varpi} \{ \nabla_{\varepsilon} (a \bullet m) \} \} = \min\{ \bigcap_{\varepsilon \in \varpi} \nabla_{\varepsilon} (a), \bigcap_{\varepsilon \in \varpi} \nabla_{\varepsilon} (a \bullet m) \}$ $\text{then } \bigcap_{\varepsilon \in \varpi} \nabla_{\varepsilon} (a \bullet (m \bullet a)) \ge \min\{ \bigcap_{\varepsilon \in \varpi} \nabla_{\varepsilon} (a), \bigcap_{\varepsilon \in \varpi} \nabla_{\varepsilon} (a \bullet m) \}$ $\text{Hence } \bigcap_{\varepsilon \in \varpi} \nabla_{\varepsilon} F \text{-SBA - ideal of } \wp.$

Theorem (3.9):

Let $\{\nabla_{\varepsilon}\}_{\varepsilon\in\sigma}$ be a chain of F-SBA –ideal \wp , then $\bigcup \nabla_{\varepsilon}$ is F-SBA –ideal \wp .

Proof

Let $a, m \in \mathcal{D}$, such that

$$\begin{split} &\bigcup_{\varepsilon\in\varpi} \nabla_{\varepsilon} (a \bullet (m \bullet a))) = \sup_{\varepsilon\in\varpi} \{ \nabla_{\varepsilon} (a \bullet (m \bullet a)) \text{by Definition}(1.16) \\ &\sup_{\varepsilon\in\varpi} \{ \nabla_{\varepsilon} (a \bullet (m \bullet a)) \ge \sup_{\varepsilon\in\varpi} \{ \min\{ \nabla_{\varepsilon} (a), \nabla_{\varepsilon} (a \bullet m) \} \}, \text{since } \nabla_{\varepsilon} \text{ is } F \text{ - SBA - ideal} \\ &= \min\{ \sup_{\varepsilon\in\varpi} \{ \nabla_{\varepsilon} (a) \}, \sup_{\varepsilon\in\varpi} \{ \nabla_{\varepsilon} (a \bullet m) \} \} = \min\{ \bigcup_{\varepsilon\in\varpi} \nabla_{\varepsilon} (a), \bigcup_{\varepsilon\in\varpi} \nabla_{\varepsilon} (a \bullet m) \} \\ &\Rightarrow \bigcup_{\varepsilon\in\varpi} \nabla_{\varepsilon} (a \bullet (m \bullet a)) \ge \min\{ \bigcup_{\varepsilon\in\varpi} \nabla_{\varepsilon} (a), \bigcup_{\varepsilon\in\varpi} \nabla_{\varepsilon} (a \bullet m) \} . \\ &\text{So } \bigcup_{\varepsilon\in\varpi} \nabla_{\varepsilon} \text{ is } F \text{ - SBA - ideal }. \end{split}$$

Theorem (3.10):

Let ∇ be a fuzzy subset of AB-ideal of \wp , then ∇ is a F-SBA-ideal iff ∇^* is a F-SBA-ideal of \wp . <u>Proof</u>

Let $a, m \in \emptyset$, \rightarrow $\nabla^*(a \bullet (m \bullet a)) = \nabla(a \bullet (m \bullet a)) - \nabla(0) + 1$ since ∇ is F - SBA - ideal we have $= \nabla(a \bullet (m \bullet a)) \ge \min\{\nabla(a), \nabla(a \bullet m)\}\$ $= \nabla^* (a \bullet (m \bullet a)) \ge \min \{\nabla(a), \nabla(a \bullet m)\} - \nabla(0) + 1$ $=\min\{\nabla(a) - \nabla(0) + 1, \nabla(a \bullet m) - \nabla(0) + 1\}$ $= \min\{\nabla^*(a), \nabla^*(a \bullet m)\}$ ∇^* is F-SBA-ideal. \leftarrow by using deafination ∇^* $\nabla^*(a \bullet (m \bullet a)) = \nabla(a \bullet (m \bullet a)) - \nabla(0) + 1$ since ∇^* is F - SBA - ideal we have $\nabla^*(a \bullet (m \bullet a)) \ge \min\{\nabla^*(a), \nabla^*(a \bullet m)\}$ $\nabla(a \bullet (m \bullet a)) - \nabla(0) + 1 \ge \min\{\nabla(a) - \nabla(0) + 1, \nabla(a \bullet m) - \nabla(0) + 1\}$ $\nabla(a \bullet (m \bullet a)) - \nabla(0) + 1 \ge \min\{\nabla(a), \nabla(a \bullet m)\} - \nabla(0) + 1$ $\nabla(a \bullet (m \bullet a)) \ge \min\{\nabla(a), \nabla(a \bullet m)\}$ $=\min\{\nabla^*(a),\nabla^*(a\bullet m)\}\$ ∇ is F-SBA- ideal.

References:

[1] A.T. Hameed and B. N. Abbas, "Derivation of AB-Ideals of and Fuzzy AB-Ideals of AB- Algebras", a theses Submitted to council of the Faculty of Education for Girls, kufa university,2018.

[2] A.T. Hameed, "AB-Ideals of AB- Algebras ", Applied Mathmatical, Vol,11, no.35,1715-1723,2017.

[3] D. Dubis and H, prade, "Fuzzy Set and Systems", academic press, INC, (London)LTD., Academic press, INC, fifth Avenue, New York, 1980.

[4] Das P.S.," Fuzzy Groups and Level Subgroups", Journal of Mathematical 230. Analysis and Applications, vol.84, pp.264-269, 1981.

[5] K. Iseki and S. Tanaka,"An introduction to the theory of BCK-algebras, Math, Japonica 23, no.1,1-26,1978.

[6] K. Iseki,"On BCI-algebras, Mathemayics Seminer Notes 8,125-130,1980.

[7] L.A. Zadeh, "Fuzzy Set", Information and control vol. 8, pp 338-358,1965.

[8] V. Kumbhojkar. and Bapat M.S., "Notso-fuzzy ideals", Fuzzy Set and Systems,

vol.37 (1991), pp.237-243.

[9] W.B. vasantha andasamy," Samarandache Fuzzy Algebra", United States of America, pp.9-10, pp.47-58,292,2003.