DOI: http://doi.org/10.32792/utq.jceps.10.01.01

Theta Generalized Semi Weak Separation Axioms Mirvet Khalaf Hussein

Collage of Education – Department of Mathematics' Al- mustansiriayh University

Received 2/8/2023, Accepted 27/8/2023, Published 21/9/2023

EXAMPLE 1 This work is licensed under a <u>Creative Commons Attribution 4.0 International License.</u>

Abstract:

We study new types of generalized closed set called (θ -generalized – semi closed set) by using semi-theta closure operator. We examine its relation with both semi- θ -closed and generalized – semi closed sets. We also define θ (generalized- semi, generalized-semi)- R_0 and R_1 spaces and characterize some of their properties. Moreover, we introduced the notion of θ – generalized – semi – kernel of a subset U of X to investigate the behaviors of theta (generalized- semi, generalized-semi)- R_0 and R_1 spaces

1- Introduction

Separation properties represent fundamental and captivating concepts within the realm of topology. In 2023, Ahmed Hussein [1] introduced the notion of semi-open sets, which emerged as a significant development. Building upon this foundation, Marwa Munther Hassan, Al-Hachami, A. K.in $(20^{\gamma\gamma})$ employed semi-open sets to formulate and explore novel separation axioms referred to as semi-separation axioms. In a similar vein, Jassim Saadoun Shuwaie et al. [3] in 2022 introduced the concept of a semi-R₀ space. Progressing further, in 2021, Ali. Alkhazragy Faik. Mayah and Ali Kalaf. H. Al-Hachami[4] extended the concept of closed sets to semi-generalized closed sets, utilizing the notion of semi-closures. Notably, Cueva M. C. in 2000 [5] defined a novel category of topological spaces termed semi-T₁/₂ spaces, characterized by a correspondence between the classes of semi-closed sets and semi-generalized closed sets. This concept denotes spaces where each semi-T₁ space is also a semi-T₁/₂ space, and each semi-T₁/₂ space is a semi-T₀ space, although the converse implications do not hold true.

Al-Hachami, A. K. [6] marked the inception of investigating feebly open sets in 1978. The objective of this current research is to provide certain delineations of weak separation axioms.

2- Fundamental and Basic Concepts

Definition 2.1: Consider a subset A of the topological space (X, \mathcal{T}). A is termed a feeble open set if there exists an open set U such that U is a subset of A and A is enclosed by the closure of U, denoted as $U \subset A \subset \overline{U}^s$.

A set qualifies as feeble closed when its complement is feeble open. The intersection of all feeble closed sets encompassing A yields the feeble closure of A, denoted as (\overline{A}^{f}) .

Proposition 2.1: For a subset A of the topological space (X, \mathcal{T}) , A is feeble open if and only if A is contained within the closure of its interior in a strong sense, i.e., $A \subset \overline{U^o}^s$.

Proof: Assuming A is feeble open, an open set U exists satisfying $U \subset A \subset \overline{U}^s$. Since $A^o \subset A$, this implies $A^o \subset A \subseteq \overline{A} \subseteq \overline{U}^s$. Consequently, $\overline{U}^s \subset \overline{A^o}^s \subset \overline{A}^s \subset \overline{U}^s$. Then $A \subset \overline{U}^s \subset \overline{A^o}^s$, then we get $A \subset \overline{A^o}^s$ Conversely: Let $A \subset \overline{A^o}^s$ then $A^o \subset A \subset \overline{A^o}^s$, (i.e. *A* is feebly open set)

Remark 2.1: "Every open set is also feeble open."

Proposition 2.2: Each feeble open set is categorized as a semi-open set.

Lemma 2.1: Given a subset A of the topological space (X, \mathcal{T}), the closure of A in a strong sense is equivalent to the union of A and the interior of its closure, i.e then $\overline{A}^s = A \cup (\overline{A})^o$.

Proof

Since scl(A) is semi-closed, we have $\left(\overline{\overline{A}^{s}}\right)^{o}$. Therefore, $\left(\overline{A}\right)^{o} \subset \overline{A}^{s}$, and hence $A \cup \left(\overline{A}\right)^{o} \subset \overline{A}^{s}$.

To established the opposite inclusion we observe that

$$\left(\overline{A \cup (\overline{A})^{o}}\right)^{o} = \left(\overline{A \cup (\overline{A})^{o}}\right)^{o} \subset (\overline{A}) \cup \left(\overline{(\overline{A})^{o}}\right)^{o} = \overline{A} \cup (\overline{A})^{o} = \overline{A}.$$

Thus $\left(\overline{A \cup (\overline{A})^{o}}\right)^{o} \subset \left(\overline{A}\right)^{o} \subset A \cup \left(\overline{A}\right)^{o}$.

Hence $A \cup (\overline{A})^{\circ}$ is semi-closed, and so $\overline{A}^{\circ} \subset A \cup (\overline{A})^{\circ}$.

Proposition 2.3: For a subset A of the topological space (X, \mathcal{T}), A is feeble open if and only if A is an element of the collection \mathcal{T}^{α} , which consists of sets of the form $A \in \mathcal{T}^{\alpha}(\overline{A})^{o}$

Proof: If A is feebly open, there is an open set U such that $U \subset A \subset \overline{U}^s$. By lemma 2.1, $\overline{U}^s = U \cup (\overline{U})^o = (\overline{U})^o$. Hence $U \subset A \subset (\overline{U})^o$, and consequently $(\overline{A^o})^o = (\overline{U})^o$. Thus we have that $A \subset (\overline{A^o})^o$, so that $A \in \mathcal{T}^{\propto}$.

Website: <u>jceps.utq.edu.iq</u>

"Conversely, if $A \in \mathcal{T}^{\alpha}$, we have that $A^{\circ} \subset A \subset (\overline{A^{\circ}})^{\circ}$. So if $U = A^{\circ}$ we have $U \subset A \subset (\overline{U})^{\circ}$, and **lemma 2.1** implies $U \subset A \subset \overline{U}^{\circ}$, so that A is feebly open set".

Lemma 2.2: "Let x be a point of a topological space (X, \mathcal{T}) . Then either $\{x\}$ is nowhere dense or $\{x\} \subset (\overline{\{x\}})^o = \overline{\{x\}}^s$."

Proof: Suppose that $\{x\}$ is not nowhere dense. Then $(\overline{\{x\}})^o \neq \emptyset$, and so $x \in (\overline{\{x\}})^o$. Lemma 2.1 implies that $scl\{x\} = \{x\} \cup (\overline{\{x\}})^o$

Thus $\{x\} \subset (\overline{\{x\}})^o = \overline{\{x\}}^s$.

Proposition 2.4: "Let A be a subset of topological space (X, \mathcal{T}) , and U is open in X, then $A \cap U$ is feebly open in "X and U.

Proposition 2.5: The union of family feebly open set are feebly open.

Proof: Let A_{α} be feebly open $\forall \alpha \in \Lambda$, then there exist open set U_{α} such that $U_{\alpha} \subset A_{\alpha} \subset \overline{(U_{\alpha})}^{s} \forall \alpha \in \Lambda$, then $\bigcup_{\alpha \in \Lambda} U_{\alpha} \subset \bigcup_{\alpha \in \Lambda} A_{\alpha} \subset \bigcup_{\alpha \in \Lambda} \overline{(U_{\alpha})}^{s}$. Since $\bigcup_{\alpha \in \Lambda} \overline{(U_{\alpha})}^{s} = \overline{(\bigcup_{\alpha \in \Lambda} U_{\alpha})}^{s}$. Then $\bigcup_{\alpha \in \Lambda} A_{\alpha}$ is feebly open

Remark 2.2: A set *B* is feebly closed if and only if $\overline{B}^f = B$.

3. Feebly R₀ Properties

"The collection of all semi-open set is denoted by $(SO(X, \mathcal{T}))$.

The collection of all feebly open set is denoted by $(FO(X, \mathcal{T}))$

Definition 3.1: A topological space(X, T) is semi- R_0 if for each semi-open set $U, x \in H$ implies that $\overline{\{x\}}^s \subset U$

Definition 3.2: A topological space(X, \mathcal{T}) is feebly R_0 if for each feebly open set $H, x \in H$ implies that $\overline{\{x\}}^f \subset H$

Theorem 3.1: "A topological space(X, T) is feebly R_0 if and only if for every feebly closed set F and $x \notin F$, there exist a feebly open set U such that" $F \subset U, x \notin U$.

Definition 3.2: Within a given topological space (X, \mathcal{T}) , the feeble kernel of the point x is characterized as the set $fker\{x\} = \{y: x \in \overline{\{y\}}^f\}$.

Website: jceps.utq.edu.iq

Theorem 3.2: "In a topological space (X, \mathcal{T}) , for $y, x \in X$, $fker\{x\} \neq fker\{y\}$. If and only if " $\overline{\{x\}}^f \neq \overline{\{y\}}^f$.

Proof: Necessity. We assume that there exist a point z of X such that $z \in \overline{\{x\}}^f$ but $z \notin \overline{\{y\}}^f$. Therefore $x \in \overline{\{z\}}^f$ and $y \notin \overline{\{z\}}^f$. Consequently there is a feebly open set which contains y but not x. and so, $y \notin \overline{\{x\}}^f$. Thus $f \ker\{x\} \neq f \ker\{y\}$.

Sufficiency. Let p is a point of X such that $p \in \overline{\{x\}}^f$ and $p \notin \overline{\{y\}}^f$. And so there is a feebly open set which contains x but not y. therefore, $y \notin \overline{\{x\}}^f$. This competes the proof.

Theorem 3.3: "Let (X, \mathcal{T}) be a topological space, then the following conditions are equivalent:

- (a) X if feebly R_0 .
- (b) for every $x \in X$, $\overline{\{x\}}^f \subset fker\{x\}$.
- (c) If F is feebly closed in X, then $F = \cap \{G: G \text{ is feebly open}, F \subset G\}$.
- (d) If G is feebly open in X, then $G = \bigcup \{F: F \text{ is feebly closed}, F \subset G\}$.
- (e) For any nonempty set A and feebly open set G in X such that $A \cap G \neq \emptyset$, there exist a feebly closed set F for which $F \subset G$ and $A \cap F \neq \emptyset$.
- (f) For any feebly closed set F in X and $x \notin F, \overline{\{x\}}^f \cap F = \emptyset$."

Proof

(a) \Rightarrow (b): Let $y \in \overline{\{x\}}^{f}$. Let G be any feebly open set such that $x \in G$. Now by (a), $y \in G$. This gives that $x \in \overline{\{y\}}^{f}$. Therefore $y \in fker\{x\}$.

(b) \Rightarrow (c): suppose that x does not belong to the feebly closed set F. and so, $X \sim F$ is feebly open and contains x. Let $y \in \overline{\{x\}}^{f}$. Then by (b), $x \in \overline{\{y\}}^{f}$. Therefore, every feebly open set which contains x contains y. Hence, $\overline{\{y\}}^{f} \subset X \sim F$. Now $X \sim \overline{\{x\}}^{f}$ is a feebly open set containing F to which x does not belong. Consequently, x does not belong to the intersection of all the feebly open set which contain F. thus (c) hold.

(c) \Rightarrow (d): Evident.

set which contain *F*. thus (c) hold.

 $(c) \Longrightarrow (d)$: Evident.

(d) \Rightarrow (e): "Let *G* be feebly open and *A* is non-empty such that $A \cap G \neq \phi$. Let $x \in A \cap G$. By (d) there exist a feebly closed set *F* such that $x \in F \subset G$.clearly, $A \cap F \neq \phi$ "

(e) \Rightarrow (f): "Let *F* be a feebly closed set and $x \notin F$ Then $X \sim F$ is feebly open and $\{x\} \cap (X \sim F) \neq \phi$ By (e), there exists a feebly closed set *H* such that" $H \cap \{x\} \neq \phi$ and $H \subset X \sim F$. Therefore $\overline{\{x\}}^f \subset X \sim F$. Consequently, $F \cap \overline{\{x\}}^f = \phi$.

(f) \Rightarrow (a): By **theorem 3.1**.

Theorem 3.4: If for any point x of a feebly R_0 space X, $\overline{\{x\}}^f \cap fker\{x\} = \{x\}$ then $\overline{\{x\}}^f = \{x\}$.

The proof follows from **theorem 3.4(b)**

Proposition 3.1: Let (X, \mathcal{T}) be a topological space, then X is feebly R_0 if and only if $(X, \mathcal{T}^{\alpha})$ is R_0 .

Proposition 3.2:(i) If (X, \mathcal{T}) is feebly R_0 , then it is semi- R_0 .

(ii) If (X, \mathcal{T}) is R_0 , then it is feebly R_0 .

Proof: (i) we first show that R_0 implies semi- R_0 .

Suppose $U \in SO(X, \mathcal{T})$ and $x \in U$. There is an open set V such that $V \subset U \subset \overline{V}$.

Let $x \in V$. Since (X, \mathcal{T}) is $R_0, \overline{\{x\}} \subset V$ and hence $\overline{\{x\}}^s \subset V \subset U$.

Let $U - V \subset \overline{V} - V$. Then $(\overline{\{x\}})^{o} \phi$. And $\overline{\{x\}}^{s} \subset U$. Then (X, \mathcal{T}) is semi- R_{0} .

Now suppose that (X, \mathcal{T}) is feebly R_0 . By **Proposition 3.1**, (X, T^{α}) is R_0 and so is semi- R_0 by the argument above. But $SO(X, T^{\alpha}) = SO(X, \mathcal{T})$, so that (X, \mathcal{T}) is semi- R_0 .

(ii) let $x \in V \in T^{\propto}$. By Lemma 2.2, $\{x\}$ is nowhere dense or $\{x\} \subset \left(\overline{\{x\}} = \overline{\{x\}}^s\right)^o$

If $\{x\}$ is nowhere dense, $T^{\propto}\overline{\{x\}} = \{x\} \subset V$.

If $\{x\} \subset \left(\overline{\{x\}} = \overline{\{x\}}^s\right)^o$ then $\mathcal{T}\overline{\{x\}} \subset \left(\overline{\{x\}}\right)^o$ since (X, \mathcal{T}) is R_0 .

But $T^{\alpha}\overline{\{x\}} \subset \overline{\mathcal{T}\{x\}}$, so that $T^{\alpha}\overline{\{x\}} \subset \overline{\{x\}}^{s}$. By part (i) (X,\mathcal{T}) is semi- R_{0} , and $V \in SO(X,\mathcal{T})$ implies $\overline{\{x\}}^{s} \subset V$. Hence $T^{\alpha}\overline{\{x\}} \subset V$. Thus (X,T^{α}) is R_{0} , so that by **Proposition3.1** (X,\mathcal{T}) is feebly R_{0} .

4. Feebly T_0 Properties

Definition 4.1: A topological space (X, T) is said to be feebly T_0 if, for any distinct pair of points x, there exists a feeble open set within (X, T) that includes one of the points but not the other.

Proposition 4.1: If (X,T) is T_0 space, then it is also feebly T_0

The proof is based on Proposition 2.1.

Additionally, we present an example to demonstrate that the converse of Proposition 4.1 does not hold true

Example 4.1: Let $X = \{a, b, c\}, \mathcal{T} = \{\emptyset, X, \{a\}\}$ be a topology on *X*.

The feebly open sets in X are $T^f = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}$

It is clear (X, T^f) is feebly T_0 but not T_0 space.

Theorem 4.1: Every open subspace of an feebly T_0 space is feebly T_0 .

Proof: Let *Y* be an open subspace of *X* and $x, y \in Y$ such that $x \neq y$.

Since X is feebly T_0 , then there exist feebly open, U in X, such that $x \in U$ and $y \notin U$ or $x \notin U$ and $y \in U$, since Y open subset in X, then $Y \cap U$ is feebly in Y (**Proposition 2.4**). then $x \in Y \cap U$ and $y \notin Y \cap U$ or $x \notin Y \cap U$ and $y \in Y \cap U$. Then Y is feebly T_0 .

Proposition 4.2: Let (X, \mathcal{T}) be a topological space, then *X* is feebly T_0 if and only if $\overline{\{x\}}^f \neq \overline{\{y\}}^f$ (such that *x*, *y* are two distinct point in *X*).

Proof: Suppose that $x, y \in X$ such that $x \neq y$, and $\overline{\{x\}}^f \neq \overline{\{y\}}^f$. Let $z \in X$ such that $z \in \overline{\{x\}}^f$ and $z \notin \overline{\{y\}}^f$, therefor $x \notin fcl\{y\}$. If $x \in fcl\{y\}$ that is mean $\overline{\{x\}}^f \subset \overline{\{y\}}^f$, this is contradiction. Then $x \in (\overline{\{y\}}^f)^c$ and $y \notin (\overline{\{y\}}^f)^c$ such that $(\overline{\{y\}}^f)^c$ is feebly open. Then X is feebly T_0 .

Conversely let X be feebly T_0 space such that $x, y \in X$. Then there exist a feebly open set, G such that $x \in G$ and $y \notin G$ or $x \notin G$ and $y \in G$. Let $x \in G$ and $y \notin G$ then G^c is feebly closed and $x \notin G^c$ and $y \in G^c$. Since $\overline{\{y\}}^f$ is the smallest feebly closed set contain y therefore $\overline{\{y\}}^f \subset G^c$ and $x \notin \overline{\{y\}}^f$. Then $\overline{\{x\}}^f \neq \overline{\{y\}}^f$.

Remark 4.1: The axioms of feebly T_0 space and feebly R_0 space are independent.

5. Feebly $T_{1/3}$ Properties

Definition 5.1: A subset A of a topological space(X, \mathcal{T}) is called Ψ -closed set if, $\overline{A}^f \subset O$ hold whenever $A \subset O$ and O is fg-open of (X, \mathcal{T}) .

Theorem 5.1: Let *A* be a subset of topological space (X, \mathcal{T}) , then

- 1) A is Ψ -closed if and only if $\overline{A}^{f} (A)$ does not contain any non-empty fg-closed set.
- 2) If A is Ψ -closed and $A \subset B \subset \overline{A}^f$, then B is Ψ -closed.

Definition 5.2: "A topological space (X, \mathcal{T}) is called feebly $T_{1/3}$ space if every Ψ -closed set in (X, \mathcal{T}) is feebly closed.

Theorem 5.2: Every feebly $T_{1/2}$ space is feebly $T_{1/3}$ space.

The converse of **Theorem 5.2** is false as it can be seen from the following example.

Example 5.1: Let $X = \{1,2,3\}$ and $\mathcal{T} = \{\phi, X, \{1\}, \{2,3\}\}$. (X, \mathcal{T}) is feebly $T_{1/3}$ space but not a feebly $T_{1/2}$ space, because $\{2\}$ is a fg-closed set but not feebly closed set of (X, \mathcal{T}) .

Theorem 5.3: for a topological space (X, \mathcal{T}) , the following conditions are equivalent:

- (i) (X, \mathcal{T}) is a feebly $T_{1/3}$ space.
- (ii) Every singleton of X is either fg-closed or feebly open.
- (iii) Every singleton of *X* is either fg-closed or open.

Proof: (i) \Rightarrow (ii) Let $x \in X$ and suppose that $\{x\}$ is not fg-closed of (X, \mathcal{T}) . Then $X - \{x\}$ is fg-open set. So, X is the only fg-open set containing $X - \{x\}$. Hence $X - \{x\}$ is Ψ -closed set. Since (X, \mathcal{T}) is feebly $T_{1/3}$ space, then $X - \{x\}$ is a feebly closed set or equivalently $\{x\}$ is feebly open set.

(ii) \Rightarrow (i) Let A be a Ψ -closed set. Clearly $A \subset \overline{A}^{f}$. let $x \in X$. By assumption, $\{x\}$ is either fg-closed or feebly open.

Case(1) Suppose $\{x\}$ is fg-closed. By **Theorem 5.1**, $\overline{A}^f A$ does not contain any non-empty fg-closed set. Since $x \in \overline{A}^f$, then $x \in A$.

Case(2) Suppose $\{x\}$ is a feebly open set. Since $x \in \overline{A}^{f}$, then $\{x\} \cap A \neq \phi$. So $x \in A$. Thus in any case, $\overline{A}^{f} \subset A$.

Therefore A = fcl(A) or equivalently A is feebly closed set of (X, \mathcal{T}) . Hence (X, \mathcal{T}) is an feebly $T_{1/3}$ space.

(ii) \Rightarrow (iii). This conclusion stems from the observation that a singleton set is feebly open if and only if it is open.

6. Feebly $T_{1/2}$ Properties

Definition 6.1: "A subset A of a topological space (X, \mathcal{T}) is called to be feebly generalized closed set (written in short as fg-closed) if, $\overline{A}^f \subset O$ hold whenever $A \subset O$ and O is feebly open. A subset B of (X, \mathcal{T}) is called a fg-open set of (X, \mathcal{T}) if, B^c is fg-closed in (X, \mathcal{T}) . Every feebly closed is fg-closed but the converse is not true.

Definition 6.2: "A topological space (X, \mathcal{T}) is called feebly $T_{1/2}$ if every fg-closed set in (X, \mathcal{T}) is feebly closed in (X, \mathcal{T}) "

Website: jceps.utq.edu.iq

Theorem 6.1: Let (X, \mathcal{T}) be a topological space". Then, every feebly $T_{1/2}$ space is feebly T_0 space.

Proof

If (X, \mathcal{T}) be a feebly $T_{1/2}$ space which is not a feebly T_0 space then there exit $x, y, x \neq y$ such that $\overline{\{x\}}^f = \overline{\{y\}}^f$ (by **Proposition 4.2**).Let $A = \overline{\{x\}}^f \cap \{x\}^c$. It will be shown that A is fg-closed but not feebly closed. Let O be any feebly open set containing x. Since $x \in \overline{\{y\}}^f$, $\{y\} \cap O \neq \emptyset$, *i.e.* $y \in O$. Now $\{y\} \subset \overline{\{y\}}^f \cap O$ and this shows in succession, $\{y\} \subset \overline{\{x\}}^f \cap O, \{x\}^c \cap \{y\} \subset \overline{\{x\}}^f \cap O \cap \{x\}^c, \{y\} \subset \overline{\{x\}}^f \cap O \cap \{x\}^c, \{y\} \subset O \cap \{x\}^c, \{y\} \cap O \cap \{y\}^c, \{y$

Now suppose $A \subset G$ where $G \in FO(X, \mathcal{T})$. To show that $\overline{A}^f \subset G$, it suffices to prove that $\overline{\{x\}}^f \subset G$. But $\overline{\{x\}}^f \cap \{x\}^c = A \subset G$ and $fD(\{x\}) \subset \{x\}^c$. Then $fD(\{x\}) \subset G$ and thus it needs only to show that $x \in G$. If possible, let $x \in G^c$. Then $y \in \overline{\{x\}}^f \subset G^c$. Hence $y \in \overline{\{x\}}^f \cap \{x\}^c = A \subset G$. Thus $y \in G \cap G^c$, a contradiction. Therefore, $\overline{\{x\}}^f \subset G$ so that A is fg-closed. Therefore (X, \mathcal{T}) is not feebly $T_{1/2}$.

Theorem 6.2: A topological space is feebly $T_{1/2}$ if and only if for each $x \in X$, either $\{x\}$ is feebly open or $\{x\}$ is feebly closed.

Proof

Necessity: suppose X is feebly $T_{1/2}$ and for some $x \in X$, $\{x\}$ is not feebly closed. Since X is the only feebly open of $\{x\}^c$ and $\{x\}^c$ is fg-closed and thus feebly closed. Hence $\{x\}$ is feebly open.

Sufficiency: Let $A \subset X$ be fg-closed with $x \in \overline{A}^{f}$. If $\{x\}$ is feebly open, $\{x\} \cap A \neq \emptyset$.

Otherwise $\{x\}$ is feebly closed and $A \cap \{x\} = A \cap \overline{\{x\}}^f \neq \emptyset$. In either case $x \in A$ and so A is feebly closed (**Remark 2.2**).

Corollary 6.1: "*X* is feebly $T_{1/2}$ if and only if every subset of *X* is the intersection of all feebly open sets and all feebly closed sets containing it.

Proof: Necessity: Let X be feebly $T_{1/2}$ with $B \subset X$ arbitrary. Then $B = \bigcap \{\{x\}^c, x \notin B\}$, an intersection of feebly open and feebly closed by **Theorem 6.2.** the result follows".

Sufficiency: "For each $x \in X, \{x\}^c$ is the intersection of all feebly open sets and all feebly closed sets containing it. Thus $\{x\}^c$ is either feebly open or feebly closed and X is feebly $T_{1/2}$.

Theorem 6.3: "The property of being a feebly $T_{1/2}$ space is hereditary, i.e. every subspace of a feebly $T_{1/2}$ space is also a feebly $T_{1/2}$ "

Proof: Let Y be a subspace of a feebly $T_{1/2}$ space X. let $y \in Y \subset X$. Then $\{y\} \in FO(X, \mathcal{T})$ or $\{y\} \in FC(X, \mathcal{T})$ (=family of all feebly closed sets in the topological space (X, \mathcal{T}) . Therefore by ([5] Theorem 6) $\{y\}$ is either feebly open in Y or feebly closed in Y. By **Theorem 6.2**, Y is feebly $T_{1/2}$."

7. Feebly $T_{3/4}$ Properties

Definition 7.1: "A topological space (X, \mathcal{T}) is called feebly $T_{3/4}$ space if every fg-closed subset of X is feebly closed.

Lemma 7.1: Let $A \subset (X, \mathcal{T})$ be every fg-closed. Then $\overline{A}^f - A$ does not contain a non-empty closed set.

Lemma 7.2: In any space a singleton is feebly open if and only if it is regular open.

Theorem 7.1: For a topological space (X, \mathcal{T}) the following conditions are equivalent:

- (1) *X* is a feebly $T_{3/4}$ space
- (2) Every singleton $\{x\}$ is feebly open or closed.
- (3) Every singleton $\{x\}$ is regular open or closed."

Corollary 7.1: Every feebly $T_{3/4}$ space is a feebly $T_{1/2}$ space. But the converse is not always true

Example 7.1: the Sierpinski space is an easy example of a space, which is feebly $T_{1/2}$ but not feebly $T_{3/4}$ space.

8. Feebly T₁ Properties

Definition 8.1: "A topological space (X, \mathcal{T}) is feebly T_1 space if for each pair of distinct point x, y in X there is a feebly open set containing x but not y."

It is evident that T_1 space implies feebly T_1 space. In general the convers is not always true. Consider the following example:

Example 8.1: Let $X = \{a, b, c, d\}$ and $\mathcal{T} = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$, be the topology on X. The feebly open on X are :X, ϕ , $\{a\}, \{a, d\}, \{b, c\}, \{a, b, c\}$. Then the space (X, \mathcal{T}) is feebly T_1 but not T_1 space.

Proposition 8.1: "Every feebly T_1 space is semi- T_1 space, but the convers is not always true".

Example 8.2: "Let $X = \{a, b, c\}$ and $\mathcal{T} = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$, be the topology on X. The feebly open on X are : X, ϕ , $\{a\}, \{a, d\}, \{b, c\}, \{a, b, c\}$, and the semi-open on X are" : X, ϕ , $\{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}$. It is clear that (X, \mathcal{T}) is semi- T_1 but not feebly T_1 space.

Proposition 8.3: "Every feebly T_1 space is feebly- T_0 space".

Proof: "Let (X, \mathcal{T}) is feebly T_1 space. It suffices to show that a set which is not feebly closed also not a fgclosed set To this end, suppose $A \subset X$ and A is not feebly closed". Let $x \in \overline{A}^f - A$. Then $\{x\} \subset \overline{A}^f - A$. Since X is feebly T_1 space, $\{x\}$ is a feebly closed set. Website: jceps.utq.edu.iq

1) A is not fg-closed.

"The convers of **Proposition 8.3** is not always true".

Example 8.2: "Let $X = \{a, b, c\}$ and $\mathcal{T} = \{X, \phi, \{a\}\}$, be the topology on" *X*. The feebly open on *X* are $:X, \phi, \{a\}, \{b, c\}, \{a, b, c\}$. It is clear that (X, \mathcal{T}) is feebly T_0 but not feebly T_1 space.

Theorem 8.1: "For a topological space (X, \mathcal{T}) the following conditions are equivalent":

- (i) Each singleton is feebly closed.
- (ii) X is a feebly T_1 space.

Proof: (i) \Rightarrow (ii). "Let X be feebly T_1 space and $y \in X$. To prove $\{y\}$ is feebly closed set. Let $x \in \{y\}^c$ then $x \neq y$. Since X feebly T_1 space, then there exist feebly open set in X, U such that $x \in U$ and $y \notin U$. Then $x \in U \subset \{y\}^c = \bigcup \{U_x : x \in \{x\}^c$. Then $\{a\}^c$ feebly open set by **Proposition 2.4.** Then $\{y\}$ feebly closed set.

(i) \Rightarrow (ii). "Let {z} feebly closed set $\forall z \in X$. Let $x, y \in X$ such that $x \neq y$. Then $x, y \in \{y\}^c$ and $\{y\}$ is feebly closed. Therefore $\{y\}^c$ feebly open set containing x but not y, and $\{x\}^c$ feebly open set containing y but not x. then X is feebly T_1 space

Theorem 8.2: "A topological space (X, \mathcal{T}) is feebly T_1 space if and only if it is feebly T_0 space and feebly R_0 space.

Diagram1: shows the relationship between some separation axioms.

References

- Ahmed Hussein Wajan Alrikabiu, Al-Hachami, A. K. (20^γ3), On θg**- Closed Sets in Topological Spaces. Wasit Journal of Computer and Mathematics. Volume2 No. 2, 120-134
- 2. Marwa Munther Hassan, Al-Hachami, A. K. (20^{YY}), On **Tgp**Topological Space and Some Generalized Closed Sets. NeuroQuantology. Volume20 Issue8 Page 7685- 7690
- 3. JASSIM SAADOUN SHUWAIE, AL-HACHAMI, A. K. (20^{YY}), ON SEMI FEEBLY SEPARATION AXIOMS. WASIT JOURNAL FOR PURE SCIENCE. VOL. (1) NO. (1), 55-70
- 4. Ali. Alkhazragy **Faik**. **Mayah** and Ali Kalaf. H. Al-Hachami, On semi-theta separation axioms, 2021 J. Phys.: Conf. Ser. 1999 012096
- 5. Cueva M. C. " A research on characterization of semi- $T_{1/2}$ space" Divulgaciones Math. Vol. 8. No. 1 (2000) 43-50.
- 6. Al-Hachami, A. K. (2019), Some Feebly Separation Properties. The 2nd international scientific conference for science college- Al-Qadisieh University