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Abstract 

The numerical analysis for the incompressible power-low inelastic fluid is described in this work. To 

characterize the fluid's motion, a mass conservation equation and momentum conservation equation are 

used.  The investigation was carried out numerically using a Taylor Galerkin-pressure correction (TG-

PC) method. The contrast of Newtonian findings with shear-thinning inelastic is highlighted. The 

convergence of solution components is examined under the variation of Reynolds number (Re) and the 

parameters of power-low inelastic model (PLIM). The results show that the inelastic factors have a 

considerable influence on the level of temporal convergence rates of velocity, while there is minor 

change in the level of pressure convergence. 
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1. Introduction: 

The conical nozzles play an important role in the modern industrial process field, such as the automotive 

industry and the aerospace industry, due to their great role in controlling the flow of liquids and gases. 

This procedure requires that providing a pointed hole through, which the material passes [1], and then 

achieve optimal results, such as controlling and increasing thrust in the speed and direction of fluid flow.  

Experts improved performance and efficiency in various operations through the distinctive shape of the 

conical nozzle [2,3]. This shape also contributed to improving control over pressure distribution and 

reducing turbulence and pressure losses. Therefore, conical nozzles are important tools that contribute to 

technological progress across multiple fields [1]. Schmidt et al. [6] (1997) studied the he effects of 

several nozzle parameters on cavitating nozzle flow by employing a two-dimensional transient model. 

The effect of many factors on the flow characteristics, such as the cone’s half-angle, the ratio of hole’s 

length to diameter, and the ratio of the upstream diameter to the downstream diameter has studied by 

Wang et al. [8] (2019). Due to this importance, many studies have been conducted on this type of flow. 

Nair et al. [3] (2019) studied the rocket nozzles through using truncated conical plug nozzle and Conical 

plug nozzle. The numerical simulation for the flow through these plug nozzles is conducted and 

compared the results with experimental data.  Singh et al. [4] (2019) are developed the reference to obtain 

an optimal structure for nozzle geometry, where the critical pressure ratio is increased while minimizing 

pressure drop across the nozzle. Moreover, improvement the behaviors of dynamical flow of a compound 

droplet moving in a nozzle with a conical shape in the downstream region via front tracking-based 

simulations is investigated by Truong et al. [5] (2020). Ahmed and Al-Muslimawi [6] (2020) developed a 

numerical method based on the Galerkin finite element method to study the incompressible Newtonian 

laminar flow through a conical channel.  

Numerically, a Taylor Galerkin-pressure correction (TG-PC) method is employed in this study to treat the 

governing equations. This approach is presented by Townsend and Webster [7] to traet Newtonian and 

non-Newtonian fluid flows high accuracy.  Essentially, this method is resulted from combines a pressure 

correction method with the Taylor Galerkin method, which contributes to improving efficiency and 

accuracy in solving all complex fluid flow problems. The TG-PC-method is presented based on time 

incremental method, which is essentially known as a two-step Lax-Wendroff.  The pressure-correction 

technique considers the incompressibility limitation to ensure second-order accuracy in time (for more 

details see [8-12]  ( . 

In the present study, the incompressible Navier-Stokes equations in axisymmetric cylindrical coordinates 

are introduced. Navier-Stokes equations represent the governing equation of the fluid flow phenomena. 
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These equations consist of the conversation of mass and momentum equations. In addition, we concern in 

this study on inelastic conical nozzles fluid flow in both shear-thickening and shear-thinning situations. 

The viscosity of an inelastic fluid is represented by the simplest basic constitutive equation, which uses a 

power law model to express the behavior of shear thinning and shear thickening in fluids. Ostwald–de 

Waele suggested this model and it is dependent on shear rat and represent by the following form [13]: 

𝜇𝑠 = 𝑘(�̇�)𝑛−1, 

where n is the power law index and k is the consistency parameter. Here, a more viscous fluid is indicated 

by higher k values. In the case of n values equal to 1 the fluid is Newtonian, but when n is less than 1, 

shear thinning is observed. In the case of n greater than 1, shear thickness is also observed [14]. Thus, 

many chemical and industrial fluids are dealt with by this model. The current work focuses on a variety 

of physical factors such as the consistency (k), Reynolds number (Re) and power law index (n) to 

examine the flow properties of the power law liquids. The effect of these factors on fluid behavior has 

been studied in this research.  

The following is how this paper is organized: inelastic isothermal flow motion is mathematically modeled 

in Section 2, along with instructions on how to translate the modeling into a non-dimensional format. We 

present the numerical methodology (TG-PC) and the relevant finite element technique features in Section 

3. Sections 4 and 5 give the problem specification and the numerical findings associated with it, 

respectively. 

2. Mathematical modeling 

The mathematical differential equations of incompressible isothermal inelastic flow when body forces are 

ignored can be written as: 

∇ ⋅ 𝑢 = 0,                                                   (1)              𝜌
∂𝑢

∂𝑡
= ∇ ⋅ (2𝜇𝑠(�̇�, 𝜀)𝑑) − 𝜌𝑢 ⋅ ∇𝑢 − ∇𝑝.                                                               

(2) 

Here, the symbols for velocity, density, hydrodynamic pressure, and solvent viscosity are u, ρ, p, and 𝜇𝑠, 

respectively. Furthermore, ∇ and 𝑑 =
1

2
(∇𝑢 + ∇𝑢𝜏) represent the gradient operator and the rate of the 

deformation tensor. In addition, the shear rate (𝛾)̇ and strain rate (𝜀) are defined as: 

�̇�  = 2√𝐼𝐼𝑑

 𝜀  = 3
𝐼𝐼𝐼𝑑

𝐼𝐼𝑑

,                                                                                                             (3) 

where, 𝐼𝐼𝑑 and 𝐼𝐼𝐼𝑑 stand for the second and third invariants of the rate of strain tensor d. [13]: 

𝐼𝐼𝑑 =
1

2
tr (𝑑2) =

1

2
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∂𝑢𝑟

∂𝑟
)

2
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)
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𝑟
)
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And 

𝐼𝐼𝐼𝑑 = det (𝑑) =
𝑢𝑟

𝑟
{

∂𝑢𝑟

∂𝑟

∂𝑢𝑧

∂𝑧
−

1

4
(

∂𝑢𝑟

∂𝑧
+

∂𝑢𝑧

∂𝑟
)

2

}.                                                         (5) 

Furthermore, the constitutive formula (Power Law Equation) is 

𝜇𝑠 = 𝑘(𝛾)̇ 𝑛−1,                                                                                                            (6) 

where the power-law index is denoted by n and the consistency parameter by k. 

By utilizing the scaling 𝑅𝑒 = 𝜌
𝑈𝐿

𝜇
, on the other hand, the equation may also be expressed in terms of the 

non-dimensional groups of Reynolds numbers (Re), with (𝜌), (L), and (U) standing for the characteristic 

density lengths and velocities, respectively[15].Therefore, the non-dimensional form of equation 2 is 

given as: 

𝑅𝑒 (
∂𝑣

∂𝑡
+ 𝑢 ⋅ ∇𝑢) = −∇𝑝 + ∇ ⋅ (2𝜇𝑠(�̇�, 𝜀)𝑑).                                                             (7) 

3. Numerical method and boundary conditions 

The (TG-PC) method is used in the present investigation. This approach consists of three basic stages. In 

the first phase, a two-step predictor-corrector technique is utilized to compute the u∗ components by 

providing the initial velocity and pressure fields. The Choleski technique is utilized to calculate the 

pressure differences during the second phase (𝑃𝑛+1 − 𝑃𝑛) based on  u∗ [14-17]. Finally, the velocity 

field 𝑢𝑛+1 is evaluated when, 𝑢∗ and pressure difference (𝑃𝑛+1 − 𝑃𝑛) are adopted by employing the 

Jacobi iteration [15,21]. Then these fractional stages can be written as 

Stage1a:
2𝑅𝑒

Δ𝑡
[𝑢𝑛+

1

2 − 𝑢𝑛] = 𝐿(𝑢𝑛, 𝑑𝑛) − ∇𝑝𝑛,                                                      (9) 

Stage1b:
𝑅𝑒

Δ𝑡
[𝑢∗ − 𝑢𝑛] = 𝐿 (𝑢𝑛+

1

2, 𝑑𝑛+
1

2) − ∇𝑝𝑛,                                                       (10)                         

Stage2:∇2(𝑝𝑛+1 − 𝑝𝑛) =
𝑅𝑒

𝜃Δ𝑡
∇ ⋅ 𝑢∗,                                                                        (11) 

Stage3: 𝑢𝑛+1 = 𝑢∗ −
𝜃Δ𝑡

𝑅𝑒
[∇(𝑝𝑛+1 − 𝑝𝑛)].                                                                (12) 

Where, 

𝐿(𝑢, 𝑑) = [∇ ⋅ (2𝜇𝑠(�̇�, 𝜀)𝑑) − Re 𝑢 ⋅ ∇𝑢].                                                                (13) 

Also, 𝜃 ∈ [0,1], if choosing 𝜃 = 1/2 is chosen, the following technique is popular: the Crank–Nicolson 

scheme and is referred to as the Crank–Nicolson parameter, [16-18]. 

The approximate form of velocity and pressure is presented as: 

𝑢(𝑥, 𝑡) = ∑𝑗=1
𝐽𝑢  𝑢𝑗(𝑡)𝜙𝑗(𝑥),                                                                                   (14) 

 𝑝(𝑥, 𝑡) = ∑
𝑗=1

𝐽𝑝  𝑝𝑗(𝑡)𝜓𝑗(𝑥),                                                                                      (15)where, 𝐽𝑢 
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represents the total number of nodes, and 𝐽𝑝 is the number of vertices of triangles. 𝑢𝑗(𝑡) and 𝑝𝑗(𝑡) are the 

vector of velocity and pressure nodal values. 𝜙𝑗(𝑥) and 𝜓𝑗(𝑥) are the functions that form their basis 

(shape or interpolation) such that 𝜙𝑗(𝑥) are chosen as the quadratic basis function and 𝜓𝑗(𝑥) as a linear. 

The pressure is presented at the mid-side nodes, in contrast the velocity is evaluated and vertex nodes of a 

triangular [19]. After the analysis of finite element method, Equations (9), (10), (11), and (12) can be 

written in matrix form as follows [23,24]. 

Step1a:[
2𝑅𝑒

𝛥𝑡
𝑀 +

1

2
𝑆] (𝑈𝑛+

1

2 − 𝑈𝑛) = {−[𝑆 + 𝑅𝑒 𝑁(𝑈)]𝑈 + Ꝓ𝑇𝑃}𝑛,                    (16) 

Step 1b: [
𝑅𝑒

𝛥𝑡
𝑀 +

1

2
𝑆] (𝑈∗ − 𝑈𝑛) = {−𝑆𝑈 + Ꝓ𝑇𝑃}𝑛 − 𝑅𝑒 [𝑁(𝑈)𝑈]𝑛+

1

2,               (17) 

Step2: 𝐾(𝑃𝑛+1 − 𝑃𝑛) = −
𝑅𝑒

𝜃𝛥𝑡
 Ꝓ𝑈∗,                                                                        (18) 

Step3:
𝑅𝑒

𝛥𝑡
𝑀(𝑈𝑛+1 − 𝑈∗) = 𝜃Ꝓ𝑇(𝑃𝑛+1 − 𝑃𝑛),                                                         (19) 

where, 𝑈𝑛,  𝑈𝑛+1  and 𝑃𝑛, 𝑃𝑛+1 are nodal vectors of velocity and pressure at the time 𝑡𝑛 and 𝑡𝑛+1, 

respectively; and 𝑈∗ is an intermediate nodal velocity vector introduced in Step 1b. M, S, N, Ꝓ, and K 

respectively represent mass, momentum diffusion, convective, divergence/pressure gradient, and pressure 

stiffness matrices, [20-26]. 

Boundary conditions (BCs): A schematic flow diagram of the conical nozzle is presented in Figure 1, with 

the following setting of boundary conditions:  

(a) At the inlet, zero radial velocity is applied with axial velocity as Poiseuille (Ps) flow.     

(b) No-slip BCs on the top wall of the channel, while slip axial velocity (uz) is applied through axis of 

symmetry with zero radial velocity.  

   

                                                                                                                                                                

 

 

 

 

 

 

 

 
Figure 1 Flow geometry (symmetrical axis). 
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The effect of k on the convergence rate for axial velocity and pressure is appeared in Figure 2 and 3 for 

both shear thinning (n=0.8) and shear thickening (n=1.6) with constant Re=5. For shear thinning issue 

one can see that, by increasing the level of k, less effort and time-steps are needed to reach a specified 

tolerance level (10
−6

) for both velocity and pressure, and this is the exactly opposite of what was achieved 

in the case of shear thickening. In addition, in the shear thickening case we need less time steps to get the 

monotonic convergence (around 30 time-step) compared to the shear thinning case (around 45 time-step) 

[1], [10]. 

 

 

  

 

 

                      

 

 

 

                                                                                               

 

 

 

 

 

 

 

 
Figure 3 Convergence of pressure, (a) shear thinning, (b) shear thickening; Re=5, k 

variation. 

 

Figure 2 Convergence of velocity, (a) shear thinning, (b) shear thickening; Re=5, k variation. 
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On the other hand, there was focus on the effect of Re-variation on the convergence of velocity and 

pressure again for shear thinning and shear thickening at fixed k=2. Figure 4 and 5 show that, through 

temporal convergence history tolerances for velocity and pressure one can observed that the level of time-

step rises as Re increases, with almost same level in both situations shear thickening and shear thinning 

[1], [10]. 

 

 

 

 

 

           

 

 

 

 

 

 

 

                                                               

 

 

Figure 4 The level of velocity convergence, (a) shear thinning, (b) shear 

thickening; k=2, Re variation. 

 

Figure 5 The level of pressure convergence, (a) shear thinning, (b) shear thickening; k=2, 

Re variation. 

mailto:jceps@eps.utq.edu.iq
http://jceps.utq.edu.iq/


Journal of Education for Pure Science- University of Thi-Qar 
Vol.13, No.4 (Dec2023) 

jceps@eps.utq.edu.iqEmail:                                                                                                       jceps.utq.edu.iqWebsite:  

 

  
 

23 

Figure 6 provides the corresponding results for maximum velocity and maximum pressure as a function 

of n for Re=1 and k=2. In both components we observed that the levels of velocity and pressure are 

increased under n increase to reach to the high levels in shear thickening situation which gives a clear 

feature about the difficulties of convergence for large Re. From the profiles, the maximum level of 

velocity is occurred in shear thickening area with around 61.5783 units at n=2, in the same time the 

maximum level of pressure also appeared in the shear thickening region. These results are consistent with 

the physical properties of fluids, as decreasing the value of n leads to an increase in viscosity and greater 

non-objection to the movement of the fluid, which leads to an increase in the velocity and pressure [6]. 

More details of the maximum level of components are presented in Table 1. 

 

 

 

    

                         

                      

 

 

 

 

 

 

                    

 

        

   

 

 

 

n Max u Max p 

    0.2 33.5562 500.404 

0.3 32.4153 542.379 

0.4 33.0627 602.934 

0.5 35.2473 684.397 

0.6 37.7869 790.441 

0.7 40.614 927.68 

0.8 43.5901 1104.63 

0.9 46.4675 1334.08 

1 48.9346 1636.99 

1.1 50.8341 2046.22 

1.2 52.344 2611.82 

1.3 53.6186 3406.47 

1.4 54.8793 4532.61 

1.5 56.1489 6135.28 

1.6 57.3045 8422.21 

1.7 58.3201 11691.5 

1.8 59.3441 15672.3 

1.9 60.4002 19341.5 

2 61.5783 23521.8 

Table1 max u, max p with n variation. 

Figure 6. Max velocity and max pressure with Re = 1, k = 2. 

shear 

thinning

shear 

thickening

shear 

thinning

shear 

thickening
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The maximum velocity and pressure are plotted in Figure 7 as a function of k at fixed Re=1, and n={0.6, 

1.6}under k-variation. In all cases the value of velocity and pressure is increased ask increases, with high 

level is occurred in the case of shear thickening. For example, from the velocity profiles one can observe 

increase of almost 26% in shear thickening for k=20, whereas the increase in pressure was noticeable, 

around 96%. In addition, we observed that the increase in velocity takes a non-linear character, unlike 

that of the pressure, where it was a linear increase. More details of the results are given in Table 2. 

 

 

 

 

 

 

                      

 

 

 

                                                                                     

                                                                                       

                                                                                       

 

    

 

 

  

 

 Figure 7 Max velocity and pressure with k-variation, n=0.6, 1.6, Re =1. 

 

(a) shear thinning 

(b) shear thickening 
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K 

n=0.6 n=1.6 

Max u Max p Max u Max p 

1 34.6162 622.552 56.5233 4611.98 

2 37.7869 790.441 57.3045 8422.21 

3 39.6891 942.08 57.6309 12244.7 

4 40.9118 1085.36 57.7714 16047.2 

5 417365 1223.61 57.8845 19907.7 

6 42.306 1358.65 57.9493 23743.6 

7 42.7026 1491.6 58.0016 27581 

8 42.9838 1623.15 58.0408 31422.3 

9 43.19 1753.77 58.0686 35307.9 

10 43.346 1883.75 58.0891 39194.1 

11 43.4674 2013.28 58.1044 43080.8 

12 43.5733 2142.5 58.1162 46967.9 

13 43.6647 2271.5 58.1255 50855.3 

14 43.7441 2400.34 58.1328 54742.9 

15 43.8157 2529.06 58.1387 58630.6 

16 43.8815 2657.7 58.1435 62518.5 

17 43.943 2786.28 58.1475 66406.6 

18 44.0013 2914.8 58.1508 70294.7 

19 44.0571 3043.3 58.1536 74183 

20 44.1109 3171.76 58.156 78071.3 

 

The effect of Re number on velocity and pressure are presented in Figure 8 again for shear thinning and 

shear thickening and fixed k=2. Here, the velocity and pressure are plotted as a function of Re. The 

findings show that there are two opposite trends in the results, where we can observe that rise in the 

pressure with increase in Re and a decrease in the velocity with increase in Re. In addition, the level of 

solution is higher in the case of shear thickening [6]. Moreover, the field structures in velocity are 

displayed in Figure 9 for n-variation. 

  

Table 2  Max velocity and pressure with k-variation, n=0.6, Re =1. 

mailto:jceps@eps.utq.edu.iq
http://jceps.utq.edu.iq/


Journal of Education for Pure Science- University of Thi-Qar 
Vol.13, No.4 (Dec2023) 

jceps@eps.utq.edu.iqEmail:                                                                                                       jceps.utq.edu.iqWebsite:  

 

  
 

26 

 

 

 

 

 

 

 

 

 

 

                                                                                                        

 

 

 

 

 

 

                          

 

 

 

 

 

 

 

 

Figure 8  Max velocity and pressure, n={0.6, 1.6}, k =1; Re-variation. 

(a) shear thinning 

(b) shear thickening 
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(a) n =0.6, max u=37.7869 

(b) n =1, max u=48.9346 

(c) n =1.6, max u=57.3045 

Figure 9  Velocity field; n =0.6, 1, 1.6. 
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Velocity and pressure drop are plotted in Figure 10 under n={0.6, 1, 1.6}, Re=1 and k=2 over the 

centerline. The results show that there is a significant impact of n-variation on the velocity and pressure 

along the channel.  In this context, the level of pressure drop decreased as n decreases, reaching a peak of 

around 8300 units with n = 1.6 (see Figure 10b). In contrast, the results of velocity are reflected a same 

feature of pressure, with maximum level is occurred at the outlet of the conical at n=1.6; of around 58 

units (see Figure 10a). 

 

 

 

 

 will notice a sharp decrease at (n=1.6) [16]. 

 

 

 

The profiles of the axial velocity in fully developed flow at different regions z ={0, 3.6, 7.2, 10.8, 14.4, 

18} are illustrated in Figure 11 in the shear thinning situation (n=0.8), Re=1 and k=2. The axial velocity 

profiles show parabolic flow structure for all zones, with obviously increasing in the level of velocity 

Figure 10 Velocity on symmetric line, pressure in symmetric line, Re =1, k = 2. 

(a) (b) 
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whenever we are trending to the cone exit, approaching to the maxima of units.  

 

 

 

 

 

 

 

 

                                                                                 

 

 

 

 

 

 

 

 

 

Figure 11 Velocity on symmetric line, at z={0, 3.6, 7.2, 10.8, 14.4, 18}. 
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Conclusions 

In the cylindrical coordinates system, the (TG-PC)-method is used to model incompressible inelastic 

conical nozzles flows. The primary goals of this research are to determine the influence of the Reynolds 

number (Re), consistency parameter (k) and power law index (n) on the amount of convergence in shear 

thickening and shear thinning scenarios. Furthermore, the crucial Re for both flow scenarios is examined. 

In both situations of shear thinning and shear thickening, the convergence level of pressure and velocity 

rises as the power-law index (n) grows. Furthermore, the convergence rate in shear thickening flow is 

greater than that in shear thinning flow. The same characteristic is found for Re-variation and k-variation. 

Additionally, shear thinning and shear thickening were once again the main focus of the influence of 

contrast on velocity and stress convergence. In both shear thickening and shear thinning scenarios, we 

have shown that the level of the time step rises with increased renewable energy through the temporal 

convergence of the pressure and speed changes.  
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