## DOI:

# The Equivalence Between (QTA) of Lie Groups and Hom- Space with Tencer Product 

Zinah Makki Kadhim<br>zenah73@gmail.com<br>Taghreed Hur Majeed<br>taghreedmajeed@uomustansiriyah.edu.iq

Mathematics Department- College of Education,
Mustansiriyah University.

Received 18/9/2023, Accepted 8/10/2023, Published 1/12/2023

This work is licensed under a Creative Commons Attribution 4.0 International License.


#### Abstract

: The primary purpose of this research is to work out a new action of Lie group through dual representation. In our paper we mention the basic definitions, we'll discuss the study of activity for Lie group upon Hom-space utilizing equivalence relationship between tensor product and Hom. Their measures will be studied on a structure consisting of four and five vector spaces. In the end we obtain new generalizations using action of dual representation for Lie group G.


## Key words:

Lie group, representation of Lie group, dual representation of Lie group, tensor product for representation of Lie group.

## 1. Introduction:

Define $G$ to be Lie group. It is finite dimensional manifold which being as well a group, the structure will be the multiplication $G \times G \rightarrow G$ and a ttaching of an inverse function $G \rightarrow G, g \rightarrow g^{-1}$ are smooth maps. [6]. In [1] Hall B.C. composed a book of Lie group and explained the algebras. And we will use double representation for Lie group, because it works the group's action on some vector space. Schu'r, Lemma presented the concept of action for Lie algebra upon the linear maps, from $Z_{2}$ into $Z_{1}$, referred via $\operatorname{Hom}\left(Z_{2}, Z_{1}\right)$, such that $\operatorname{Hom}\left(Z_{2}, Z_{1}\right) \cong Z_{2}^{*} \otimes Z_{1}$ [1]. Also, the interest in the present work is to give representations by inter wine dual of these actions, and explain the action's structure via a diagram. And then generalizing them. In this paper we symbolize for drawings quadrilaterals and pentagons by (QTA) and (PTA), respectively, see [8]. and pentagons by (QTA) and (PTA), respectively. see [8]. In 2016 , H.I.Lefta and T.H.Majeed " Action of

Reductive Lie Groups on Hom-Space and Tensor Product of Five Representation" , 2018, A.K.Radhi and T.H.Majeed " Certain Types of Complex Lie Group Action " 2021, W.S.Gan " Lie Groups and Lie Algebra" .And M. is field. And M. is field

## 2. Basic Concepts:

In this section gives the main definitions of group action and group representation.

## Lemma (2.1): [3]

Assume that $w_{1}^{\prime} \& w_{2}^{\prime}$ are representations for Lie algebra g affects the finite dimensional spaces $Z_{2} \& Z_{1}$, correspondingly. It defines the T-action of g upon $\operatorname{Hom}_{F}\left(Z_{2}, Z_{1}\right), w: \mathrm{g} \rightarrow$ $\mathrm{g} L\left(\operatorname{Hom}_{F}\left(Z_{2}, Z_{1}\right)\right)$ for all $v \in \mathrm{~g}, h \in \operatorname{Hom}_{F}\left(Z_{2}, Z_{1}\right)$, $w_{1}^{\prime}(v) h-h w_{2}^{\prime}(v)$ and $\operatorname{Hom}\left(Z_{2}, Z_{1}\right)=Z_{2}^{*} \otimes Z_{1}$ as the equivalence of rep.

## Definition (2.2): [9]

Let Lie group $G$, be finite dim. real (complex) representations of $G$ being a homomorphism of Lie group, $w: G \rightarrow G L(n, R)=(n \geq 1)$. In general, a homomorphism for the Lie group is $w: G \rightarrow G L(Z)$ where $Z$ has the characteristics of a real (complex) vector space and has a finite number of dimensions a $Z \geq 1$.
$w_{1}$ and $w_{2}$ being the representation on $\left(w_{1} \otimes w_{2}\right)(v, r)=w_{1}(v) \otimes w_{2}(r)$ for all $v \in \mathrm{G}$ and $r \in H$.

## Definition (2.3): [8]

Let $w_{i}, i=1,2, \ldots, m$ are representations of Lie group $G$ affects the vector spaces $Z_{i}, i=$ $1,2, \ldots, m$ then the direct sum of $w_{i}$, bring the representation defined by: $\left\{w_{1} \oplus w_{2} \ldots \oplus\right.$ $\left.w_{m}(v)\right\}\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)=w_{1}(v) Z_{1}, w_{2}(v) Z_{2}, \ldots, w_{m}(s) Z_{m}$ for all $r \in G, Z_{1}, Z_{2}, \ldots, Z_{m} \in Z_{1} \times Z_{2} \times \ldots \times Z_{m}$.

Definition (2.4): [2]
Let both G and $H$ groups of liars, let $w_{1}$ is a rendition of G effects the space $Z_{1}$ and let $w_{2}$ is a rendition of $H$ effects the space $Z_{2}$, then the tensor product of $\left(w_{1} \otimes w_{2}\right)(\mathrm{v}, \mathrm{r})=$ $w_{1}(v) \otimes w_{2}(r)$. For all $v \in G$ and $r \in H$.

## Definition (2.5): [5]

Let $Z_{1} \& Z_{2}$ being space of real (complex) vectors of finite dimensions, after that, a tensor product of $Z_{1} \& Z_{2}$ is a vector space $Z$, together with a bilinear map

I: $Z_{1} \times Z_{2} \rightarrow Z\left(Z_{1} \otimes Z_{2}\right)$ having this quality: if $\varphi$ is every bilinear map of $Z_{1} \times Z_{2}$ into a vector space $\underline{Z}$, then there exists a sole linear map $\underline{\varphi}$ of $Z$ into $\underline{Z}$, the next diagram commutes, and so forth.


Figure(1)

## Definition (2.6): [4]

Assume $G$ is Lie group as well as $w$ is representation of $G$ effects the vector space $Z$. After that, the model of dual $w$ to $w$ is an expression of $G$ effects the $Z$ provided via : $w^{*}(v)=\left[w\left(v^{-1}\right)\right]^{t r}$ Dual representation is also known as the contragredient representation.

## Example (2.7) :

Let $w=S^{1} \rightarrow \operatorname{So}(2, \mathbb{C})$, where $S^{1}=e^{i \vartheta}=\cos \cos \vartheta+i \sin \sin \vartheta$ such that $S^{1}=\{(\cos \vartheta, \sin \vartheta), 0 \leq \vartheta \leq 2 \pi\}$, and
$w(\cos \cos \vartheta, \sin \sin \vartheta)=(\cos \cos \vartheta-\sin \sin \vartheta \sin \sin \vartheta \cos \cos \vartheta), w\left(e^{i \vartheta}\right)=$ $(\cos \cos \vartheta-\sin \sin \vartheta \sin \sin \vartheta \cos \cos \vartheta)$,
$w$ is representation of Lie group $S^{1}$. Then
$v=e^{i \vartheta}, w\left(e^{i \vartheta}\right)=(\cos \cos \vartheta-\sin \sin \vartheta \sin \sin \vartheta \cos \cos \vartheta), v^{-1}=\cos \cos \vartheta-i$
$\sin \sin \vartheta$
$w(v)^{-1}=(\cos \cos \vartheta-\sin \sin \vartheta \sin \sin \vartheta \cos \cos \vartheta)$, then $\left[w(v)^{-1}\right]^{\operatorname{tr}}=(\cos \cos \vartheta-$ $\sin \sin \vartheta \sin \sin \vartheta \cos \cos \vartheta)$.

## 3. The equivalence between the Lie group (QAT) and the Hom-space, Tensor product:

The action (QAT) , (PTA) of G upon Hom-space and upon tensor product will be studied in the present section.

## Proposition (3.1):

Let $w_{1}, w_{2}, w_{3}, w_{4}$ being the four representations for the Lie group affects the vector spaces $Z_{1}, Z_{2}, Z_{3}, Z_{4}$, correspondingly, put $\operatorname{Hom}_{m}\left(\operatorname{Hom}\left(Z_{1}^{*}, Z_{2}\right), \operatorname{Hom}\left(Z_{3}, Z_{4}^{*}\right)\right.$ be Mvector space of all linear mappings from $Z_{4}^{*}$ to $Z_{1}^{*}$ and from $\operatorname{Hom}\left(Z_{1}^{*}, Z_{2}\right)$ to $\operatorname{Hom}\left(Z_{3}, Z_{4}^{*}\right)$. Then the (QAT) of the Lie group on
$\operatorname{Hom}_{m}\left(\operatorname{Hom}\left(Z_{1}^{*}, Z_{2}\right), \operatorname{Hom}\left(Z_{3}, Z_{4}^{*}\right)\right)$.

## Proof:

Define $\psi: G \rightarrow G L\left(\operatorname{Hom}_{m}\left(\operatorname{Hom}\left(Z_{1}^{*}, Z_{2}\right), \operatorname{Hom}\left(Z_{3}, Z_{4}^{*}\right)\right)\right.$ such that:
$\psi(v) h=w_{1}(v) \circ h_{1} \circ w_{4}(v)$, for all $v \in G, h \in \operatorname{Hom}\left(Z_{1}, Z_{4}\right)$.
The following diagram can be used to show that the action of Lie group $G$ on
$\operatorname{Hom}\left(Z_{1}, Z_{4}\right)$ is as follows $\psi(v) h=w_{2}(v) \circ h_{2} \circ w_{3}(v)$.


Figure (2)
Where $\psi: G \rightarrow G L\left(\operatorname{Hom}_{m}\left(\operatorname{Hom}\left(Z_{1}^{*}, Z_{2}\right), \operatorname{Hom}\left(Z_{3}, Z_{4}^{*}\right)\right)\right.$ induced by representation, such that $\psi(v) h=\left[\left(w_{4}(v)^{-1} \circ h_{2} \circ w_{3}(v) \circ h_{3} \circ w_{1}(v)^{-1}\right)\right]$, for all $v \in G$ and $k_{i}: Z_{i} \rightarrow M$ thus $w^{*}$ is representation from G to Hom-space


Figure (3)
Since $\left(\operatorname{Hom}_{m}\left(\operatorname{Hom}\left(Z_{1}^{*}, Z_{2}\right), \operatorname{Hom}\left(Z_{3}, Z_{4}^{*}\right)\right) \cong\left(\left(Z_{1}^{*}, Z_{2}\right)^{*} \otimes\left(Z_{3}, Z_{4}^{*}\right)^{*}\right) \cong\left(\left(Z_{1} \otimes\right.\right.\right.$ $\left.\left.Z_{2}^{*}\right) \otimes\left(Z_{3}^{*}, Z_{4}\right)\right)$, since $\operatorname{Hom}_{m}\left(Z_{2}, Z_{1}\right) \cong\left(Z_{2}^{*} \otimes Z_{1}\right)$, so we construct the action of $G$ on the product. It is the bilinear map, therefore via utilizing By virtue of the tensor product and the universal quality of this tensor product, one obtains a special linear map:

$$
\left(Z_{1} \times Z_{2}^{*}\right) \times\left(Z_{3}^{*} \times Z_{4}\right) \xrightarrow[\text { canianical }]{ }\left(Z_{1} \otimes Z_{2}^{*}\right) \otimes\left(Z_{3}^{*} \otimes Z_{4}\right)
$$


$\operatorname{Hom}_{m}\left(\operatorname{Hom}\left(Z_{1}^{*}, Z_{2}\right), \operatorname{Hom}\left(Z_{3}, Z_{4}^{*}\right)\right.$
Figure (4)

And we will explain related between the (QTA) of the Lie group on $\operatorname{Hom}_{m}\left(\operatorname{Hom}\left(Z_{1}^{*}, Z_{2}\right), \operatorname{Hom}\left(Z_{3}, Z_{4}^{*}\right)\right)$ and (QTA) of the Lie group on $\left(\left(Z_{1} \otimes Z_{2}^{*}\right) \otimes\left(Z_{3}^{*}, Z_{4}\right)\right)$ up to the representation given:


Figure (5)

## Proposition (3.2):

Let $w_{1}, w_{2}, w_{3}, w_{4}$ being the four representations for the Lie group effects the vector spaces $Z_{1}, Z_{2}, Z_{3}, Z_{4}$, correspondingly, put $\operatorname{Hom}_{m}\left(\left(Z_{4}, \operatorname{Hom}\left(Z_{3}, Z_{2}^{*}\right)\right), Z_{1}^{*}\right)$ be M- vector space of all linear mappings from $Z_{3}$ to $Z_{2}^{*}$ and from $\operatorname{Hom}\left(Z_{3}, Z_{2}^{*}\right)$ to $Z_{1}^{*}$ and $Z_{4}$ to Hom (Hom $\left.\left.\left(Z_{3}, Z_{2}^{*}\right)\right), Z_{1}^{*}\right)$ Then the (QAT) of the Lie group on
$\operatorname{Hom}_{m}\left(\left(Z_{4}, \operatorname{Hom}\left(Z_{3}, Z_{2}^{*}\right)\right), Z_{1}^{*}\right)$.

## Proof:

Define : $G \rightarrow \operatorname{GL} \operatorname{Hom}_{m}\left(\left(Z_{4}, \operatorname{Hom}\left(Z_{3}, Z_{2}^{*}\right)\right), Z_{1}^{*}\right)$. By pro(3.1) such that:
$\left[\left(w_{1}(v)^{-1} \circ h_{1} \circ\left(w_{2}(v)^{-1} \circ h_{2} \circ w_{3}(v)\right)\right)\right] \circ h_{3} \circ w_{4}(v)$. For all $v \in G, h_{i}: Z_{i} \rightarrow M$. Where $w^{*}$ is representation from G to Hom-space.

Since $\left.\left(\operatorname{Hom}_{m}\left(Z_{4}, \operatorname{Hom}\left(Z_{3}, Z_{2}^{*}\right)\right), Z_{1}^{*}\right)\right) \cong\left(Z_{4}^{*} \otimes\left(Z_{3} \otimes Z_{2}\right)^{*} \otimes Z_{1}\right)$.
The following diagram illustrates representation from G to Hom-space


Figure (6)

Therefore, one gets a unique linear map by utilizing the tensor product and universal property.

Figure (7)
The following representation illustrates the relationship between (QTA) on Hom-space and (QTA) on tensor product, given as:


Figure (8)

## Proposition (3.3) :

Let $w_{1}, w_{2}, w_{3}, w_{4}, w_{5}$, be five representations of Lie group affects the vector spaces $Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}$, correspondingly. Put $\operatorname{Hom}_{m}\left(Z_{5}, \operatorname{Hom}\left(\operatorname{Hom}\left(Z_{4}, Z_{3}^{*}\right), Z_{2}^{*} \otimes Z_{1}^{*}\right)\right)$ be Mvector space of all linear mappings from $Z_{4}^{*}$ to $Z_{3}$ as well as $\operatorname{Hom}\left(Z_{4}, Z_{3}^{*}\right)$ to $Z_{2}^{*} \otimes Z_{1}^{*}$, from $Z_{5}$ to $\operatorname{Hom}\left(\operatorname{Hom}\left(Z_{4}, Z_{3}^{*}\right), Z_{2}^{*} \otimes Z_{1}^{*}\right)$.

Then the (QTA) of the Lie group on $\operatorname{Hom}_{m}\left(Z_{5}, \operatorname{Hom}\left(\operatorname{Hom}\left(Z_{4}, Z_{3}^{*}\right)\right), Z_{2}^{*} \otimes Z_{1}^{*}\right)$.

## Proof:

Define $\sigma: G \rightarrow G L\left(\operatorname{Hom}\left(Z_{5}, \operatorname{Hom}\left(\operatorname{Hom}\left(Z_{4}, Z_{3}^{*}\right), Z_{2}^{*} \otimes Z_{1}^{*}\right)\right.\right.$ induced by
Representation, such that $\sigma(v) k=\left[\left(w_{1}(v)^{-1} \oplus w_{2}(v)^{-1}\right)\right]$
$\left.\sigma(v) h=\left[\left(w_{1}(\mathcal{v})^{-1} \oplus w_{2}(\mathcal{v})^{-1}\right) \circ h_{1} \circ\left(w_{3}(\mathcal{v})^{-1} \circ h_{2} \circ w_{4}(v)\right)\right)\right]$
$\circ h_{3} \circ w_{5}(v)$. For all $v \in \mathrm{G}$ and $h_{i}: Z_{i} \rightarrow M$, where $w^{*}$ is representation from G to Homspace.


Since
$\left.\left.\left(\operatorname{Hom}_{m}\left(Z_{5}, \operatorname{Hom}\left(Z_{4}, Z_{3}^{*}\right)\right), Z_{2}^{*} \oplus Z_{1}^{*}\right)\right) \cong\left(Z_{5}^{*} \otimes\left(Z_{4} \otimes Z_{3}\right)^{*} \otimes Z_{2} \oplus Z_{1}\right)\right)$.
Therefore , one gets a sole linear map by utilizing the tensor product and universal property.

$$
\left(Z_{5}^{*} \times\left(Z_{4} \times Z_{3}\right)^{*} \times Z_{2} \oplus Z_{1}\right) \text { canianical } \rightarrow\left(Z_{4} \otimes\left(Z_{3} \otimes Z_{2}\right)^{*} \otimes Z_{2} \oplus Z_{1}\right)
$$



$$
\left(\operatorname{Hom}_{m}\left(Z_{5}, \operatorname{Hom}\left(\operatorname{Hom}\left(Z_{4}, Z_{3}^{*}\right)\right), Z_{2}^{*} \oplus Z_{1}^{*}\right)\right)
$$

Figure (10)

The following representation illustrates the relationship between (PTA) on Hom-space and (PTA) on tensor product, given:


Figure (11)

## Proposition (3.4) :

Let $Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}$, being the vector spaces, $Z_{i}^{*}$ Is the dual of vectors $Z_{i}$, and $i=$ $1,2,3,4,5$, then the following assertions are:
$\operatorname{Hom}_{m}\left(Z_{5}, \operatorname{Hom}\left(Z_{4}^{*}, \operatorname{Hom}\left(Z_{3}^{*}, Z_{2}\right) \oplus \operatorname{Hom}\left(Z_{3}^{*}, Z_{1}\right)\right)\right)^{*}$. .I
$\operatorname{Hom}_{m}\left(\operatorname{Hom}\left(Z_{1}^{*}, Z_{3}^{* *}\right) \oplus \operatorname{Hom}\left(\left(Z_{2}^{*}, Z_{3}^{* *}\right), \operatorname{Hom}\left(Z_{4}^{* *}, Z_{5}^{*}\right)\right)\right)$. .II
$\operatorname{Hom}_{m}\left(\operatorname{Hom}\left(Z_{1}^{*}, Z_{3}\right) \oplus \operatorname{Hom}\left(\left(Z_{2}^{*}, Z_{3}\right), \operatorname{Hom}\left(Z_{4}, Z_{5}, M\right)\right)\right)$. III
$\operatorname{Hom}_{m}\left(\operatorname{Hom}\left(Z_{1}^{*}, Z_{3}\right) \oplus \operatorname{Hom}\left(Z_{2}^{*},\left(Z_{3}, M\right), \operatorname{Hom}\left(Z_{4}, Z_{5}^{*}\right)\right)\right)$. IV
$\operatorname{Hom}_{m}\left(\operatorname{Hom}\left(Z_{1}^{*}, Z_{3}\right) \oplus \operatorname{Hom}\left(Z_{2}^{*},\left(Z_{3}, M\right), \operatorname{Hom}\left(Z_{4}, Z_{5}^{*}\right)\right)\right)$. $V$
$\left(\operatorname{Hom}_{m}\left(Z_{5}, \operatorname{Hom}\left(Z_{4}^{*}, \operatorname{Hom}\left(Z_{3}^{*}, Z_{2}\right) \oplus \operatorname{Hom}\left(Z_{3}^{*}, Z_{1}\right)\right)\right) n^{n^{m(* * *)}} \quad . \mathrm{VI}\right.$
$=\left\{\operatorname{Hom}_{m}\left(Z_{5}, \operatorname{Hom}\left(Z_{4}^{*}, \operatorname{Hom}\left(Z_{3}^{*}, Z_{2}\right)\right.\right.\right.$
$\left.\oplus \operatorname{Hom}\left(Z_{3}^{*}, Z_{1}\right)\right)$ if $n$ is an even number. $\operatorname{Hom}_{m}\left(Z_{5}^{*}, \operatorname{Hom}\left(Z_{4}, \operatorname{Hom}\left(Z_{2}^{*}, Z_{3}\right)\right.\right.$
$\left.\oplus \operatorname{Hom}\left(Z_{1}^{*}, Z_{3}\right)\right)$ if $n$ is an odd number. \}

## Proof:

$I \cong I I$ to show that:
$\left(\operatorname{Hom}_{m}\left(Z_{5}, \operatorname{Hom}\left(Z_{4}^{*}, \operatorname{Hom}\left(Z_{3}^{*}, Z_{2}\right) \oplus \operatorname{Hom}\left(Z_{3}^{*}, Z_{1}\right)\right)\right)^{*} \cong \operatorname{Hom}_{m}\left(\operatorname{Hom}\left(Z_{1}^{*}, Z_{3}^{*}\right) \oplus\right.\right.$ $\left.\operatorname{Hom}\left(\left(Z_{2}^{*}, Z_{3}^{*}\right), \operatorname{Hom}\left(Z_{4}^{* *}, Z_{5}^{*}\right)\right)\right)$.

Let $h_{4} \in \operatorname{Hom}\left(Z_{5}, Z_{4}^{*}\right)$, where $h_{4}: Z_{5} \rightarrow Z_{4}^{*}$,
And $h_{4}^{*} \in\left(\operatorname{Hom}\left(Z_{5}, Z_{4}^{*}\right)\right)^{*}$;
$h_{3} \in \operatorname{Hom}\left(Z_{4}, Z_{3}\right)$, where $h_{3}: Z_{4} \rightarrow Z_{3}$; and $h_{3}^{*} \in\left(\operatorname{Hom}\left(Z_{4}, Z_{3}\right)\right)^{*}$; and
$h_{3}^{*} \in\left(\operatorname{Hom}\left(Z_{4}, Z_{3}\right)\right)^{*} ;$
$h_{2} \times h_{1} \in \operatorname{Hom}\left(Z_{3}, Z_{2} \times Z_{1}\right)$, where $k_{2} \times k_{1}: Z_{3} \rightarrow Z_{2} \times Z_{1}$; and

$$
h_{2}^{*} \times h_{1}^{*} \in\left(\operatorname{Hom}\left(Z_{3}, Z_{2} \times Z_{1}\right)\right)^{*}
$$

And there exists an intertwining map:

$$
\begin{aligned}
\operatorname{Hom}_{m}\left(Z_{5},\right. & \left.\operatorname{Hom}\left(Z_{4}^{*}, \operatorname{Hom}\left(Z_{3}, Z_{2}\right) \oplus \operatorname{Hom}\left(Z_{3}, Z_{1}\right)\right)\right)^{*} \\
\rightarrow & \operatorname{Hom}_{m}\left(\operatorname{Hom}\left(\operatorname{Hom}\left(\operatorname{Hom}\left(Z_{3}, Z_{2}\right)^{*} \oplus \operatorname{Hom}\left(Z_{3}, Z_{2}\right)^{*}\right), Z_{4}^{*}\right)^{*},\left(Z_{5}^{*}\right)\right)
\end{aligned}
$$

Such that
$\pi\left(w^{*}(v)\right)(a)=w^{*}(v) \pi(a)$, for all $v \in w^{*}$ and $a \in Z_{1}^{*} \times Z_{2}^{*}, \pi$ is an invertible map.
$I I \cong I I I$ to show that:
$\operatorname{Hom}_{m}\left(Z_{5}, \operatorname{Hom}\left(Z_{4}^{*}, \operatorname{Hom}\left(Z_{3}^{*}, Z_{2}\right) \oplus \operatorname{Hom}\left(Z_{3}^{*}, Z_{1}\right)\right)\right)^{*} \cong \operatorname{Hom}_{m}\left(\operatorname{Hom}\left(Z_{1}^{*}, Z_{3}\right) \oplus\right.$ $\left.\left.\operatorname{Hom}\left(Z_{2}^{*}, Z_{3}\right), \operatorname{Hom}\left(Z_{4}, Z_{5}, M\right)\right)\right)$.

Since $Z_{5}^{*}$ can be written as $\operatorname{Hom}\left(Z_{5}, M\right)$, by proof (I). thus:
$\left.\operatorname{Hom}_{m}\left(\operatorname{Hom}\left(Z_{1}^{*}, Z_{3}\right) \oplus \operatorname{Hom}\left(Z_{2}^{*}, Z_{3}\right), \operatorname{Hom}\left(Z_{4}, Z_{5}^{*}\right)\right)\right)=\operatorname{Hom}_{m}\left(\operatorname{Hom}\left(Z_{1}^{*}, Z_{3}\right) \oplus\right.$ $\left.\operatorname{Hom}\left(Z_{2}^{*}, Z_{3}\right), \operatorname{Hom}\left(Z_{4},\left(Z_{5}, M\right)\right)\right)$ By the same method, we have the other parts.

Corollary (3.5) :
Let $\mathrm{GL} L\left(l_{i}, \mathrm{G}\right) \cong G L\left(w_{5}^{*} \otimes\left(w_{4} \otimes\left(\left(w_{3} \otimes w_{2}^{*}\right) \oplus\left(w_{3} \otimes w_{1}\right)\right)\right)\right)$

Where $i=1,2,3,4,5$ are a matrix representations, after that the (PTA) for Lie group of $G$ on
$\left(w_{5}^{*} \otimes\left(w_{4} \otimes\left(\left(w_{3} \otimes w_{2}^{*}\right) \oplus\left(w_{3} \otimes w_{1}\right)\right)\right)\right)^{*}$ is
$w^{*}(v)=$
$\left(\left(w_{5}(v)\right)^{t r} \otimes\left(w_{4}(v)^{-1}\right)^{t r} \otimes\left(\left(w_{4}(v)^{-1}\right)^{t r}\right) \otimes\left(w_{2}(v)\right)^{t r}\right) \oplus\left(\left(w_{3}(v)^{-1}\right)^{t r} \otimes\right.$
$\left.\left.\left(w_{1}(v)^{-1}\right)^{t r}\right)\right)$ ), for all $\in G$.

## Proof:

$$
\begin{aligned}
& \quad w^{*}(v)=\left(w_{5}(v)^{-1} \otimes\left(w_{4}(v) \otimes\left(w_{3}(v) \otimes w_{2}(v)^{-1}\right)\right) \oplus\left(w_{3}(v) \otimes w_{1}(v)\right)\right)^{*}= \\
& \left(\left(w_{5}(v)\right)^{t r} \otimes\left(w_{4}(v)^{-1}\right)^{t r} \otimes\left(\left(w_{4}(v)^{-1}\right)^{t r}\right) \otimes\left(w_{2}(v)\right)^{t r}\right) \oplus\left(\left(w_{3}(v)^{-1}\right)^{t r} \otimes\right. \\
& \left.\left.\left.\left(w_{1}(v)^{-1}\right)^{t r}\right)\right)\right), \text { for all } \in G . \\
& \text { And } w^{*}(v t)=\left(w(v t)^{t r}\right) \\
& =\left(w(t)^{-1} w(v)^{-1}\right) \\
& =\left(w(v)^{-1}\right)^{t r}\left(w(t)^{-1}\right)^{t r} \\
& =w^{*}(v) w^{*}(t), \text { for all } \in G .
\end{aligned}
$$

Hence the T -action is a dual matrix dual representation.

## 4. Conclusion:

. In this paper, we have provided on overview of the Lie group, Lie algebra, representation of the Lie group, and tensor product have been defined and associated with dual model by new structures consisting of tetramers and pentagons vector spaces by actions on $\operatorname{Hom}_{m}\left(\left(Z_{4}^{*}, \operatorname{Hom}\left(Z_{3}, Z_{2}^{*}\right)\right), Z_{1}\right)$ In the proposals. Then we generalized it.
5. The authors thank and appreciate AL-Mustansiriya University in Baghdad, Iraq. (www.mustansiriyah.ed.iq) for providing cooperation and support in this submitted work.

## References:

1-B.C.Hall, "Lie Groups, lie Algebras and Representation, An Elementary . '
Introduction", Spring, USA, May, 2004.
2-B. Jubin, A. Kotov, N. Poncin and V. Salnikov, Differential Graded Lie Groups .r
and Their Differential Graded Lie Algebra (Springer Undergraduate Mathematics Series, Ukraine, 2022), pp. 27-39.
3-H.I. Lefta and T.H Majeed, Action of Reductive lie Groups on Hom-space and . ${ }^{\text {r }}$ Tensor product of five Representation (College of Science for Women, BaghdadIraq, 2016), pp.325-348.
4-J .Jiang, Y. Sherg and C.Zhu, Cohomologics of Relative Rota-Baxter Operators . on Lie Groups and Lie Algebras (arxiv e-prints, arxiv- 2018, United States of America, 2021), pp. 302-315.
5-L. Cagliero and I.G. Riveta, Tensor Product and Interwining Operators Universal . ${ }^{\circ}$ Representation s of The Lie Algebras (arxiv prepint arxiv, United States of America, 2022), pp.2201-10605.
6- Rossmann, W., "Lie Groups; An Introduction Thraugh Linear Groups" . 7
University of Ottawa, August, 24, 2006.
7- T.H. Majeed "Asction of Topological Groupoid on Topological Space" The .V
International Journal of Non Linear Analysis and Applications, vol.13, No.1, pp.8589, 2022.
8- T.T. Nguyen and V.A. Le, Representation of Real Solvable lie Algebras having .^ 2- Dimensional Derived Ideal and Geometry of Coadjaint Orbits of Corresponding Lie Groups (Asian-European Journal of Mathematics, Singapore, 2022), pp. 193225.

9- X.Zhu, C. Xu and D. Tao, Commutative Lie Group VAE for Disentanglement . 9 Learning (International Conference On Machine Learning, Japan, 2021), pp. 1292412934.

