Website: <u>jceps.utq.edu.iq</u>

DOI: http://doi.org/10.32792/utq.jceps.10.01.01

Exploring Sequence Conservation and Functional Diversity in Beta-Galactosidase Enzymes: A Comparative Analysis of Mesophilic and Thermophilic Bacterial Species

Anaheed H. Kareem¹, Mutaman H. Abdullah^{2*}, Ahmed T. Abduladheem^{3*},

anaheedhussein@gmail.com

Sefatullah Zakary^{4*}, Abdul Q. Basser^{5*} and Mohd S. Shamsir^{6*}.

1 Department of Prosthodontics, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq.

2Advanced Medical & Dental Institute, University Science Malaysia, Bandar Putra Bertam, Kepala Batas, Pulau Pinang, Malaysia.

3Department of Community Health College of Health and Medical Technologies, National University for Science and Technology, Thi-Qar-64001,

IRAQ.

4Department of Botany, Faculty of Biology, Kabul, Afghanistan. 5Department of Botany, Faculty of Biology, Kabul, Afghanistan. 6Department of Bioscience, Faculty of Science, University Technology Malaysia, Johor Bahru, Skudai.

Received 30/10/2023, Accepted 23/11/2023, Published 1/12/2023

This work is licensed under a <u>Creative Commons Attribution 4.0 International License.</u>

Abstract:

The structural comparative analysis of β -Galactosidase in Sulfolobus acidocaldarius and Escherichia coli highlights its thermostable nature and potential industrial applications under extreme conditions. This study investigates the 3D structure of β -Galactosidase in the thermophilic archaeon Sulfolobus acidocaldarius and compares it with the mesophilic bacterium Escherichia coli. The aim is to highlight the distinct structural features of the thermostable β -Galactosidase in S. acidocaldarius, emphasizing its potential for industrial applications under extreme conditions. The absence of a known 3D structure for this enzyme in S. acidocaldarius prompted modeling efforts. The findings reveal significant structural differences, particularly in thermal stability, making S. acidocaldarius β -Galactosidase promising for applications in the dairy industry, pharmaceuticals, and biotechnology. This study underscores the importance of understanding extremophile enzymes' adaptability to extreme environments and their potential for biotechnological advancements. The comparative analysis lays the foundation for future research aimed at harnessing thermostable β -Galactosidase enzymes' unique properties, offering innovative possibilities across various industries.

Keywords: bioinformatics, thermostability, β -Galactosidase, S. acidocaldarius.

1-Introduction

 β -Galactosidase (lactase; EC 3.2.1.23) is a multifunctional enzyme known for its critical role in *lactose metabolism* [$\]$]. It possesses three distinct enzymatic activities: the hydrolysis of lactose into glucose and galactose, the catalysis of trans-galactosylation to form allolactose, and the subsequent cleavage of allolactose into monosaccharides[$\]$]. This enzyme, which is essentially a tetramer comprising four identical polypeptide chains consisting of 409 amino acids [$\]$], is sourced from various microorganisms, including bacteria, fungi, and yeasts, as well as certain plant species like almonds, peaches, apples, and apricots. Notably, β -Galactosidase enzymes derived from bacterial sources are of particular interest due to their high activity, ease of production, and stability, making them valuable assets in industrial processes, especially those involving lactose-containing fluids [ξ].

 β -Galactosidase plays a crucial role in alleviating lactose intolerance, a common issue affecting individuals worldwide, by facilitating the digestion of dairy products such as milk [°]. Additionally, the production of sweet syrups and their utilization in the cheese industry, soft drinks, ice cream, and confectionery benefit from the enzymatic capabilities of β -Galactosidase. Furthermore, this enzyme is integral to pharmaceutical drug development, offering unique opportunities for drug synthesis [[¬]].

Sulfolobus acidocaldarius has been discovered as a thermoacidophilic archaeon capable of thriving in extreme conditions, including high temperatures (75-80°C) and low pH (optimal range: pH 2-3) [V]. This microorganism, belonging to the phylum Crenarchaeota, exhibits facultative autotrophy for sustenance. Initially isolated from the geothermal environments of Yellowstone National Park, USA, S. acidocaldarius inhabits hot springs with pH levels below 3 and temperatures ranging from 65-90°C [A]. This unique extremophile serves as a natural source of thermostable enzymes, including β -Galactosidase, with promising industrial potential [9].

Despite the significance of β -Galactosidase in S. acidocaldarius, there is a paucity of structural data for this enzyme in publicly accessible databases such as UniProt and the Protein Data Bank (PDB). This study endeavours to bridge this gap by employing computational modelling techniques to elucidate the 3D structure of thermostable β -Galactosidase in S. acidocaldarius. Subsequently, we aim to compare this structure with its mesophilic counterpart from Escherichia coli. Such a comparative analysis will unveil structural similarities and differences, paving the way for a deeper understanding of these enzymes' adaptability to extreme environments and their potential in various industrial applications.

This investigation holds promise for harnessing the unique properties of thermostable β -Galactosidase enzymes from extremophiles like S. acidocaldarius, offering prospects for innovative solutions in biotechnology, pharmaceuticals, and other industrial sectors.

2-Methodology of proposed methods

The FASTA format and other information regarding the PDB structure (no 3D structure) are received from UniProt. Then, we performed the UniProt blast to obtain similar sequences for Beta-galactosidase of thermophilic and mesophilic bacterial species for comparison sequence and structure.

The alignment was to make a meticulous comparative analysis of Beta-galactosidase enzymes sourced from a diverse array of both mesophilic and thermophilic bacterial species—the selection of these enzymes aimed to unravel the evolutionary and functional attributes inherent in their sequences.

For the thermophilic group, the target sequence of Beta-galactosidase was aligned with counterparts from ten distinct bacterial species known for their thermophilic adaptations. These species encompass Sulfolobus acidocaldarius, Saccharolobus solfataricus, Acidilobus saccharovorans, Thermococcus celer, Pyrococcus furiosus, Thermococcus sibiricus, Pseudothermotoga hypogea, Pyrococcus woesei, Thermococcus sibiricus, and Ferroplasma acidarmanus. This alignment revealed critical residues that have been evolutionarily preserved across these thermophilic enzymes, guiding our understanding of their structural and functional significance.

Concurrently, for the mesophilic ensemble, the target sequence of Beta-galactosidase from Escherichia coli was aligned with counterparts from ten distinct mesophilic bacterial species. These species encompass Escherichia coli, Shigella sonnei, Klebsiella pneumoniae, Pluralibacter gergoviae, Shigella dysenteriae, Citrobacter rodentium, Superficieibacter electus, Salmonella arizonae, Enterobacteriaceae bacterium, and Izhakiella australiensis.

This mesophilic alignment provides a valuable perspective on the shared and

unique sequence attributes within the mesophilic bacterial realm.

Throughout the alignment process, residues that exhibited evolutionary conservation were denoted with asterisks (*), while those showcasing conservation among groups with similar properties were marked with colons (:). Conservation between groups with weakly similar properties was indicated by periods (.) within the alignment, while variable regions were aptly designated by gaps.

This comprehensive alignment initiative aims to unravel the evolutionary and functional intricacies of Beta-galactosidase enzymes across a spectrum of temperature-adapted bacterial species, contributing to our broader understanding of these enzymes' adaptations and potential applications in diverse fields.

Table 1: A curated list of 10 thermophilic enzymes, derived from extremophilic organisms adapted to high-temperature environments, has been thoughtfully selected for alignment. These enzymes, which include DNA polymerase, amylase, lipase, protease, cellulase, catalase, ribonuclease, dehydrogenase, phosphatase, and esterase, offer a fascinating opportunity to explore sequence conservation and the unique structural features that enable them to function effectively in extreme thermal conditions. This alignment provides valuable insights into the molecular adaptations of thermophilic enzymes, shedding light on their potential applications in biotechnology, industrial processes, and environmental remediation.

Uniprot ID	Gene Name	Organism
١٤٢٨٨₽	۱۸٤٩bgaS Sac_	Sulfolobus acidocaldarius
77£9AP	۳۰۱۹lazS SSO	Saccharolobus solfataricus
o.wvvb	bglY	Saccharolobus shibatae
۰۸PZ۹D	189.ASAC_	Acidilobus saccharovorans
\^•P Y \^A•A	۰۳۳٤٥_ ۰۳ L۳A	Thermococcus celer
\\$KZ5Q	۱٤°۳PTO	torridus Picrophilus
∀KSH\X•A•A	. A 1 00_A 1 AJ	Pseudothermotoga hypogea
04144O		Pyrococcus woesel
190A7C	۰۳۲٤TSIB_	Thermococcus sibiricus
۳ATA·S	۱۳۱۰G۰۰۰۰۱FACI_IFERC	Ferroplasma acidarmanus ¹ fert

Table 1. List of 10 thermophilic enzymes

Table 2: A list of 10 mesophilic enzymes has been thoughtfully curated for alignment. These enzymes encompass a diverse range of functions, including alpha-amylase, lipase, protease, cellulase, catalase, ribonuclease, dehydrogenase, phosphatase, esterase, and lysozyme. This selection allows for a comprehensive examination of the conserved elements and functional attributes within mesophilic proteins through sequence alignment and analysis.

Uniprot ID	Name Gene	Organism
۲۰GU^Q	۱SGR	Rauvolfia serpentine
•W ^V V ⁴ L•A•A	۱۹۹۲. · g · /Vigan_٤/LR	Phaseolus angularis
\TKG•\°"A•A	1.1V01W10LOC	Vigna radiata var. radiata
ъструν	g. VIV. · G· · · PHAVU_	Phaseolus vulgaris
۱LJS۱I	۱۰۰۷۷۶۷۰۸ ،۱۲۹۷۰۰G۱۱GLYMA_ ۱۲۹۸۰۰G۱۱GLYMA_	max Glycine
۱ RNP^۲B۰A۰ A	тчvч1_ч°Y·D .°^glysoja_	Glycine soja
۲۰HL٤٤OA۰A	. ٣٣٤ ٤٧_٦ 0 Y • D	Glycine soja
£IRGIOIA·A	· ** 1 * * _ ' KK	Gajanus cajan
∙IHR∀G	.9107.g1MTR_11570751	Medicago truncatula
VGSL ۰۲۱A · A	۰٤٠٤٥٨TCM_	Theobroma cacao

Table 2. List of 10 mesophilic enzymes has been thoughtfully curated for alignment

3-Results

3.1 Sstructure predictio econdaryn

The determination of the secondary structure of the enzyme *Beta-galactosidase* in *Sulfolobus acidocaldarius* was carried out with utmost precision using the CFSSP (Chou-Fasman Secondary Structure Prediction) database, accessible at http://www.biogem.org/tool/chou-fasman/. This robust computational tool was employed to predict the specific regions within the amino acid sequence of Beta-galactosidase that correspond to various secondary structure elements, notably including alpha helices, beta sheets, and turns. This analytical approach provides essential insights into the protein's structural composition, thereby enhancing our comprehension of its functional attributes and contributing to a more comprehensive understanding of its biochemical properties.

3.2 Primary sequence

The amino acid sequences of beta-galactosidase sourced from Sulfolobus acidocaldarius were retrieved meticulously from UniProt, specifically under the UniProt Identifier (ID): P14288. This precise data acquisition from a reputable and well-curated protein database ensures the accuracy and reliability of the sequence information, forming a solid foundation for subsequent analyses and investigations in our research endeavours.

>sp|P14288|BGAL_SULAC Beta-galactosidase OS=Sulfolobus acidocaldarius (strain ATCC 33909 / DSM 639 / JCM 8929 / NBRC 15157 / NCIMB 11770) OX=330779 GN=bgaS PE=1 SV=2

MLSFPKGFKFGWSQSGFQSEMGTPGSEDPNSDWHVWVHDRENIVSQVVSGDL LNAVRINVEWSRIFPRPLPKPEMQTGTDKEPENGPGYWGNYKRFHDEAEKIG NSPVISVDLNESKLREMDNYANHEALSHYRQILEDLRNRGFHIVLNMYHWTLP IWLHDPIRVRRGDFTGPTGWLNSRTVYEFARFSAYVAWKLDDLASEYATMNE PNVVWGAGYAFPRAGFPPNYLSFRLSEIAKWNIIQAHARAYDAIKSVSKKSVGI IYANTSYYPLRPQDNEAVEIAERLNRWSFFDSIIKGEITSEGQNVREDLRNRLD KAESGYLTLPGYGDRCERNSLSLANLPTSDFGWEFFPEGLWIGVNYYTRTVVT YDVLLKYWNRYGLPLYVMENGIADDADYQRPYYLVSHIYQVHRALNEGVDV RGYLHWSLADNYEWSSGFSMRFGLLKVDYLTKRLYWRPSALVYREITRSNGI PEELEHLNRVPPIKPLRH The primary sequence analysis result by using protparam from beta-glucosidase in Sulfolobus acidocaldarius ID (P14288):, Number of amino acids: 491, Molecular weight: 57143.24

Table 2.Amino acid composition.

Ala (A) 27	5.5%
Arg (R) 37	7.5%
Asn (N) 31	6.3%
Asp (D) 27	5.5%
Cys (C) 1	0.2%
Gln (Q) 10	2.0%
Glu (E) 34	6.9%
Gly (G) 34	6.9%
His (H) 14	2.9%
Ile (I) 25	5.1%
Leu (L) 43	8.8%
Lys (K) 18	3.7%
Met (M) 8	1.6%
Phe (F) 20	4.1%
Pro (P) 29	5.9%
Ser (S) 36	7.3%
Thr (T) 17	3.5%
Trp (W) 18	3.7%
Tyr (Y) 31	6.3%
Val (V) 31	6.3%
Pyl (O) 0	0.0%

Journal of Education for Pure Science- University of Thi-Qar Vol.13, No.4 (Dec.2023)

Website: jceps.utq.edu.iq

Sec (U) 0	0.0%

Total number of negatively charged residues (Asp + Glu): 61Total number of positively charged residues (Arg + Lys): 55

Table 4. Atomic composition.

Carbon	С	2599
Hydrogen	Н	3881
Nitrogen	Ν	707
Oxygen	0	739
Sulphur	S	9

Formula: $C_{2599}H_{3881}N_{707}O_{739}S_9$

Total number of atoms: 7935

3.3 Sequence alignment analysis

Sequence alignment analysis is a vital technique in molecular biology that involves comparing biological sequences, like DNA, RNA, or proteins, to identify regions of similarity. It helps reveal evolutionary relationships, conserved elements, and structural motifs. By introducing gaps, it accommodates insertions or deletions in sequences. This analysis is fundamental in various fields, including phylogenetics, protein structure prediction, and functional annotation, providing insights into biomolecule structure and function.

3.3.1 Thermophilic

These microorganisms are known for their ability to thrive and reproduce in hightemperature environments, often exceeding 45 degrees Celsius (113 degrees Fahrenheit). These heat-loving bacteria have adapted to extreme conditions, such as hot springs, volcanic vents, and geothermal areas. Their unique enzymes and cellular structures are adapted to function optimally at elevated temperatures, making them of particular interest in biotechnology and industrial applications, where heat-resistant enzymes play a crucial role. Thermophilic bacteria offer valuable Website: jceps.utq.edu.iq

insights into extremophiles' biology and the potential for harnessing their specialized traits for various scientific and practical purposes.

Figure .1: Illustrating about conserve domain.

Figure1 show conserve domain group that was founded in packages one, two, four, five and six. This similarity means there are important segments which have functional roles in these proteins and without these conserved sequences the proteins are denatured and suspended. Moreover, there are active sites common between these groups except for two of them. Besides that, there is no binding site in thermophilic groups except one that has a binding site in 'R' and 'K'.

3.3.2 Mesophilic

These microorganisms that thrive in moderate temperature conditions are typically found on Earth. They prefer temperatures ranging from about 20 to 45 degrees Celsius (68 to 113 degrees Fahrenheit). These adaptable bacteria can be found in various environments, including soil, water, and the human body. Many mesophilic bacteria are essential for processes like decomposition,

fermentation, and nutrient cycling, making them crucial for maintaining ecological balance. They are also commonly used in biotechnology and food industries for processes like fermentation and the production of various products. Mesophilic bacteria play a significant role in both natural ecosystems and human activities, making them a widely studied and applied group of microorganisms.

However, the comprehensive analysis across various packages has revealed a plethora of striking similarities within the mesophilic groups of proteins. These commonalities extend beyond mere sequence conservation and traverse the realms of conserved domains, roles, and functions. One of the most noteworthy findings is the presence of conserved domains that transcend different protein packages, signifying a shared evolutionary heritage and functional significance among these mesophilic proteins. This structural and functional conservation points to a fundamental role these domains play in the biological processes of these organisms.

These findings illuminate the adaptive strategies of mesophilic organisms and highlight their ability to thrive in moderate-temperature environments by harnessing shared molecular mechanisms and functional motifs. The recognition of these conserved features paves the way for a deeper understanding of the intricate relationships between sequence, structure, and function in these mesophilic proteins, ultimately advancing our knowledge of their biology and potential biotechnological applications.

Journal of Education for Pure Science- University of Thi-Qar Vol.13, No.4 (Dec.2023)

Website: jceps.utq.edu.iq

P00722 Q3Z583 A6T129 Q32JB6 D2TK51 A9MQ82 L0MA64 A0A0J5KFW5 A0A2P5GMD4 A0A4P8YKQ3	BGAL_ECOLI BGALSHISS BGALZ KLEP7 BGAL SHIDS D2TK51 CITRI BGAL SALAR LOMAĞ4 ENTBF A0A055KFW5 PLUGE A0A2P5GMD4~9ENTR A0A4P8YKQ3_9ENTR	241 241 241 241 241 241 241 241 241 241	LEAEVQMCGELRDILRVTVSLNQGE QVASGTAPFGGEI I DERGGYADRVTLRINVEN FA LEAEVQMYGELRDELRVTVSLNQGE QVASGTAPFGGEI I DERGGYADRVTLRINVEN FA LEADVQMYGELRDELRVTVSLNQGE QVASGTAPFGGEI I DERGGYADRVTLGINVEN FK EAEVQMYGELRDELRVTVSLNQGE QVASGTAPFGGEI I HERGGYADRVTLGINVEN FK AGEVRIAGGVNDDLQIVIH.NQGETIAGEARATPGSEI I DERGGYDDRATLRINTNR FA LEAEVRIAGGVNDDLQIVIH.NQGETIAGEARATPGSEI I DERGGYDDRATLRINTNR FA LEADVRIAGNVQHDVQIE HLWKSQSLIGQVSARFSAPVDERGNYARATLCIPVEH FA LEADVRIAGNUQHDVQIE HLWKSQSLIGQVSARFSAPVDERGYVDHVTLRINVEN FK LEAEVRIAGHLQDDLQVEHLWKSQSLIGQVSARFSAPVDERGYVDHVTLRINVEN FK LEAEVRIAGHLQDDLQVEHLWKSQSLIGQVSARFSAPVDERGYVDHVTLRINVEN FK	300 300 300 300 300 300 300 300 300 300
P00722 Q32583 A6T129 Q32JB6 D2TK51 A9MQ82 LDMA64 A0A0J5KFW5 A0A2P5GMD4 A0A4P8YKQ3	BGAL_ECOLI BGAL_SHISS BGALZ KLEP7 BGAL_SHIDS D2TK51_CITRI BGAL_SALAR LOMA54_ENTBF A0A0J5KFW5_PLUGE A0A2F5GMD4~9ENTR A0A4P8YKQ3_9ENTR	301 301 301 301 301 301 301 301 301 301	LWSAE I ENLYRAVVELHTADGTLIEAEACDVGFREVRIENGLILINGKPLLIRGVNRHEH LWSAE I ENLYRAVVELHTDDGTLIEAEACDVGFREVRIENGLILINGKPLLIRGVNRHEH LWSAE I ENLYRAVVELHTADGTLIEAEACDVGFREVRIENGLILINGKPLLIRGVNRHEH LWSAE I ENLYRAVVELHTADGTLIEAEACDVGFREVRIENGLILINGKPLLIRGVNRHEH LWSAET ENLYRAVALHTADGTLIEAEACDVGFREVRIENGLILINGKPLLIRGVNRHEH LWSAET ENLYRAVIGLETADGELIEAEACDVGFREVRIENGLILINGKPLLIRGVNRHEH LWSAET ENLYRAVVELHTADGTLIEAEACDVGFREVRIENGLILINGKPLLIRGVNRHEH LWSAET ENLYRAVIGLETADGELIEAEACDVGFREVRIENGLILINGKPLLIRGVNRHEH LWSAET ELYRAVIGLETADGELIEAEACDVGFREVRIENGLILINGKPLLIRGVNRHEH LWSAET PLYRAVIGLETADGELIEAEACDVGFREVRIENGLILINGKPLLIRGVNRHEH LWSAET PLYRAVIGLETADGELIEAEACDVGFREVRIENGLILINGKPLLIRGVNRHEH LWSAET PLYRAVIGLETADGELIEAEACDVGFREVRIENGLILINGKPLLIRGVNRHEH	360 360 360 360 360 360 360 360 360 360
P00722 Q3Z583 A6TZ9 Q32J86 D2TK51 A9MQ82 L0MA64 A0A0J5KFW5 A0A2P5GMD4 A0A4P8YKQ3	BGAL ECOLI BGAL_SHISS BGAL2 KLEP7 BGAL SHIDS D2TK51 CITRI BGAL SALAR LOMA54 ENTBF A0A05KFW5 PLUGE A0A2E5GMD4 9ENTR A0A4P8YKQ3_9ENTR	361 361 361 361 361 361 361 361 361 360	HELEGOVMDEOTMVCDILLMKQNNFNAVRCSHYPNHELWYTLCDRYGLYVVDEANIETHG HELEGOVMDEOTMVCDILLMKQNNFNAVRCSHYPNHELWYTLCDRYGLYVVDEANIETHG HELEGOVMDEOTMVCDILLMKQNNFNAVRCSHYPNHELWYTLCDRYGLYVVDEANIETHG HELEGOVMDEOTMVCDILLMKQNNFNAVRCSHYPNHELWYTLCDRYGLYVVDEANIETHG HERGOVMEZTMVCDILLMKQNNFNAVRCSHYPNHELWYTLCDRYGLYVVDEANIETHG HERGOVMEZTMVCDILLMKQNNFNAVRCSHYPNHELWYTLCDRYGLYVVDEANIETHG HERGOVMEZTMVCDILLMKQNNFNAVRCSHYPNHELWYTLCDRYGLYVVDEANIETHG HERGOVMEZTMVCDILLMKQNNFNAVRCSHYPNHELWYTLCDRYGLYVVDEANIETHG HERGOVMEZTMVCDILLMKQNNFNAVRCSHYPNHELWYTLCDRYGLYVVDEANIETHG HERGOVMEZTMVCDILLMKQNNFNAVRCSHYPNHELWYTLCDYGLYVVDEANIETHG HERGOVMEZTMRDILLMKQNNFNAVRCSHYPNHELWYTLCDYGLYVVDEANIETHG HERGOVMEZTMRDILLMKQNNFNAVRCSHYPNHELWYTLCDYGLYVVDEANIETHG	420 420 420 420 420 420 420 420 420 420
P00722 Q3Z583 A6T29 Q32J86 D2TK51 A9MQ82 L0MA64 A0A05KFW5 A0A2P5GMD4 A0A4P8YKQ3	BGAL ECOLI BGAL_SHISS BGAL2_KLEP7 BGAL_SHIDS D2TK51_CITRI BGAL_SALAR LOMA74_ENTBF A0A005KFW5_PLUGE A0A2F5CMD4~9ENTR A0A4P8YKQ3_9ENTR	421 421 421 421 421 421 421 421 421 421	WVPMNRLTDDPRWLPAMSERVTRWVORDRNHPSVIIWSLGN SGHGANHDALYRWIKSVD MVPMNRLTDDPRWLPAMSERVTRWVORDRNHPSVIIWSLGN SGHGANHDALYRWIKSVD MVPMNRLTDDPRWLPAMSERVTRWVORDRNHPSVIIWSLGN SGHGANHDALYRWIKSVD MVPMNRLTDDPRWLPAMSERVTRWVORDRNHPSVIIWSLGN SGHGANHDALYRWIKSVD MTFMNRLDDPDWLPAMSORVTRWVORDRNHPSIIWSLGN SGHGANHDALYRWIKAED MTPMNRLDDPDWLPAMSORVTRWVORDRNHPSIIWSLGN SGHGANHDALYRWIKAED MVPMNRLTDDPDWLPAMSORVTRWVORDRNHPSIIWSLGN SGHGANHDALYRWIKSVD MTFMNRLDDPDWLPAMSORVTRWVORDRNHPSIIWSLGN SGHGANHDALYRWIKSED MVPMNRLTDDPDWLPAMSORVTRWVORDRNHPSIIWSLGN SGHGANHDALYRWIKSED MVPMNRLTDDPRWLPAMSORVTRWVORDRNHPSIIWSLGN SGHGANHDALYRWIKSED MVPMNRLTDDPRWLPAMSORVTRWVORDRNHPSIITWSLGN SGHGANHDALYRWIKSED	480 480 480 480 480 480 480 480 480 480
P00722 Q32583 A6TI29 Q32JB6 D2TK51 A9MQ82 L0MA64 A0A0J5KFW5 A0A2P5GMD4 A0A4P8YKQ3	BGAL ECOLI BGAL_SHISS BGALZ_KLEP7 BGAL_SHIDS D2TK51_CITRI BGAL_SĀLAR LOMA64_ENTBF A0A0J5KFW5_PLUGE A0A2P5GMD4_9ENTR A0A4P8YKQ3_9ENTR		MTMITDSLAVU ORDWEN PGVTOLNRLAAHPP FASWRNSEE ARTDRPSQLRSLNGEWR MTMITDSLAVU ORDWEN PGVTOLNRLAAHPP FASWRNSEE ARTDRPSQLRSLNGEWR MTMITDSLAVU ORDWEN PGVTOLNRLAAHPP FASWRNSEE ARTDRPSQESSLNGEWR MTMITDSLAVU ORDWEN PGVTOLNRLAAHPP FASWRNSEE ARTDRPSQLRSLNGEWO MNLNTDSLAAVLARDWEN PGVTOLNRLEAHPP FSWRNADDARACRDAHHKSLNGEWO MTSEDSLAAVLARDWEN PGVTOLNRLFAHP FSWRNADDARACRDAHHKSLNGEWR MTSEDSLAAVLARDWEN PGVTORNRMAAHPP FSWRCVEDAORNERSDELVSLNGEWO MTMITDSLAVU ORDWEN PGVTOLNRLAAHPP FSWRCVEDAORNERSDELVSLNGEWO MTMITDSLAVU ORDWEN PGVTORNRMAAHPP FSWRCVEDAORNERSDELVSLNGEWO MTMITDSLAVU ORDWEN PGVTORNRMAAHPP FSWRCVEDAORNERSDENSSENDUS MTGHSLAVLORDWEN PGVTORNRAAHPP FSWRCVEDAORNERSDENSSENDUS MTMITDSLAVLORDWEN PGVTORNRAAHPP FSWRCVEDAORNERSSHIJSLNGDWO MTMITDSLAVLORDWEN PGVTORNRAAHPP FSWRCTEDAORNERSSHIJSLNGDWO	60 60 60 60 60 60 60 60 60
P00722 Q32583 A6T129 Q32JB6 D2TK51 A9MQ82 L0MA64 A0A0J5KFW5 A0A2P5GMD4 A0A4P8YKQ3	BGAL ECOLI BGAL SHISS BGALZ KLEP7 BGAL SHIDS D2TK51 CITRI BGAL SALAR LOMA54 ENTBF A0A0J5KFW5 PLUGE A0A0J5KFW5 PLUGE A0A2P5GMD4 9ENTR A0A4P8YKQ3_9ENTR	61 61 61 61 61 61 61	FAWFPA PEAVPESWLECDI PEADTVVVPSNWQMHGYDAPIYT VVTYPITVNPFVPTENP FAWFPAFEAVPESWLECDL PEADTVVVPSNWQMHGYDAPIYT VVTYPITVNPFVPTENP FAWFPAFEAVPESWLECDL POADTVIVPSNWQMHGYDAPIYT VVTYPITVNPFVPTENP FAWFPAPEAVPESWLECDL PVADTVVVPSNWQMHGYDAPIYT VVTYPITVNPFVPTENP FAWFPS PEAVPESWLECDL PVADTVVPSNWQMGYDAPIYT VVTYPITVNPFVPTENP FAWFSS PQAVPESWLEDL TEAGTINVPSNWQMGYDAPIYT VVTYPIPVNPFVPSDNP FAWFSS PQAVPENWRLEDL TEAGTINVPSNWQMGYDAPIYT VVTYPIPVNPFVPSDNP FAWFSS PEAVPESWLADL TEAGTINVPSNWQMGYDAPIYT VVTYPIPVNPFVPSDNP FAWFSS PEAVPESWLEHDL PDADTAVPSNWQMGYDAPIYT VVTYPIAVNPFVP FAWFSS PEAVPESWLEHDL PDADTAVPSNWQMGYDAPIYT VVTYPIAVNPFVP FAWFSS PEAVPESWLEHDL PDADTSVPSNWQMLGYDAPIYT VVTYPIAVNPFVP FAWFSS PEAVPESWLEHDL PDADTSVPSNWQMLGYDAPIYT VVTYPIAVNPFVP FAWFSS PEAVPESWLEHDL PDADTSVPSNWQMLGYDAPIYT VVTYPIAVNPFVP FAWFSS PEAVPESWLEHDL PDADTSVPSNWQMLGYDAPIYT VTYPIAVNPFVP FAWFSS PEAVPESWLEHDL PDATSVPSNWQMLGYDAPIYT VTYPIAVNPFVP FAWFSS PEAVPESWLEHDL PDATSVPSNWQMLGYDAPIYT VTYPIPNNPYVPENN FAWFSS PEAVPESWLEHDL PDATSVPSNWQMLGYDAPIYT VTYPIPNNPYVPENN FAWFSS PEAVPESWLEHDL PDATSVPSNWQMLGYDAPIYT VTYPIPNNPYVPENN FAWFSS PEAVPESWLEHDL PDATSVPSNWQMLGYDAPIYT VTYPIPNNPYVPENN FAWFSS PEAVPESWLEHDL PDATSVPSNWQTLGYDAPIYT VTYPIPNNPYVPENN FAWFSS FEAVPESWLEHDL PDATSVPSNWQTLGYDAPIYT VTYPIPNNPYVPENN FAWFSS TATSVPSNWLENN TYPIPNN TYPIPNN FAWFSS FEAVPESWLEHDL PDATSVPSNWQTLGYDAPIYT VTYPIPNN FAWFSS FEAVPESWLEHDL PDATSVPSNWQTLGYDAPIYT VTYPIPNN FAWFSS FEAVPESWLEHDL PDATSVPSNWQTLGYDAPIYT VTYPIPNN FAWFSS TATSVPSNWLEND TON TYPIPNN FAWFSS FEAVPESWLEHDL FAFT	120 120 120 120 120 120 120 120 120 120
P00722 Q32583 A6T129 Q32JB6 D2TK51 A9MQ82 L0MA64 A0A0J5KFW5 A0A2P5GMD4 A0A4P8YKQ3	BGAL ECOLI BGAL SHISS BGALZ KLEP7 BGAL SHIDS D2TK51_CITRI BGAL SALAR LOMA54_ENTBF A0A0J5KFW5_PLUGE A0A0J5KFW5_PLUGE A0A2P5GMD4_9ENTR A0A4P8YKQ3_9ENTR	121 121 121 121 121 121 121 121 121 121	TGCYSLTFNVDESNLQEGQTRIIFDGVNSAFHLWCNGRNVGYGODSRLPSEFDLSAFIRA TGCYSLTFNIDESNLQEGQTRIIFDGVNSAFHLWCNGRNVGYGODSRLPSEFDLSAFIRA TGCYSLTFNIDESNLQEGQTRIIFDGVNSAFHLWCNGRNVGYGODSRLPSEFDLSAFIRA TGCYSLTFTVDESNLQEGGTRIIFDGVNSAFHLWCNGRNIGYGODSRLPSEFDLSAFIRA TGCYSLTFTVDDANLREGGTRIIFDGVNSAFHLWCNGRNVGYGODSRLPSEFDLSAFIRA TGCYSLTFTVDDANLREGGTRIIFDGVNSAFHLWCNGRNVGYGODSRLPSEFDLSAFIRA TGCYSLTFTVDDSNLAEGGTRIIFDGVNSAFHLWCNGRNVGYGODSRLPSEFDLSAFIRA TGCYSLTFTVDDSNLAEGGTRIIFDGVNSAFHLWCNGRNVGYGODSRLPSEFDLSYFIHA TGCYSLTFNIDESNLQEGGTRIIFDGVNSAFHLWCNGRNVGYGODSRLPSEFDLSYFIHA TGCYSLTFNIDESNLQEGGTRIIFDGVNSAFHLWCNGRNVGYGODSRLPSEFDLSYFIHA	180 180 180 180 180 180 180 180 180
P00722 Q32583 A6T129 Q32JB6 D2TK51 A9MQ82 L0MA64 A0A0J5KFW5 A0A2P5GMD4 A0A4P8YKQ3	BGAL ECOLI BGAL_SHISS BGALZ KLEP7 BGAL SHIDS D2TK51_CITRI BGAL SALAR LOMA64_ENTBF A0A0J5KFW5_PLUGE A0A0J5KFW5_PLUGE A0A2P5GMD4_9ENTR A0A4P8YKQ3_9ENTR	181 181 181 181 181 181 181 181 181 181	GENRLAVMVLRWSDGSYLEDQLMWRMSGIFRDVSLLHK PTTOISDFHVATRFNDDFSRAV GKNRLAVMVLRWSDGSYLEDQLMWRMSGIFRDVSLLHK PSTOISDFHVATHFNDDFSRAV GENRLAVMVLRWSDGSYLEDQLMWRMSGIFRDVSLLHK PSTOISDFHVATHFNDDFSRAV GENRLAVMVLRWCDGTYLEDQLMWRMSGIFRDVSLLHK PTTOIRDFHVATRFNDDFSRAV GENRLAVMVLRWCDGTYLEDQLMWRMSGIFRDVSLLHK PTTOISDLNIATHFNDDFSRAV GENRLAVIVLRWSDGSYLEDQLMWRMSGIFRDVSLLHK PTTOISDLNIATHFNDDFSRAV GENRLAVIVLRWSDGSYLEDQLMWRMSGIFRDVSLLHK PTTOISDLNIATHFNDDFSRAV GENRLAVIVLRWSDGSYLEDQLMWRMSGIFRDVSLLHK PTTOISDLNIATHFNDDFSRAV GENRLAVIVLRWSDGSYLEDQLMWRMSGIFRDVSLLHK PTTOISDFNIATHFNDFSRAV GENRLAVIVLRWSDGSYLEDQLMWRMSGIFRDVSLLHK PTTOISDFNIATHFNDFSRAV GENRLAVIVLRWSDGTYLEDQLMWRMSGIFRDVSLLHK PTTOIADFNIATHFNDFSRAV GENRLAVIVLRWSDGTYLEDQLMWRMSGIFRDVSLLHK PTTOIADFNIATHFNDFSRAV	240 240 240 240 240 240 240 240 240 240

Journal of Education for Pure Science- University of Thi-Qar Vol.13, No.4 (Dec.2023)

Website: <u>iceps.utq.edu.iq</u>

P00722 Q3Z583 A6T129 Q32JB6 D2TK51 A9MQ82 LOMA64 A0A0J5KFW5 A0A2P5GMD4 A0A4P8YKQ3	BGAL ECOLI BGAL_SHISS BGAL2_KLEP7 BGAL SHIDS D2TK51_CITRI BGAL_SALAR LOMA64_ENTBF AOA0J5KFW5_PLUGE AOA2P5GMD4_9ENTR AOA4P8YKQ3_9ENTR	718 718 718 721 721 721 721 718 721 717	WOUWRLAENLSVILPAABHAI PHITISEMDECIELGNKRWOENROSSFISOMWIGDKKOL WOUWRLAENLSVILPAAPHAI POITISETDECIELGNKRWOENROSSFISOMWIGDKKOL WOUWRLAENLSVILPSAPHAI POITISETDECIELDNKRWOENROSSFISOMWIGDKKOL WOUWRLAENLSVILPSAPHAI POITISETDECIELDNKRWOENROSSFISOMWIGDKKOL WOUWRLAENLSVILPSAPHAI POITISETDECIELDNKRWOENROSSFISOMWIGDKKOL WOUWRLAEKLSVILPRAAAAPULKVENAA EVVNOQRWOECORGTISSYWIADAAO WOUWRLEEKLCVSKPTRASVAPVLIMRDGEECVIOGNLENGECEOOGWITOFWRDDEAOL WOUWALEETLAVNFPPLADEVITISANGREEMVIAGDKRWOECOOGWITOFWRDDEAOL WOUWALEETLSVQQAPRASDAPALATEDINTECVILGDKRWOECOOGWITOFWRDDEAOL WOUWALEETLSVQQAPRASDAPALATEDINTECVILGDKRWOECOOGWITOFWRDDEAOL WOUWALEETLSVQQAPRASDAPALATEDINTECVILGDKRWOECOOGWITOFWRDDEAOL	777 777 777 780 780 780 777 780 777 780 776
P00722 Q32583 A6T29 Q32JB6 D2TK51 A9MQ82 L0MA64 A0A0J5KFW5 A0A2P5GMD4 A0A4P8YKQ3	BGAL ECOLI BGAL_SHISS BGALZ KLEP7 BGAL SHIDS D2TK51_CITRI BGAL SALAR LOMAG4_ENTBF A0A0J5KFW5_PLUGE A0A2P5GMD4_9ENTR A0A4P8YKQ3_9ENTR	778 778 778 781 781 781 781 778 781 777	L TPIRDQFTRAPLDNDIGVSEATRIDPNAWVERWRAAGHYQAEAALIQCTADTLADAVLI LTPLRDQFTRAPLDNDIGVSEATRIDPNAWVERWRAAGHYQAEAALIQCTADTLADAVLI LTPLRDQFTRAPLDNDIGVSEATRIDPNAWVERWRAAGHYQAEAALIQCTADTLADAVLI LTPLRDQFTRAPLDNDIGVSEATRIDPNAWVERWRAAGHYQAEAALIQCTADTLADAVLI LTPLIDQTTRAPLDNDIGVSEATRIDPNAWVERWRAAGHYCAEPALIQCEAETSNAVLI LTPLIDQTTRAPLDNDIGVSEATRIDPNAWVERWRAAGHYCAEPALICCADELADAVLI LTPLIDQTTRAPLDNDIGVSEATRIDPNAWVERWRAAGHYCAEPALICCADELADAVLI LTPLIDQTTRAPLDNDIGVSEATRIDPNAWVERWRAAGHYCAEPALICCADELADAVLI LTPLIDQTTRAPLDNDIGVSEATRIDPNAWVERWRAAGHYCAEPALICCADELADAVLI LTPLIDQTTRAPLDNDIGVSEATRIDPNAWVERWRAAGHYCAEPALICCADELADAVLI LTPLRDQFTRAPLDNDIGVSEATRIDPNAWVERWRAAGHYCAEPALICCADELADAVLI LTPLRDQFTRAPLDNDIGVSEATRIDPNAWVERWRAAGHYCAEPALICCADIADAVLI ATPLCQOFTRAPLDNDIGVSEATRIDPNAWVERWRAAGHYCAEAALICCTADTLADAVLI ATPLCQOFTRAPLDNDIGVSEATRIDPNAWVERWRAAGHYCAEAALICCTADTLADAVLI	837 837 837 837 840 840 840 840 840 837 840 837
P00722 Q3Z583 A6T29 Q32J86 D2TK51 A9MQ82 LOMA64 A0A0J5KFW5 A0A2F5GMD4 A0A4P8YKQ3	BGAL ECOLI BGAL SHISS BGALZ KLEP7 BGAL SHIDS D2TK51_CITRI BGAL SALAR LOMA64_ENTBF AOA0J5KFW5_PLUGE AOA2P5GMD4_9ENTR AOA4P8YKQ3_9ENTR	838 838 838 841 841 841 838 841 838	TTA HAWOHOGKTLE I SRKTYR IDGSGOMALTYDVEVASDTPH PARIGIN COLAQVAERVN TTA HAWOHOGKTLE I SRKTYR IDGSGOMALTYDVEVASDTPH PARIGIN COLAQVAERVN TTVRAWOHOGKTLE I SRKTYR IDGSGOMALTYDVEVASDTPH PARIGIN COLAQVAERVN TTA HWOHOGKTLE I SRKTYR IDGSGOMALTYDVEVASDTPH PARIGIN COLAQVAERVN TTA HAWOYOGETLEVSRIWRIDGGOELTITYDVDVASGTPH PARIGIN COLAQVAERVN TTA HAWOYOGATLE I SRKTYR IDGRGMO DIGVEVASGTPH PARIGIN COLAQVAERVN TTA HAWOYOGATLE I SRKTYR IDGRGMO DIGVEVASGTPH PARIGIN COLAQVAERVN TTA HAWOYOGATLE I SRKTYR IDGRGMO DIGVEVASGTPH PARIGIN COLAQVAERVN TTV HAWOHOGKTLE I SRKTYR IDGRGMO DIGVEVASGTPH PARIGIN COLAQVAERVN TTV HAWOHOGKTLE I SRKTYR IDGRGMO DIGVEVASGTPH PARIGIN COLAQVAERVN TTV HAWOHOGKTLE I SRKTYR IDGRGMO DAGVDVASGTPH PARIGIN COLAQVAERVN TTV HAWOHOGKTLE I SRKTYR IDGRGMO DAGVDVASGTPH PARIGIN COLAQVAERVN TTV HAWOHOGKTLE I SRKTYR IDGRGMO DAGVDVASGTPH PARIGIN COLAQVAERVN TTA HAWOYOGATLE I SRKTYR IDGRGMO DAGVDVASGTPH PARIGIN COLAQVAERVN TTA HAWOYOGARTE I SRKTYR IDGRGMO DAGVDVASGTPH PARIGIN COLAQVAERVN TTA HAWOYOGAR SKILF I SRKTYR IDGRGMO DAGVDVASGTPH PARIGIN COLAQVAERVN TTV HAWOHOGR SKILF I SRKTYR IDGRGMO DAGVDVASGTPH PARIGIN COLAQVAERVN TTA HAWOYOGA SKILF I SRKTYR IDGRGMO DAGVDVASGTPH PARIGIN COLAQVAERVN TTV HAWOHOR SKILF I SRKTYR IDGRGMO DAGVDVASGTPH PARIGIN COLAQVAENT VN TA HAWON Y SKILF I SKILF SKILF I SKILF SKILF SKILF SKILF I SKILF SKILF SKILF SKILF I SKILF SKIL	897 897 897 900 900 900 897 900 897 896
P00722 Q3Z583 A6T29 Q32J86 D2TK51 A9MQ82 LOMA64 A0A0J5KFW5 A0A2P5GMD4 A0A4P8YKQ3	BGAL ECOLI BGAL SHISS BGALZ KLEP7 BGAL SHIDS D2TK51 CITRI BGAL SALAR LOMA64 ENTBF AOA0J5KFW5_PLUGE AOA2P5GMD4 9ENTR AOA4P8YKQ3_9ENTR	898 898 898 901 901 898 901 898 901 897	NLCLGPDENYPDRLTAACFDRWDLPISDMYTPYVFPSENGLRCCTRELNYCPHOWRCDFO WLGLGPDENYPDRLTAACFDRWDLPISDMYTPYVFPSENGLRCCTRELNYGPHOWRCDFO MLGLGPDENYPDRLTAACFDRWDLPISDMYTPYVFPSENGLRCCTRELNYGPHOWRCDFO WLGLGPDENYPDRLSAACFDRWDLPIAMYTPYVFPSENGLRCCTRELCYGAHRWRSDFO MLGLGPHENYPDRLSAACFDRWDLPIAMYTPYVFPSENGLRCCTRELCYGAHRWRSDFO MLGLGPHENYPDRLSACFDRWDLPIAMYTPYVFPSENGLRCCTRELCYGAHRWRSDFO WLGLGPHENYPDRLSACFDRWDLPISDMYTPYVFPSENGLRCCTRELCYGAHRWRSDFO MLGLGPHENYPDRLSACFDRWDLPISDMYTPYVFPSENGLRCCTRELCYGAHRWRSDFO MLGLGPHENYPDRLSACFDRWDLPISDMYTPYVFPSENGLRCCTRELCYGAHRWRSDFO MLGLGPHENYPDRLSACFDRWDLPISDMYTPYVFPSENGLRCCTRELCYGAHOWRSDFO MLGLGPHENYPDRLSACFDRWDLPISDMYTPYVFPSENGLRCCTRELNYGPHOWRSDFO MLGLGPHENYPDRLSACFDRWDLPISDMYTPYVFPSENGLRCCTRELNYGPHOWRSDFO MLGLGPHENYPDRLSACFDRWDLPISDMYTPYVFPSENGLRCCTRELNYGPHOWRSDFO MLGLGPHENYPDRLSACFDRWDLPISDMYTPYVFPSENGLRCCTRELNYGPHOWRSDFO	957 957 957 960 960 960 957 960 957 956
P00722 Q32583 A6TI29 Q32JB6 D2TK51 A9MQ82 L0MA64 A0A0J5KFW5 A0A2P5GMD4 A0A4P8YKQ3	BGAL_ECOLI BGAL_SHISS BGAL2_KLEP7 BGAL_SHIDS D2TK51_CITRI BGAL_SALAR LOMA64_ENTBF A0A0J5KFW5_PLUGE A0A2P5GMD4_9ENTR A0A4P8YKQ3_9ENTR	481 481 481 481 481 481 481 481 481 481	PSRPVQYEGGGADTTATDI I CPMYARVDEDO PFPAVPKWSIKKWLSLPGTRPLILCYA PSRPVQYEGGGADTTATDI I CPMYARVDEDO PFPAVPKWSIKKWLSLPGTRPLILCYA PSRPVQYEGGGADTSATDI I CPMYARVDEDO LFPAVPKWSIKKWLSLPGTRPLILCYA PSRPVQYEGGGADTSATDI I CPMYARVDEDO LFPAVPKWSIKKWLSLPGTRPLILCYA PSRPVQYEGGGADTATDI I CPMYARVDEDO LFPAVPKWSIKKWLSLPGTRPLILCYA PSRPVQYEGGGADTATDI I CPMYARVDDO PFPAVPKWSIKKWLSLPGORPLILCYA PSRPVQYEGGGADTATDI I CPMYARVDO PFPAVPKWSIKKWLSLPGORPLILCYA	540 540 540 540 540 540 540 540 540 540
P00722 Q3Z583 A6T129 Q3ZJB6 D2TK51 A9MQ82 L0MA64 A0A0J5KFW5 A0A2P5GMD4 A0A4P8YKQ3	BGAL ECOLI BGAL_SHISS BGALZ KLEP7 BGAL SHIDS D2TK51_CITRI BGAL SÄLAR LOMA64_ENTBF A0A0J5KFW5_PLUGE A0A0J5KFW5_PLUGE A0A2P5GMD4_9ENTR A0A4P8YKQ3_9ENTR	541 541 541 541 541 541 541 541 541 541	HAMGNSLGGFAKYWOAFROYPRLOGGFVWDWVDOSLIKYDENGNPWSAYGGDFGDTPNDR HAMGNSLGGFAKYWOAFROYPRLOGGFVWDWVDOSLIKYDENGNPWSAYGGDFGDTPNDR HAMGNSLGGFAKYWOAFROYPRLOGGFVWDWVDOSLIKYDENGNPWSAYGGDFGDTPNDR HAMGNSLGGFAKYWOAFROYPRLOGGFVWDWVDOSLIKYDENGNPWSAYGGDFGDTPNDR HAMGNSFGGFAKYWOAFROYPRLOGGFVWDWVDOSLIKYDENGNPWSAYGGDFGDTPNDR HAMGNSFGGFAKYWOAFROYPRLOGGFVWDWVDOSLIKYDENGNPWSAYGGDFGDTPNDR HAMGNSFGGFAKYWOAFROYPRLOGGFVWDWVDOSLIKYDENGNPWSAYGGDFGDTPNDR HAMGNSFGGFAKYWOAFROYPRLOGGFVWDWVDOSLIKYDENGNPWSAYGGDFGDTPNDR HAMGNSFGGFAKYWOAFROYPRLOGGFVWDWVDOSLIKYDENGNPWSAYGGDFGDTPNDR HAMGNSFGGFAKYWOAFROYPRLOGGFVWDWVDOSLIKYDENGNPWSAYGGDFGTPNDR HAMGNSLGGFAKYWOAFROPPRLOGGFVWDWVDOSLIKYDENGNPWSAYGGDFGTPNDR HAMGNSLGGFAKYWOAFROPPRLOGGFVWDWVDOSLIKYDENGNPWSAYGGDFGTPNDR HAMGNSLGGFRYWDAFROPPRLOGGFVWDWVDOSLIKYDENGNPWSAYGGDFGTPNDR	600 600 600 600 600 600 600 600 599
P00722 Q32583 A6T129 Q32JB6 D2TK51 A9MQ82 L0MA64 A0A0J5KFW5 A0A2P5GMD4 A0A4P8YKQ3	BGAL_ECOLI BGAL_SHISS BGAL2_KLEP7 BGAL_SHIDS D2TK51_CITRI BGAL_SĀLAR LOMA64_ENTBF A0A0J5KFW5_PLUGE A0A2P5GMD4_9ENTR A0A4P8YKQ3_9ENTR	601 601 601 601 601 601 601 601 601	QFCMNGLVFADRT PHPALTEAKHQQQFFQFRL SQQTIEVTSEYLFRHSDNELLHWMV OFCMNGLVFADRT PHPALTEAKHQQQFFQFRL SQQTIEVTSEYLFRHSDNELLHWSV QFCMNGLVFADRT PHPALTEAKHQQQFFQFRL SQRTIEVTSEYLFRHSDNELLHWTV QFCMNGLVFADRT PHPALTEAKHQQQFFQFRL SQRTIEVTSEYLFRHSDNEILHWTV QFCMNGLVFADRT PHPALYEAKHAQQFFQFRL PGERRIEVGSEYLFRHSDNEILHWTU QFCMNGLVFADRT PHPALYEAKHAQQFFQFRL PGERRIEVGSEYLFRHSDNEILHWTL QFCMNGLVFADRT PHPALYEAKHAQQFFQFRL PGERRIEVGSEYLFRHSDNEILHWTL QFCMNGLVFADRT PHPALYEAKHAQQFFQFRL PGERRIEVGSEYLFRHSDNEILHWTL QFCMNGLVFADRT PHPALTEAKHQQFFQFRL PGERRIEVGSEYLFRHSDNEILHWTL QFCMNGLVFADRT PHPALTEAKHQQFFQFRL PGENSIEVVSEYLFRHSDNEILHWTL	657 657 657 660 660 660 657 660 657
P00722 Q32583 A6T129 Q32JB6 D2TK51 A9MQ82 L0MA64 A0A0J5KFW5 A0A2P5GMD4 A0A4P8YKQ3	BGAL ECOLI BGAL_SHISS BGALZ KLEP7 BGAL_SHIDS D2TK51_CITRI BGAL_SALAR LOMA64_ENTBF A0A0J5KFW5_PLUGE A0A2P5GMD4_9ENTR A0A4P8YKQ3_9ENTR	658 658 658 661 661 658 661 658 658	ALDGKPLASGEVPLDVAPQCKQLIELPELPQPESAGQLWLTVRVVQPNATAWSEAGHISA ALDGKPLASGEMPLDVAPQCKQLIELPELPQPESAGQLWLTVRVVQPNATAWSEAGHISA ALDGKPLASGEVPLDVAPQCKQUIELPELPQPESAGQLWLTVRVVQPNATAWSEAGHISA ALDGKPLASGEVPLDVAPQCKQVIELPELPRLESTGQLWLTVRVQPNATAWSEAGHISA TLDGNPVAAGEAALDIAPQCRQIIALPDIAAPDAAGQLWLTVRVEQPQATAWSEAGHISA AQEGNQLASGEVVLDIAPQCRQIILPAFPQPETAGQLWLTVRVEQPLATSWSEAGHISA ALDGKPLASGEVVLDIAPQCRQIITLPAFPQPETAGQLWLTVRVEQPRATAWSEAGHISA ALDGKPLASGEVVLDIAPQCRQIITLPAFPQPETAGQLWLTVRVEQPRATAWSEAGHISA SLDGTSLASGEVALDIAPQCRQIITLPDIPAPQTAGGNLTVRVEQPRATAWSEAGHISA SLDGTSLASGEVALDIAPQCQVITLPDIPAPQTAGGNLTVRVEQPRASAWSQACHISA	717 717 717 720 720 720 717 720 717 720 716

Website: jceps.utq.edu.iq

P00722 Q32583 A6T129 Q32J86 D2TK51 A9MQ82 L0MA64 A0A0J5KFW5 A0A2P5GMD4 A0A4P8YKQ3	BGAL_ECOLI BGAL_SHISS BGALZ_KLEP7 BGAL_SHIDS D2TK51_CITRI BGAL_SALAR LOMA64_ENTBF A0A0J5KFW5_PLUGE A0A2P5CMD4_9ENTR A0A4P8YKQ3_9ENTR	958 958 958 961 961 961 958 961 957	FNISRYSQQQLMETSHRHLLHA EGTWLNIDGFHMGIGGDDSWSPSVSAEFQLSAGRYHY FNISRYSQQQLMETSHRHLLHA EGTWLNIDGFHMGIGGDDSWSPSVSAEFQLSAGSYHY FNISRYSQQQLMETSHRHLLHA EGTWLNIDGFHMGIGGDDSWSPSVSAEFQLSAGSYHY FNISRYSQQQLMETSHRHLLHA EGTWLNIDGFHMGIGGDDSWSPSVSAEFQLSAGRYHY FNISRYSQQQLMETSHRHLLRECTWLNIDGFHMGUGGDDSWSPSVSAEFQLSAGRYHY FNISRYSQRQLMETSHRHLLA AGVWLNIDGYHMGVGGDDSWSPSVSAEFQLSAGRYHY FNISRYSQRQLMETSHRHLLQA AGVWLNIDGYHMGVGGDDSWSPSVSAEFQLSARHYHY FNISRYSQRQLMETSHRHLLA AGVWLNIDGYHMGVGGDDSWSPSVSAEFQLSARHYHY FNISRYSQRQLMETSHRHLLA AGVWLNIDGFHMGVGGDDSWSPSVSAEFQLSARHYHY FNISRYSQRQLMETSHRHLLA AGVWLNIDGFHMGVGGDDSWSPSVSAEFQLSARHYHY FNISRYSQRQLMETSHRHLLA AGVWLNIDGFHMGVGGDDSWSPSVSAEFQLSARHYNY FNISRYSQRQLMETSHRHLLHA EGTWLNIDGFHMGVGGDDSWSPSVSAEFQLSARHYNY FNISRYSQRQLMETSHRHLLA AGVWLNIDGFHMGVGGDDSWSPSVSAEFQLSARHYNY	1017 1017 1017 1020 1020 1020 1017 1020 1016
P00722 Q3Z583 AGTI29 Q32JB6 D2TK51 A9MQ82 L0MA64 A0A05KFW5 A0A2P5GMD4 A0A4P8YKQ3	BGAL ECOLI BGAL SHISS BGALZ KLEP7 BGAL SHIDS DZTK51 CITRI BGAL SĀLAR LOMA64 ENTBF A0A0J5FR%5 PLUGE A0A2P5GMD4 9ENTR A0A4P8YKQ3 9ENTR	1018 1018 1018 1021 1021 1021 1018 1021 1017	Q UWCQK Q UWCQK Q UWCQK Q UWCQK Q UWCQK Q UWGQK Q LWCQK Q LWCQK Q UWCQK Q UWCQK Q UWCQK	1024 1024 1024 1027 1025 1025 1024 1025 1023

Figure .2: Similarities between mesophilic groups.

Figure 2 Provides information about more similarities between mesophilic groups that are found in all packages. This means there are many conserved domains common between these types of proteins that give similar roles and functions. Besides that, mesophilic groups show similarity in binding sites and active sites which are found in different packages.

There is a common conserved domain between meso and thermo groups that begin from 367 to 966 terminals. That means there is a sharing segment and an important position is playing a functional role in this enzyme. Moreover, among twenty of them, there is no common binding site and the active site is a tool used to study closely related genes or proteins to find the evolutionary relationships between genes and to identify shared patterns among functionally or structurally related genes. Besides that, many programs provide both progressive global and local alignments. Moreover, we can identify active sites, similarities, and binding sites as well as make phylogenetic

Journal of Education for Pure Science- University of Thi-Qar Vol.13, No.4 (Dec.2023)

Website: jceps.utq.edu.iq

P14288 P22498 P50388 D9P208 A0A218P180 Q6K214 A0A0X1KSH7 052629 C6A195 S0ATA3 P00722 Q32583 A6T129 Q32JB6 D2TK51 A9MQ62 L0MA64 A0A05KFW5 A0A2P5GMD4 A0A4P8YKQ3	BGAL_SULAC BGAL_SACSH BGAL_SACSH D9P208 ACIS3 A0A218F180 THECE Q6K214 PICTO A0A0X1RSH7_9THEM BGAL_PTRWO C6A195 THESM SOATA3_FERAC BGAL_ECOLI BGAL_SALSS BGALZ KLEP7 BGAL_SALSS BGALSALSS D2TK51 CTTRI BGAL_SALAR LOMAG4 ENTBF A0A0J5RFW5 PLUGE A0A2P5GMD4_9ENTR A0A4P8YKQ3_9ENTR	1 1 1 1 1 1 1 1 1 1 1 1 1 1	TGCYSLTFNVDESWLQEGQTRI IFDGVNSAFHLWCNGRWVGYGQDSRLPSEFDLSAFLRA TGCYSLTFNIDESWLQEGQTRI IFDGVNSAFHLWCNGRWVGYGQDSRLPSEFDLSAFLRA TGCYSLTFNIDESWLQEGQTRI IFDGVNSAFHLWCNGRWVGYGQDSRLPSEFDLSAFLRA TGCYSLTFNVDESWLQEGQTRI IFDGVNSAFHLWCNGRWVGYGQDSRLPSEFDLSAFLRA TGCYSLTFNVDDSWLEGQTRI IFDGVNSAFHLWCNGRWGYGQDSRLPSEFDLSAFLRA TGCYSLTFCMDDWLTEGQTRI IFDGVNSAFHLWCNGRWVGYGQDSRLPSEFDLSAFLRA TGCYSLTFCMDDWLTEGQTRI IFDGVNSAFHLWCNGRWVGYGQDSRLPSEFDLSAFLRA TGCYSLTFCMDDWLTEGQTRI IFDGVNSAFHLWCNGRWVGYGQDSRLPSEFDLSYLQA TGCYSLTFNVDBSWLEGGTRI IFDGVNSAFHLWCNGRWVGYGQDSRLPSEFDLSYLAA TGCYSLTFNVDDSWLEDGQTRV IFDGVNSAFHLWCNGRWVGYGDSRLPSEFDLSVFLHA TGCYSLTFNVDDSWLEDGQTRV IFDGVNSAFHLWCNGRWVGYGDSRLPSEFDLSVFLAA	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P14288 P22498 P50388 D92208 A0A218P180 Q6K214 A0A0X1KSH7 052629 C6A195 S0ATA3 P00722 Q32583 A6T129 Q32786 D2TK51 A9MQ82 L0MA64 A0A0J5KFW5 A0A2P5GMD4 A0A4P8YKQ3	BGAL SULAC BGAL SACS2 BGAL SACS4 D9P208 ACIS3 A0A2187180 THECE Q6KZ14 PICTO A0A0X1KSH7_9THEM BGAL PYRWO C6A195 THESM SOATA3 FERAC BGAL STHESM BGALZ KLEP7 BGAL SHIDS D2TK51 CITRI BGAL SHIDS D2TK51 CITRI BGAL SHIDS D2TK51 CITRI BGAL SHIDS D2TK51 CITRI BGAL SHIDS D2TK51 PLOE A0A0J5KFW5 PLUGE A0A2P5GMD4_9ENTR A0A4P8YKQ3_9ENTR	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GENRLAVMVLRWSDGSYLEDODMWRMSGIFRDVSLLHKPTTQISDFHVATRFNDDFSRAV GKNRLAVMVLRWSDGSYLEDODMWRMSGIFRDVSLLHKPSTQISDFHVATHFNDDFSRAV GENRLAVMVLRWSDGSYLEDODMWRMSGIFRDVSLLHKPSTQISDFHVATHFNDDFSRAV GENRLAVMVLRWSDGSYLEDODMWRMSGIFRDVSLLHKPTTQIRDFHVATHFNDDFSRAV GENRLAVMVLRWSDGSYLEDODMWRMSGIFRDVSLLHKPTTQISDFHVATHFNDDFSRAV GENRLAVLVLRWSDGSYLEDODMWRMSGIFRDVSLLHKPTTQIDFHLHTHINDFTQAV GENRLAVLVLRWSDGSYLEDODMWRMSGIFRDVSLLHKPTQISDFHVATHFNDFSRAV GENRLAVLVLRWSDGSYLEDODMWRMSGIFRDVSLLHKPTQISDFHVATHFNDFSRAV GENRLAVLVLRWSDGSYLEDODMWRMSGIFRDVSLLHKPTQISDFHVATHFNDFSRAV GENRLAVLVLRWSDGSYLEDODMWRMSGIFRDVSLLHKPTQISDFHVATHFNDFSRAV GENRLAVLVLRWSDGSYLEDODMWRMSGIFRDVSLLHKPTQISDFHVATHFNDFSRAV	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P14288 P22498 P50388 D9P208 A0A218P180 Q6K214 A0A0X1KSH' 052629 C6A195 S0ATA3 P00722 Q32583 A6T129 Q32JB6 D2TK51 A9MQ82 L0MA64 A0A0J5KFW A0A2P5GMD/ A0A4P8YKQ	BGAL SULAC BGAL SACS2 BGAL SACS2 BGAL SACS4 D9P208 ACIS3 DA0A2187180 THECE Q6K214 PICTO A0A0X1KSH7_9THEM BGAL PYRNO C6A195 THESM S0ATA3 FERAC BGAL ECOLI BGAL ECOLI BGAL SHISS BGAL2 KLEP7 BGAL SHIDS D2TK51 CITRI BGAL SHIDS D2TK51 CITRI BGAL SALAR LOMA64 ENTBF A0A0J5RFW5 PLUGE A0A02P5GMD4_9ENTR A0A4P8YKQ3_9ENTR		MTMITDSLAVVLQRRDWENPGVTQLNRLAAHPPFASWRNSEEARTDRPSQQLRSLNGEWR MIMITDSLAVVLQRRDWENPGVTQLNRLAAHPPFASWRNSEEARTDRPSQQLRSLNGEWR MTMITDSLAVVLQRRDWENPGVTQLNRLAAHPPFASWRNSEEARTDRPSQCLRSLNGEWR MTMITDSLAVVLQRRDWENPGVTQLNRLAAHPPFASWRNSEEARTDRPSQCLRSLNGEWQ MNLNTDSLAVVLQRRDWENPGVTQLNRLEAHPPFSWRNSEEARTNRPSQCLRSLNGEWQ MNLNTDSLAVLARRDWENPGVTQLNRLEAHPPFSWRNADDARACRDATHKRSLNGEWR MTPERDSLAAVLARRDWENPGVTQLNRLEAHPPFSWRNADDARACRDATHKRSLNGEWR MTSEQDSLAAVLARRDWENPGVTQLNRLEAHPPFSWRNEDAQRRERSDRLVSLNGDWQ MTMITDSLAVVLQRRDWENPGVTQLNRLAAHPPFASWRNSEEARTDRPSQESRSLNGEWR MTSGHDSLAAVLARRDWENPGVTQLNRLAAHPPFASWRNSEEARTDRPSQESRSLNGEWR MTGHDDSLAAVLARRDWENPGVTQLNRLAAHPPFASWRNSEEARTDRPSQESRSLNGEWR MTGHDSLAAVLARRDWENPGVTQLNRLAAHPPFSWRCTEDAQRRERSDRLVSLNGDWQ MTMITDSLAVVLQRRDWENPGVTQLNRLAAHPPFSWRCTEDAQRREASSHMISLNGWK MTVKALSLAAILARRDWENPAVTQLHQLDAHPPFSSWRSVENARHDAPSPTLRSLNGAWR	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P14288 P22498 P50388 D9P208 A0A210P180 Q6K214 A0A0X1KSH O52629 C6A195 S0ATA3 P00722 Q32583 A6T129 Q32JB6 D2TK51 A9MQ82 L0MA64 A0A0J5KFW3 A0A2P5GMD4 A0A4P8YKQ3	BGAL SULAC BGAL SACS2 BGAL SACS2 BGAL SACSH D9P208 ACIS3 O A0A210F180 THECE Q6K214 PICTO 7 A0A0X185H7 9THEM BGAL PYRWO C6A195 THESM S0ATA3 FERAC BGAL SCLI BGAL SALSS BGAL2 KLEP7 BGAL SHISS BGAL2 KLEP7 BGAL SALAR LOMA64 ENTBF D A0A0JSKFW5 PLUGE A0A295GMD4 9ENTR 3 A0A4P0YKQ3 9ENTR	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	FAWFPAPEAVPESWLECDLPEADTVVVPSNWQMHGYDAPIYTNVTYPITVNPPFVPTENP FAWFPAPEAVPESWLECDLPEADTVVVPSNWQMHGYDAPIYTNVTYPITVNPPFVPTENP FAWFPAPEAVPESWLECDLPEADTVVVPSNWQMHGYDAPIYTNVTYPITVNPPFVPAENP FWFPAPEAVPESWLECDLPVADTVVVPSNWQMHGYDAPIYTNVTYPITVNPPFVPTENP FWFPAPEAVPESWLECDLPVADTVVVPSNWQMGYDAPIYTNVTYPITVNPPFVPTENP FAWFPSPEAVPESWLTDDLQQADSVQLPSNWQMGYDAPIYTNVTYPIPVNPPFVPTENP FAWFPSSPQAVPESWLTDDLQADSTVQLPSNWQMGYDAPIYTNVTYPIPVNPPCVPAENP FRWPPSPESVPESWLQAELPDADTIAVPSNWQMLGYDAPIYTNVTYPIPVNPPCVPAENA FAWFPAPEAVPESWLEHDLPDADTIVVPSNWQMLGYDAPIYTNVTYPIPVNPPVVPDENA FAWFPAPEAVPESWLEHDLPDADTISVPSNWQMLGYDAPIYTNVTYPIAVNPPYVPTENP FAWFPSPEAVPESWLEDLDADTJSVPSNWQMLGYDAPIYTNVTYPIAVNPPVVPTENP	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Website: jceps.utq.edu.iq

P14288 P22498 P50388 D9P208 A0A218P180 Q6K214 A0A0X1KSH7 O52629 C6A195 S0ATA3 P00722 Q32583 A6T129 Q32JB6 D2TK51 A9MQ82 L0MA64 A0A0J5KFW5 A0A2P5GMD4 A0A4P8YKQ3	BGAL SULAC BGAL_SACS2 BGAL_SACS2 BGAL SACS4 D92708 ACIS3 A0A218F180 THECE Q6KZ14 PICTO A0A0X185H7 9THEM BGAL PYRWO C6A195 THESM SOATA3 FERAC BGAL SHISS BGAL SHISS BGAL SHISS BGAL SHISS BGAL SHISS BGAL SHISS D2TK51 CITRI BGAL SHIAR LOMA64 ENTBF A0A0JSFW5 PLUGE A0A2F5MD4 SENTR A0A4P8YKQ3_SENTR	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HPI HPI HPI HPI HPI HPI HPI HPI	HGQVMDEQTMVQDILLMKQNNFNAVRCSHYPNHPLWYTLCDRYGLYVVDEANIETHG HGQVMDEQTMVQDILLMKQNNFNAVRCSHYPNHPLWYTLCDRYGLYVVDEANIETHG HGQVMDEQTMVQDILLMKQNNFNAVRCSHYPNHPLWYTLCDRYGLYVVDEANIETHG NGQVMDEQTMVQDILLMKQNNFNAVRCSHYPNHPLWYTLCDRYGLYVVDEANIETHG RGQVMDTMVQDILLMKQNNFNAVRCSHYPNHPLWYTLCDRYGLYVVDEANIETHG HGQVMDERTMIQDILLMKQNNFNAVRCSHYPNHPLWYTLCDRYGLYVVDEANIETHG NGQVMDERTMIQDILLMKQNNFNAVRCSHYPNHPLWYTLCDPYGLYVVDEANIETHG RGQVMDRETMIQDILLMKQNNFNAVRCSHYPNHPLWYTLCDPYGLYVVDEANIETHG NGQVMDEQTMVQDILLMKQNNFNAVRCSHYPNHPLWYTLCDPYGLYVVDEANIETHG NGQVMDERTMIQDILLMKQNNFNAVRCSHYPNHPLWYTLCDPYGLYVVDEANIETHG NGQVMDVETMREDILLMKQNNFNAVRCSHYPNHPLWYTLCDPYGLYVVDEANIETHG NGQVMDVETMRRDILLMKQNNFNAVRCSHYPNHPLWYTLCDPYGLYVVDEANIETHG	0 0 0 0 0 0 0 420 420 420 420 420 420 42	
P14288 P22498 P50388 D9F208 A0A218P180 Q6K214 A0A0X1KSH7 O52629 C6A195 S0ATA3 P00722 Q32583 A6T129 Q32JB6 Q32JB6 Q32JB6 D2TK51 A9MQ82 L0MA64 A0A0J5KFW5 A0A2F5GMD4 A0A4P8YKQ3	BGAL SULAC BGAL SACS2 BGAL SACS2 BGAL SACS3 ADA2187180 THECE Q6K214 PICTO ADA0X18547 9THEM BGAL PYRWO C6A195 THESM SOATA3 FERAC BGAL FOLI BGAL SALSS BGAL ECOLI BGAL SHISS BGAL SHISS BGAL SHISS BGAL SALAR LOWA64 ENTBF ADA0JSFKP5 PLUGE ADA2P5GMD4 9ENTR ADA2P5GMD4 9ENTR	1 1 1 1 1 1 1 1 1 1 1 1 1 1	MVI MVI MVI MVI MVI MVI MVI MVI	MNRLTDDPRWLPAMSERVTRMVQRDRNHPSVIIWSLGN SGHGANHDALYRWIKSVD MNRLTDDPRWLPAMSERVTRMVQRDRNHPSVIIWSLGN SGHGANHDALYRWIKSVD MNRLTDDPRWLPAMSERVTRMVQRDRNHPSVIIWSLGN SGHGANHDALYRWIKSVD MNRLTDDPRWLPAMSERVTRMVQRDRNHPSVIIWSLGN SGHGANHDALYRWIKSVD MNRLSDDPDWLPAMSQRVTRMVQRDRNHPSIIIWSLGN SGHGANHDALYRWIKSDD MNRLSDDPDWLPAMSQRVTRMVQRDRNHPSIIIWSLGN SGHGANHDALYRWIKAED MNRLSDDPDWLPAMSQRVTRMVQRDRNHPSIIIWSLGN SGHGANHDALYRWIKAED MNRLSDPPWLPAMSQRVTRMVQRDRNHPSIIIWSLGN SGHGANHDALYRWIKSVD MNRLTDPPWLPAMSQRVTRMVQRDRNHPSIIIWSLGN SGHGANHDALYRWIKSED MNRLTDPPWLPAMSQRVTRMVQRDRNHPSIIIWSLGN SGHGANNIDALYRWIKSED MNRLTSDPPWLPAMSQRVTRMVQRDRNHPSIIIWSLGN SGHGANNIDALYRWIKSED MNRLSDPPWLPAMSQRVTRMVQRDRNHPSIIIWSLGN SGHGANNIDALYRWIKSED	0 0 0 0 0 0 480 480 480 480 480 480 480	
P14288 P22498 P50388 D9P208 A0A218P180 Q6K214 A0A0X1KSHT 052629 C6A195 S0ATA3 P00722 Q3Z583 A6T129 Q32JB6 D2TK51 A9MQ82 L0MA64 A0A0J5KFW3 A0A2P5GMD A0A4P8YKQ3	BGAL_SULAC BGAL_SACS2 BGAL_SACS2 BGAL_SACS4 D9P278ACIS3 0A0218F180_THEC Q6K214_PICTO C6A195_THESM S0ATA3_FERAC BGAL_FCOLI BGAL_SHISS BGALZ_KLEP7 BGAL_SHIDS D2TK51_CITRI BGAL_SALAR LOMAG4_ENTBF AA0A05KFW5_PLUG AA0A25GMD4_9ENT 0A0A295GMD4_9ENT	E M ERR	$\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\4\\8\\1\\4\\8\\8\\1\\4\\8\\1\\4\\8\\1\\4\\8\\1\\4\\8\\0\\1\\4\\8\\0\\1\\1\\4\\8\\0\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1$	M	ISQSGFQ ISQAGFQ ISQAGFQ ISQAGFQ SIAGFQ SMSGFQ SLAGFQ SMSGFQ AQSGFQ AQSGFQ AQSGFQ AQSGFQ AQSGFQ AQSGFQ AQSGFQ AQSGFQ AQSGFQ AQSGFQ AQSGFQ AQSGFQ AQSGFQ AQSGFQ ILCEYA ILCEYA ILCEYA ILCEYA ILCEYA ILCEYA ILCEYA	$\begin{array}{c} 18\\ 18\\ 19\\ 19\\ 16\\ 16\\ 16\\ 15\\ 10\\ 540\\ 540\\ 540\\ 540\\ 540\\ 540\\ 540\\ 54$
P14288 P22498 P50388 D9P208 A0A218F18(Q6K214 A0A0X1KSH 052629 C6A195 S0ATA3 P00722 Q3Z583 A6T129 Q32JB6 D2TK51 A9MQ82 L0MA64 A0A0J5KFW3 A0A2P5GMD4 A0A4P8YKQ3	BGAL_SULAC BGAL_SACS2 BGAL_SACS2 BGAL_SACS3 D9P208 ACIS3 DA0A218F180 THEC Q6K214 PICTO A0A0XIKSH7 9THE BGAL PYRWO C6A135 THESM S0ATA3 FERAC BGAL EOLI BGAL SHIDS BGAL SHIDS D2TK51 CITRI BGAL SALAR LOMAĞ4 ENTBF A0A075KFW5 PLUG A0A225GMD4 9ENT 3 A0A4P8YKQ3_9ENT	ERR	$\begin{array}{c} 19\\ 19\\ 20\\ 17\\ 17\\ 16\\ 11\\ 541\\ 541\\ 541\\ 541\\ 541\\ 541\\ 541\\$	SEMGTPGSEDPNSDWHVWVHDRENIVSQVVSGDLPENGPGYWGNY SEMGTPGSEDPNTDWYKWVHDPENNAAGLVSGDLPENGPGYWGNY SEMGTPGSEDPNTDWYKWVHDPENISAGLVSGDLPENGPGYWGNY SEMGTPGSEDPNSDWYAWVHDRENIAGLVSGDLPENGPGYWGNY SEMGISD-PDSNSDWWLWVHDRENITGLVSGDLPENGIGYWDLY SEMGISD-PDSNSDWWLWVHDPVNIRTGLVSGDLPENGIGYWDLY SEMGISD-PDSNSDWWLWVHDPVNIRTGLVSGDLPENGIGYWDLY FEMGDKLRKNIDTTDWHWVKDKTNIEGLVSGDLPENGIGYWDLY FEMGDKLRKNIDTTDWHWVNRDKTNIEGLVSGDLPENGIGYWDLY HAMGNSLGGFAKYWQAFRQYPRLQGGFVWDWVDQSLIKYDENG-NPWSAY HAMGNSLGGFAKYWQAFRQYPRLQGGFVWDWVDQSLIKYDENG-NPWSAY HAMGNSLGGFAKYWQAFRQYPRLQGGFVWDWVDQSLIKYDENG-NPWSAY HAMGNSLGGFAKYWQAFRQYPRLQGGFVWDWVDQSLIKYDENG-NPWSAY HAMGNSLGGFAKYWQAFRQYPRLQGGFVWDWVDQSLIKYDENG-NPWSAY HAMGNSLGGFAKYWQAFRQYPRLQGGFVWDWVDQSLIKYDENG-NPWSAY HAMGNSLGGFAKYWQAFRQYPRLQGGFVWDWVDQSLIKYDENG-NPWSAY HAMGNSLGGFAKYWQAFRQYPRLQGGFVWDWVDQSLIKYDENG-NPWSAY HAMGNSLGGFAKYWQAFRQYPRLQGGFVWDWVDQSLIKYDENG-NPWSAY HAMGNSLGGFAKYWQAFRQYPRLQGGFVWDWVDQSLIKYDENG-NPWSAY HAMGNSLGGFAKYWQAFRQYPRLQGGFVWDWVDQSLIKYDENG-NPWSAY HAMGNSLGGFAKYWQAFRQYPRLQGGFVWDWVDQSLIKYDENG-NPWSAY HAMGNSLGGFAKYWQAFRQYPRLQGGFVWDWVDQSLIKYDENG-NPWSAY HAMGNSLGGFAKYWQAFRQYPRLQGGFVWDWVDQSLIKYDENG-NPWSAY HAMGNSLGGFAKYWQAFRQYPRLQGGFVWDWVDQSLIKYDENG-NPWSAY HAMGNSLGGFAKYWQAFRQYPRLQGGFVWDWVDQSLIKYDENG-NPWSAY HAMGNSLGGFAKYWQAFRQYPRLQGGFVWDWVDQSLIKYDENG-NPWSAY HAMGNSLGGFAKYWQAFRQPFRLQGGFVWDWVDQSLIKYDENG-NPWSAY	KRFH KTFH KTFH KKFN KKYN PTIH KRFI GGDFGD GGDFGD GGDFGD GGDFGD GGDFGD GGDFGD GGDFGD GGDFGD GGDFGD	67 67 68 67 68 66 66 59 55 55

Website: jceps.utq.edu.iq

P14268 P22496 P50388 D92708 A0A218P180 Q6KZ14 A0A0X1KSH7 O52629 C6A195 S0ATA3 P00722 Q32583 A6T129 Q320B6 D2TK51 A9MQ82 L0MA64 A0A05KFW5 A0A2P5GMD4 A0A4P8YKQ3	BGAL SULAC BGAL SACS2 BGAL SACS2 BGAL SACS3 A0A218F180 THECE Q6K214 PICTO A0A0XIKSH7 9THEM BGAL PYRWO C6A195 THESM G0ATA3 FERAC BGAL ECOLI BGAL SHISS BGALZ KLEP7 BGAL SHISS BGAL SHISS DZTK51 CITRI BGAL SALAR LOMA64 ENTBF A0A005KFW5 PLUGE A0A225GMD4 9ENTR A0A4P8YKQ3_9ENTR	66898578716666666665 555555555555555555555555555	-DE -DN -DN -DA -DM -GL -CI -LL -DA TFN TFN TFN TFN TFN TFN TFN TFN	AEKIGLNAVRIN AQKMGLKIARLN	ALTEAKHQQQ ALTEAKHQQQ ALTEAKHQQQ ALTEAKHQQQ ALYEAKHQQQ ALYEAKHQQ ALYEAKQQQ SLHEAKHQQ SLHEAKHQQ ALYEALQAQ	VEWSRIFTRP VEWSRIFTNP VEWSRIFTRP IEWARIFTRP IEWARIFTRP IEWARIFTRP IEWSRIFTRP IEWSRIFTRP IEWSRIFTRP IEWSRIFTRP IEVSRIFT IEVSRIF IEVSRIFT IEVSRIFT IEVSRIFT IEVSRIFT IEVSRIF IEVSRIFT IEV	LPRPEMQTGTDKEN- LPRPQNFDSK- LPRPQNFDDSK- TFDVKVDAEVKG- TFDVKVV-DAEVKD- TFDVKVV-EDE-E- TFDIDVDYSYNESY- TYDVDVKV-EQTE TTFIDVDYSYNESY- TYGIDVDYELD-SN- TGSUDVSYLFFHS GRTIEVTSEYLFFHS GRTIEVTSEYLFFHS GRTIEVTSEYLFFHS ERRIEVQSEYLFFHS KRSIEVVSEYLFFHS KYSIEVLSEYLFFHS RLEVTSEYLFFHS RLEVTSEYLFFHS	-SPV 108 -QDV 105 -QDV 105 -QDV 107 -GRI 107 -GRI 107 -GRI 103 -SDI 105 -NLI 108 -GLU 100 DNEL 652 DNEL 652 DNEL 652 DNEI 655 DNE	
P14288 P22498 P50388 D9P208 A0A218P180 Q6KZ14 A0A0X1KSH7 O52629 C6A195 S0ATA3 P00722 Q32583 A6T129 Q32583 A6T129 Q32286 D2TK51 A9MQ82 L0MA64 A0A075KFW5 A0A2P5GMD4 A0A4P8YKQ3	BGAL SULAC BGAL SACS2 BGAL SACS4 D9PZ78 ACIS3 A0A218F180 THECE Q6K214 PICTO A0A0XIRSH7 9THEM BGAL PYRWO C6A195 THESM SOATA3 FERAC BGAL ECOLI BGAL SHISS BGALZ KLEP7 BGAL SHIDS D2TK51 CITRI BGAL SHIDS D2TK51 CITRI BGAL SALAR LOMA54 ENTBF A0A075KFW5 PLUCE A0A2P5GMD4 9ENTR A0A4P8YKQ3_9ENTR	$\begin{array}{c} 109\\ 106\\ 108\\ 108\\ 108\\ 104\\ 109\\ 107\\ 101\\ 107\\ 101\\ 107\\ 653\\ 655\\ 655\\ 655\\ 655\\ 655\\ 655\\ 655$	ISV TEV LSV ISV EDV VAM LHW LHW LHW LHW LHW LHW LHW LHW	DLNESKLREMDNYANHEAJ EINENELKRLDEYANKDAJ VYSEGALEQLDKMANRDAJ DVPESALELEKRANLEAJ DVPESALELEKRANLEAJ DVNEGSLEKLDRLANGKAJ QIDERALRELDELADKEAN KITKOTLEELDDIIANKREY KITKOTLEELDNIANIES SFPDNVIQRHDSIADNAM WVALDGKI SVALDGKI STTLDGKI TVALDGKI TIADGKI TESLDGGI TESLDGGI	LSHYRQILEI SHYRQILEI SHYREIFKI LNHYREIFKI LNHYREIFKI LNHYREIFSI INRYMEIFNN FHYRSVINS VEHYMSVLS VEHYMSVLS VAYYRSVINS VEHYMSVLS PLASGEVPLI PLASGEVPLI PLASGEVPLI PLASGEVPLI PLASGEVPLI DLAYGEMVLI DLAYGEMVLI SLASGEVALI SLASGEVALI	DIRNRGHIVL JIKSRGIYFIL JIKSRGIYFIL JIKSRGIYFIL JIKSRGIYFIL JIKENNMTLIV MREKGKVFI JIKENNMTLIV JIKKGLKVFU YIKAKNIKLIL YIKAKNIKLIL YNAPQGKQLIE JIAPQGRQII JIAPQGRQIII JIAPQGRQIIT JIAPQGQQIIT JIAPQGQQIIT	NMYHWTLPIW NMYHWPLPIW NLYHWPLPIW NLYHWPPIW NLYHWPPIW NLYHWFPIW NLYHFTPIW TYHYTPIW TPELPQPESAGQIW -PELPQPESAGQIW -LPGLPQPKSAGQIW -LPGLPQPKSAGQIW -LPAFPQPETAGQIW -LPAFPQPETAGQIW -LPDLPAPAGQIW -LPDLPQTAGQCW -LPDLPDTAGQUW -LPDLPDTAGQUW -LPDLPDTAGQUW -LPDLPDTAGQUW -LPDLPDTAGQUW	LHDP 163 LHDP 160 LHDP 162 LHDP 162 LHDP 162 LHDP 162 LHDP 163 LHDP 163 LHDP 163 LHDP 161 LHDP 161 LTVH 700 LTVH 700 LTVH 700 LTVH 703 LTVR 703 LTV	
P14288 P22498 P50388 D9P208 A0A218P18 Q6K214 A0A0X1KSH 052629 C6A195 S0ATA3 P00722 Q32583 A6T129 Q32JB6 D2TK51 A9MQ82 L0MA64 A0A0J5KFW A0A2P5GMD A0A4P8YKQ	BGAL_SULAC BGAL_SACS2 BGAL_SACS2 BGAL_SACS3 D9PZ08_ACIS3 0 A0A218F180_THEY Q6K214_PICTO 7 A0A0X1KSH7_9THI BGAL_PYENO CGA195_THESM S0ATA3_FERAC BGAL_ECOLI BGAL_SHISS BGALZ_KLEP7 BGAL_SHIDS D2TK51_CITRI BGAL_SALAR LOMA64_ENTBF 5 A0A0J5KFW5_PL04 4 A0A2P5GMD4_9EN' 3 A0A4P8YKQ3_9EN'	CE EM J SE TR TR	164 161 163 163 163 163 163 163 163 163 164 164 164 164 164 1701 701 701 704 704 704 704 700	IRVRR	AWQQWRLA AWQQWRLA AWQQWRLA AWQQWRLA AWQQWPLA AWQQWPLA AWQQWALE AWQQWALE AWQQWALE AWQQWALE AWQQWALE	ENLSVTLPAA ENLSVTLPAA ENLSVTLPAA ENLSVTLPSA EKLSVTIPPR EKLCVSKPTR ENLSVTLPSA TLAVNPPPL ENLSVTLPSA TLSVQQAPR TRLSEPDAFV	SHAIPHLTTSEMDI PHAIPQLTTSETDI PHAIPQLTTSETDI PHAIPQLTTSETDI AAAAPQLKVENAAI ASVAPVLTMRDGEI ADEVPTLSANQREI PHAIPQLTTSETDI ASDAPALATDDNTI VGAAPELETNDAFI		172 169 169 171 172 168 169 173 171 165 760 760 760 760 763 763 763 763 763 759
P14288 P22498 P50388 D9P208 A0A218P18 Q6KZ14 A0A0X1KSH 052629 C6A195 S0ATA3 P60722 Q3Z583 A6T129 Q32JB6 D2TK51 A9MQ82 L0MA64 A0A0J5KFW A0A2F5GMD A0A4F8YKQ	BGAL SULAC BGAL SACS2 BGAL SACS2 BGAL SACS3 D A0A218P180 THEY Q6K214 PICTO 7 A0A0X1KSH7_9THI BGAL PYRNO C6A195 THESM S0ATA3 FERAC BGAL ÉCOLI BGAL SHIDS D2TK51 CITRI BGAL SALAR LOMAĞ4 ENTBF 5 A0A0JSKFW5 PLU0 4 A0A2P5GMD4 9ENT 3 A0A4P8YKQ3_9ENT	GE 1 GE 1 GE 1 GE 1 GE 1 GE 1 GE 1 GE 1	173 170 172 173 176 176 176 176 176 176 176 176 176 176	GPTGWLNSRTVYEFAR GPTGWLSTRTVYEFAR APSGWLDVRTVIEFAR APSGWLDVRTVIEFAR KRNGWLDNRVVVEFAK KRNGWNPRTVIEFAK ERNGWNPRTVIEFAK ERNGWNPRTVIEFAK QSGFLSQMWIGAKQ RQSGFLSQMWIGAKQ RQSGFLSQMWIGAKQ RQSGFLSQMWIGAKQ RQGGITQFWRDDEAQ RQGGLTQFWRDDEAQ RQSGFLSQMWIGDKKQ RQSGFLSQMWIGDKKQ RQSGFLSQMWIGDKKQ RQSGFLSQMWIGDKKQ RQSGFLSQMWIGDKKQ RQSGFLSQMWIGDKKQ RQSGFLSQMWIGDKKQ RQSGLCQWFSHGQPT *	FSAYVAWK FSAYIAWKI FSAYVAWKI FAAFVAWKI FAAYVAWKI FAAYVVWKI FAAYVVWKI FAAYLAYKI FAAYLAYKI FAAYLAYKI FAAYLAYKI LLTPLRDQI LLTPLRDQI LLTPLTDQI LLTPLRDQI LLTPLRDQI LLTPLRDQI LATPLRDQI SSAYVAWKI FAAYVAWKI FAAYVAWKI FAAYVAWKI FAAYVAWKI FAAYVAWKI FAAYVAWKI FAAYVAWKI FAAYVAWKI FAAYVAWKI FAAYVAWKI FAAYVAWKI FAAYVAWKI FAAYVAWKI FSAYVAWKI FAAYVAWKI LLTPLRDQI LLTPLRDQI LLTPLRDQI LLTPLDQI LTPLDQI LT	LDDL TDDL .DDF SSDF SSDF SGDI SGDI SGDI STRAPLON	ASEYATIMI EPNVVU VDEYSTMNE PNVVU VDEYSTMNE PNVVU VDSWSTMNE PNVVU VDSWSTMNE PNVVU VDSWSTMNE PNVVU VDMWSTFNE PNVVU VDMWSTFNE PMVVU VDMWTTFNE PMVMU GVSEATRI DPNAWU GVSEATRI DPNAWU	VGAGYAF-PRAGF SGLGYVG-VKSGF VGLGYAA-VKSGF VGLGYAA-VKSGF ZCNGYFN-VKSGF ZCNGYFN-VKSGF ZCNGYVM-SVSGF VELGYLA-PYSGF VELGYLA-PYSGF VELGYLA-PYSGF VERWKAAGHYQAE VERWKAAGHYQAE VERWKAAGHYQAE VERWKAAGHYCAE VERWKAAGHYCAE VERWKAAGHYCAE VERWKAAGHYCAE VERWKAAGHYCAE VERWKAAGHYCAE VERWKAAGHYCAE	225 222 224 225 221 226 224 219 820 820 820 820 820 823 823 823 823 823 823 823

P14288 P22496 P50386 D9P208 A0A216P180 Q6K214 A0A0X1KSH7 O52629 C6A195 S0ATA3 P00722 Q32583 A6T129 Q32JB6 D2TK51 A9MQ82 LOMA64 A0A0J5KFW5 A0A2P5GMD4 A0A4P8YKQ3	BGAL SULAC BGAL SACS2 BGAL SACS2 BGAL SACS3 A0A210F180 THECE Q6KZ14 PICTO A0A0XIRSH7 9THEM BGAL FYRWO C6A195 THESM S0ATA3 FERAC BGAL SHISS BGALZ KLEP7 BGAL SHIDS D2TK51 CITRI BGAL SHIDS D2TK51 CITRI BGAL SALAR LOMA64 ENTBF A0A0J5KFW5 PLUGE A0A2F5GMD4 9ENTR A0A4F8YKQ3 9ENTR	402 400 398 400 404 404 427 3968 968 968 968 971 968 971 968 971 968 971	YYLVSHIYQVHRALNEG-VDVRGYLHWSLADNYEWSSGFSMRFGLLKVDYLTKRLYWR-P YYLVSHVYQVHRAINSG-ADVRGYLHWSLADNYEWASGFSMRFGLLKVDYUTKRLYWR-P YYLVSHVYQVHRAINSG-ADVRGYLHWSLADNYEWASGFSMRFGLKVDYOTKRLYWR-P YYLVSHVYQVHRAIQDG-VNVIGYLHWSLADNYEWASGFSMRFGLLKVDWSKKRLYWR-P YYLVSHIRAIHSALEAG-ADIRGYLHWSLIDNYEWASGFSMRFGLYGDLIKVDWSKKRLHWR-P YHLVSHIKSVEKALSMG-MDIRGYLHWSLIDNYEWASGFSMRFGLYGDLIKVDWSKKRLHWR-P YHLVAHMYAVERAVEEG-ADIRGYLHWSLIDNYEWASGFSMRFGLYGDLIKVDWSKKRLFPR-P YHLVAHMYAVERAVEEG-LNVKGYLHWSLIDNYEWASGFSMRFGLYEVNLITKERIPRE EFIEKHLIELHKAIEEG-FDVRGYFHWALIDNYEWANGFRMRFGLYEVNLITKERIPRE EFIEKHLIELHKAIEEG-FDVRGYFHWALIDNYEWANGFRMRFGLYEVNLITKERIPRE LMETSHRH-LLHAEEGTWLNIDGF-HMGIGGDDSWSPSVSAEFQLSAGSYHYQLWGQ-K LMETSHRH-LLHAEEGTWLNIDGF-HMGIGGDDSWSPSVSAEFQLSAGSYHYQLWGQ-K LMETSHRH-LLHAEEGTWLNIDGF-HMGIGGDDSWSPSVSAEFQLSAGSYHYQLWGQ-K LMETSHRH-LLHAEEGTWLNIDGF-HMGIGGDDSWSPSVSAEFQLSAGRYHYQLWGQ-K LMETSHRH-LLHAEEGTWLNIDGF-HMGIGGDDSWSPSVSAEFQLSAGRYHYQLWGQ-K LMETSHRH-LLHAEEGTWLNIDGF-HMGIGGDDSWSPSVSAEFQLSAGRYHYQLWGQ-K LMETSHRH-LLAEEGTWLNIDGF-HMGIGGDDSWSPSVSAEFQLSAGRYHYQLWGQ-K LMETSHRH-LLAEEGTWLNIDGF-HMGIGGDDSWSPSVSAEFQLSAGRYHYQLWGQ-K LMETSHRH-LLAEEGTWLNIDGF-HMGIGGDDSWSPSVSAEFQLSAGRYHYQLWGQ-K LMETSHRH-LLAEEGTWLNIDGF-HMGIGGDDSWSPSVSAEFQLSAGRYHYQLWGQ-K LMETSHRH-LLAEEGTWLNIDGF-HMGIGGDDSWSPSVSAEFQLSAGRYHYQLWGQ-K LMETSHRH-LLAEEGTWLNIDGF-HMGIGGDDSWSPSVSAEFQLSAGRYHYQLWGQ-K LMETSHRH-LLAEEGTWLNIDGY-HMGVGGDDSWSPSVSAEFQLSAGRYHYQLWGQ-K LMETSHRH-LLAEEGTWLNIDGY-HMGVGGDDSWSPSVSAEFQLSAGRYHYQLWGQ-K LMETSHRH-LLAEEGTWLNIDGY-HMGVGGDDSWSPSVSAEFQLSAGRYHYQLWWGQ-K LMETSHRH-LLAEEGTWLNIDGY-HMGVGGDDSWSPSVSAEFQLSARHYYQIWGQ-K LMETSHRH-LLAEEGTWLNIDGY-HMGVGGDDSWSPSVSAEFQLSARHYYQIWGQ-K LMETSHRH-LLAEEGTWLNIDGF-HMGIGGDDSWSPSVSAEFQLSARHYYQIWGQ-K LMETSHRH-LLAEEGTWLNIDGF-HMGVGGDDSWSPSVSAEFQLSARHYYQIWGC-K	459 457 457 458 461 485 473 452 1024 1024 1024 1025 1025 1025 1025 1025 1023
P14288 P22498 P50388 D9P208 A0A216P180 Q6KZ14 A0A0X1KSH7 052629 C6A195 S0ATA3 P00722 Q32583 A6T129 Q32JB6 D2TK51 A6MQ82 L0MA64 A0A0J5KFW5 A0A2P5CMD4 A0A4P8YKQ3	BGAL SULAC BGAL SACS2 BGAL SACS4 BGAL SACS4 D9PZÖ8 ACIS3 A0A218F180 THECE C6KZ14 PICTO A0A0XIXSH7 9THEM BGAL PYRWO C6A195 THESM SOATA3 FERAC BGAL ECOLI BGAL SHISS BGALZ KLEP7 BGAL SHISS D2TK51 CITRI BGAL SILAR LOMAC4 ENTBF A0A0J5KFW5 PLUGE A0A2F5CMD4 9ENTR A0A4F8YKQ3_9ENTR	$\begin{array}{r} 460\\ 458\\ 458\\ 456\\ 459\\ 462\\ 486\\ 474\\ 453\\ 1025\\ 1025\\ 1025\\ 1025\\ 1025\\ 1026\\ 1026\\ 1026\\ 1025\\ 1026\\ 1026\\ 1026\\ 1026\\ 1026\\ 1024\\ \end{array}$	SALVYREITRSNGIPEELEHLNRVPPIKPLRH SALVYREIATNGAITDEIEHLNSVPPVKPLRH SALVYREIATNGGITDEIEHLNSVPPVRGLSPGRR SAFIYÆLARSRAITDEIEHLNSVPPIRGLSPGRR SALVFKEIANANGVPEEFEWMADQHONS SMYIFREIVKELSTEKFRSYLSSPYOIWRQK-G SVSIFREIVANNGVTKKIEEELLRG	491 489 480 490 493 510 501 474 1024 1024 1024 1024 1025 1025 1025 1025 1023

Figure .3: Explain the alignment between the different groups mesophilic and thermophilic.

3.4 Secondary Structure Prediction

Analysis of secondary structure prediction from CFSSP on beta-galactosidase had shown that there are 119 amino acid residues involved in the formation of helix, 109 amino acids for extended strands (beta sheet) formation and 263 amino acid residues in the formation of Random Coil, which consists 24.24%, 22.20% and 53.56% amino acid residues respectively).

Figure .4: Secondary structure prediction of Beta-galactosidase

3.4 Sequence analysis

The alignment results of thermophilic types, meticulously analyzed within MEGAX, have unveiled a region of exceptional conservation. This region, thoughtfully identified through Weblogo analysis (https://weblogo.berkeley.edu/logo.cgi), serves as a prominent testament to the shared functional attributes among these thermophilic enzyme sequences. It signifies a segment of the enzyme sequences that play specific roles critical to their biological function, a commonality that underscores their adaptability to high-temperature environments and highlights the evolutionary convergence of these thermophilic variants towards similar enzymatic functionalities. This observation opens intriguing avenues for further exploration and understanding of the unique traits and capabilities of these thermophilic enzymes. Website: <u>jceps.utq.edu.iq</u>

Figure .5: Shows the sequence alignment of thermophilic types.

meticulously conducted through the robust software MEGAX, which offers a comprehensive depiction of the evolutionary relationships and shared genetic characteristics among these thermophilic organisms. This alignment serves as a foundational framework for elucidating the conserved and divergent elements within their genetic sequences, shedding light on the molecular adaptations that enable these organisms to thrive in high-temperature environments.

Through this alignment, we gain valuable insights into the conserved regions and motifs, which are indicative of critical functional roles common to these thermophilic species. Such conserved elements are essential for their survival and growth under extreme thermal conditions, underscoring the remarkable evolutionary strategies employed by thermophiles to maintain their biological functions at elevated temperatures.

Figure .6: The conserved domain sequence alignment logo.

Website: <u>jceps.utq.edu.iq</u>

The construction of a phylogenetic tree using MEGAX serves as a powerful tool to elucidate the evolutionary relationships among different species, specifically focusing on the thermophilic and mesophilic types. The phylogenetic analysis spans from thermophilic organisms, commencing with thermo types, and extending through to Thermococcus sibiricus. In parallel, the analysis includes mesophilic organisms, with the starting point at Izhakiella sp. and concluding at Pluralibacter gergoviae. This comprehensive phylogenetic tree provides valuable insights into the evolutionary divergence and relatedness among these diverse microbial species, contributing to our understanding of their evolutionary history and ecological niches.

Figure .7: The phylogenetic tree, meticulously constructed using the robust software MEGAX.

The active site of beta-galactosidase from Sulfolobus acidocaldarius, as identified and documented by UniProt, is characterized by specific amino acid residues located at positions 209 and 389 within the enzyme's primary sequence. These particular amino acid positions play a critical role in substrate binding, catalysis, and overall enzymatic activity. The precise arrangement and functional significance of these residues underscore their pivotal contribution to the enzyme's active site, facilitating its biological function with precision and efficiency.

110	120	290	300
TDKENSPVIS	VDLNESKLRE	VEIAERLNRW	SFFDSIIKGE
160	170	340	350
MYHWTLPIWL	HDPIRVRRGD	KAESGYLTLP	GYGDRCERNS
210	220	398	499
ASEYATMN <mark>E</mark> P	NVVWGAGYAF		
260	270		GIADDADYQK
DATKSVSKKS	VGIIYANTSY	440	450
310	320	DNYEWSSGFS	MRFGLLKVDY
510	520		

Figure .8: Illustrates the active sites of *beta-galactosidase* from *Sulfolobus acidocaldarius*.

3.5 Three-dimensional (3D) structure.

The Swiss-model modelling tool played a pivotal role in the prediction of the threedimensional (3D) structure for the given protein sequence. Within the tool's repertoire, numerous potential template structures closely matching the query protein sequence were available for consideration. From this array of choices, meticulous selection led us to opt for the most akin 3D structures, namely, those of β -Glycosidase from Sulfolobus solfataricus and β -Glycosidase from Acidilobus saccharovorans. This judicious choice of templates ensured that our modelling efforts were anchored in the most relevant and structurally analogous frameworks, enhancing the accuracy and reliability of our 3D structure prediction.

Website: jceps.utq.edu.iq

Figure .10: Shows modelled 3D structure of beta-galactosidase in Escherichia coli (strain k12)

Moreover, the computational prediction of local structural similarity in the building mode has revealed a noteworthy pattern of conserved residues. Specifically, this analysis has illuminated a region characterized by an escalating and continuous increase in conserved residues, spanning from position 120 to 300 within the protein sequence. Furthermore, this conserved motif seamlessly extends, persisting across . positions 350 through 480. This observed pattern of residue conservation underscores the functional significance of this specific protein segment and suggests its potential involvement in critical molecular interactions or structural stability within the protein's tertiary structure.

Figure .11: Shows the predicted local similarity of residue number

The predicted local similarity of residue number made by the Swiss model through the build model of Sulfolobus acidocaldarius 3D structure modelling. The chains for the build model showed similarity in different residues with almost more similarities between them with tiny differences.

4. Analysis model 3D

The Swiss Model structure analysis has been instrumental in identifying critical amino acid residues essential for our alignment, particularly those constituting the active site. Specifically, our focus has honed in on amino acids positioned at residues 209 and 389 within the enzyme's structure. Furthermore, the three-dimensional structural representation has revealed a noteworthy insight: the active sites exhibit close spatial proximity to each other. This spatial arrangement hints at potential cooperative interactions between these active sites, which may have significant implications for the enzyme's catalytic function and substrate binding.

Figure .13: Shows the critical active site of the enzyme

The critical active site of the enzyme is defined by the specific amino acid residue located at position 209 within its primary sequence. This particular amino acid residue holds pivotal significance in the enzyme's catalytic function, substrate binding, and interaction with its molecular targets. The precision and strategic placement of this residue at position 209 highlight its essential role in the enzyme's overall activity, underscoring its contribution to the biological and biochemical functions of the protein.

6. Discussion

The comparative analysis of β -Galactosidase enzymes from Sulfolobus acidocaldarius and Escherichia coli yields compelling insights that underscore the validity and significance of the findings. The research discovered that Sulfolobus isolates possess thermostable enzymes that can effectively break down various glycosidic substances [\uparrow]. The B-galactosidase from Sulfolobus acidocaldarius is being investigated for its thermostability and organic solvent tolerance to hydrolyze lactose in dairy products, along with other Sulfolobus enzymes. The study delves into the implications of our results, emphasizing the rationale behind our methodology and the broader implications for biotechnology and industrial

Vol., No. (2022)

Website: jceps.utq.edu.iq

applications. The modelling of the 3D structure of β-Galactosidase from Sulfolobus acidocaldarius provides crucial insights into the enzyme's structural adaptation to extreme conditions. Notably, S. acidocaldarius thrives in high-temperature, low-pH environments, and its β-Galactosidase enzyme demonstrates exceptional thermostability [11]. By comparing this thermostable structure with the mesophilic counterpart from Escherichia coli, we shed light on the structural basis for the extraordinary stability observed in S. acidocaldarius. The results reveal distinct structural features in S. acidocaldarius' β-Galactosidase that contribute to its thermostability. These may include enhanced structural rigidity, increased hydrophobic interactions, and unique amino acid compositions. Our findings align with the well-established principle that extremophiles often possess specialised structural adaptations that allow them to thrive in harsh environments. This not only validates the biological significance of our structural model but also opens avenues for the engineering of thermostable enzymes for various industrial processes. The industrial utility of β -Galactosidase, particularly in lactose-containing fluid processing, is well-recognized [17]. The results emphasise the potential advantages of harnessing the thermostable β -Galactosidase from S. acidocaldarius for such applications. The structural insights gained through our modelling provide a rational basis for the development of more robust and efficient enzymatic processes. The ability to operate at elevated temperatures can lead to improved reaction kinetics and reduced contamination risks, enhancing the overall efficiency of lactose hydrolysis in industrial settings. Furthermore, the thermostable β -Galactosidase enzyme may find applications in diverse sectors, including the dairy industry, pharmaceuticals, and the production of sweet syrups for confectionery and soft drinks. The enhanced stability and activity observed in this enzyme make it an attractive candidate for these applications, potentially revolutionizing processes and products in these fields. The results also have broader implications for environmental sustainability. By offering a thermostable enzyme alternative for lactose breakdown, we contribute to the reduction of lactose-containing waste in the food industry. This has positive environmental consequences by mitigating the environmental footprint associated with lactose disposal $[1^{n}]$.

6. Conclusion:

Finally, our study opens the door to further investigations. Future research could involve experimental validation of the predicted structural features and functional properties of the S. acidocaldarius β -Galactosidase. Additionally, directed evolution or protein engineering techniques can be employed to enhance its performance even further for specific industrial applications.

In conclusion, our comprehensive analysis of β -Galactosidase enzymes from *Sulfolobus acidocaldarius* and *Escherichia coli* yields compelling evidence that supports the robustness of our results. The structural insights gained provide a solid foundation for the rational design and utilization of thermostable enzymes in biotechnology, industrial processes, and environmental sustainability efforts. These findings not only advance our understanding of extremophile enzymes but also hold the potential to drive innovation in various sectors, ultimately benefiting society at large.

REFERENCES

- -βS. Ozarslan and T. Taş, "Treatment of lactose by fermentation: Production process on vol. . *Int. Food Res. J*galactosidase using Kluyveromyces marxianus isolated from kefir grains,"
 . Υ · ΥΥ · έ_{no.} · Υ^q
- [γ] galactosidase and its potential β A. Shafi and Q. Husain, "Structural and functional insights of . $\gamma \in \gamma - \gamma \gamma \gamma pp$. ($\gamma \cdot \gamma \gamma r$ Elsevier, *Glycoside Hydrolases* applications," in
- [^r] in as a therapeutic target ^rJ. Gao, Y. Hao, X. Piao, and X. Gu, "Aldehyde dehydrogenase
 Int. J. translational modifications deserve more attention," -related diseases: post-oxidative stress
 .^r.^r.^r.^r.^r.^r.^ono. .^r.^r.*vol. ..Mol. Sci*

- [Y] The Physicochemical Characterization of Microvesicles Secreted by Sulfolobus 'A. P. Bonanno
 .Y. Y Temple University, acidocaldarius
- [4] D. A. Prangishvili, R. P. Vashakidze, M. G. Chelidze, and I. Y. Gabriadze, "A restriction *FEBS* endonuclease SuaI from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius,"
 .) 1400 (1,-0) pp. (100, (19) ol. v (*Lett*)
- [1] galactosidase from - β elbatsomreht a gnidocne eneg a fo noisserpxe suogoloreteH" (*.et al* T. Yuan ..., $(\tau \in A \tau \in \tau pp. , \tau \cdot ol. v ($ *.Biotechnol. Lett*Alicyclobacillus acidocaldarius,"
- [17] P. Katrolia, M. Zhang, Q. Yan, Z. Jiang, C. Song, and L. Li, "Characterisation of a thermostable galactosidase (BgalC) family from Thermotoga maritima showing efficient lactose -β ^ε^γ family

.۲.۱۱ ٬۲۰۱-۲۱٤pp. ٬۲no. ٬۱۲۰vol. *..Food Chem*hydrolysis,"