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Abstract: 

   In this work we obtain analytical approximate solutions for the two dimensional nonlinear PDEs with 

Liouville-Caputo fractional derivative. Numerical simulations of alternative models are presented for 

evaluating the effectiveness of these representations. Different source terms are considered in the 

fractional differential equations. The classical behaviors are recovered when the fractional order 𝛼  is 

equal to 1. 

Keywords: Fractional PDEs; Caputo fractional operator; approximate solution. 

 

1-Introduction 

        Fractional calculus is primarily concerned with fractional integration and differentiation operations. It 

is an outstanding approach to situations where existing local operators are incapable of producing 

effective results, as it has been observed that the fractional order models are better matched with 9536 the 

real data than the classical integer-order derivatives [1]. The theory of fractional-order calculus was 

initially studied and further explored in the 18th and 19th centuries. One of the distinct features of 

fractional derivatives is their capacity to provide a pertinent and practical choice to model important 

physical problems. Many physical applications are not correctly modeled using the local differential 
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operators. Therefore, the theory of the fractional-order derivative has attracted the attention of applied 

mathematicians to use fractional differential equations (FDEs) as a powerful tool in various areas, 

particularly in the fields of physics and engineering [2]. Fractional-order differential equations hold a 

strong foothold in some major domains, particularly in control theory [3], diffusion problems [4], signal 

processing [5], dynamics [6] and bio-engineering [7]. In addition, fractional-order models applied in 

microgrids are used in wireless networks [8]. Similarly, in fractional calculus, fractional-order models 

provide unprecedented significance in studying the dynamics of biological systems [9]. Kilbas et al. 

addressed the theory of fractional differential equations and their applications [10], therefore, I found 

many numerical and approximate methods to solve FDEs [11-49]. 

      Fractional derivative operators (FDOs) are significantly relevant to real data analysis, which has 

drawn great attention from various mathematicians and modelers in the applied sciences. A variety of 

fractional operators are widely used in the literature, although few of them are comparatively more 

common, including Riemann-Liouville, Hadamard, Weyl, [51], Caputo [50], and Jumarie [52]. The 

kernel of the most commonly used fractional operators namely Caputo and Riemann- Liouville contains 

singularity, and hence, they may not always be able to express the non-locality of real-world situations 

properly. 

2- Preliminaries 

Definition: [50]  The Caputo derivative of fractional order 𝑣 of a function 𝜑(𝜇) is defined as :- 

          𝐷𝑣𝜑(𝜇) = 𝐼𝑚−𝑣𝐷𝑚𝜑(𝜇) 

                   =
1

Γ(𝑚 − 𝑣)
∫ (𝜇 − 𝜏)𝑚−𝑣−1𝜑(𝑚)(𝜏)𝑑𝜏

𝜇

0

, 𝑚 − 1 < 𝑣 < 𝑚                                                      

The following are the basic properties of the operator  𝐷𝑣:- 

1. 𝐷𝑣𝑘 = 0 ,  where k is a constant. 

2. 𝐷𝑣𝐼𝑣𝜑(𝜇) = 𝜑(𝜇), 

3. 𝐷𝑣𝜇𝜎 =
Γ(𝜎+1)

Γ(𝜎−𝑣+1)
 𝜇𝜎−𝑣, 

4. 𝐷𝑣𝐷𝜎𝜑(𝜇) = 𝐷𝑣+𝜎𝜑(𝜇) 

 

Definition 2.4: [50-52]  The Mittag-Leffler function 𝐸𝑣(𝑧) with 𝑣 > 0 is defined as:- 

     𝐸𝑣(𝑧) = ∑
𝑧𝑣

Γ(𝑚𝑣 + 1)
 

∞

𝑚=0
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Definition 2.5:  The Elzaki transform is defined over the set of functions  

                                          𝐴 = {𝜑(𝜏): ∃𝜇 , 𝑘1, 𝑘2 > 0 , |𝜑(𝜏)| < 𝜇 𝑒
|𝜏|
𝑘𝑗  , 𝜏 ∈ (−1)𝑗 × [0,∞)}. 

by the following formula: 

     𝐸[𝜑(𝜏)] = 𝑇(𝑠) = 𝑠 ∫ 𝑒
−𝜏
𝑠

∞

0

𝜑(𝜏)𝑑𝜏, 𝑠 ∈ [𝑘1, 𝑘2]                                                       

Some Elzaki transform Properties:- 

1. 𝐸[1] = 𝑠2                                                   

2. 𝐸[𝜏𝑣] = Г(𝑣 + 1) 𝑠𝑣+2                              

 

Definition 2.6:  The Elzaki transform of the Caputo fractional derivative is given by: 

     𝐸[𝐷𝜏
𝑣 𝜑(𝜇, 𝜏)] =

𝐸[𝜑(𝜇, 𝜏)]

𝑆𝑣
− ∑ 𝑆2−𝑣+𝑘

𝑚−1

𝑘=0

𝜑(𝑘)(𝜇, 0),   𝑚 − 1 < 𝑣 < 𝑚                   

 

3- Analysis of EVIM 

Consider the following fractional PDE: 

 𝑐𝐷𝑡
𝛼𝜑(𝜇, 𝜏) + 𝑅[𝜑(𝜇, 𝜏)] + 𝑁[𝜑(𝜇, 𝜏)] = 𝑔(𝜇, 𝜏), 𝑡 > 0,  𝑛 − 1 < 𝛼 ⩽ 𝑛       

Taking ET, we have 

𝐸{ 𝑐𝐷𝑡
𝛼𝜑(𝜇, 𝜏) + 𝑅[𝜑(𝜇, 𝜏)] + 𝑁[𝜑(𝜇, 𝜏)]} = 𝐸{𝑔(𝜇, 𝜏)},                                    

where 

 𝐸{ 𝑐𝐷𝑡
𝛼𝜑(𝜇, 𝜏)} =

𝑇𝑛(𝑤)

𝑤𝛼
− ∑  

𝑛−1

𝑘=0

 𝑤2−α+𝑘𝜑(𝑘)(𝜇, 0)     

𝑇𝑛(𝑤)

𝑤𝛼
− ∑  

𝑛−1

𝑘=0

 𝑤2−α+𝑘𝜑(𝑘)(𝜇, 0) = 𝐸{𝑔(𝜇, 𝜏)} − 𝐸{𝑅[𝜑(𝜇, 𝜏)] + 𝑁[𝜑(𝜇, 𝜏)]}      

The iteration formula is 
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𝑇𝑛+1(𝑤) = 𝑇𝑛(𝑤)

+ 𝜆(𝑤) [
𝑇𝑛 (𝑤)

𝑤𝛼
− ∑ 𝑤2−𝛼+𝑘

𝑛−1

𝑘=0
𝜑(𝑘)(𝜇, 0)

+ 𝐸{𝜑𝑛(𝜇, 𝜏) + 𝑁(𝜑𝑛(𝜇, 𝜏))  − 𝑔(𝜇, 𝜏)}],                           

where 𝜆(𝑤) Lagrange multiplier.  

      We impose the condition    
𝑠𝑇𝑛+1

𝑠𝑇𝑛
= 0, we have 

1 +
𝜆(𝑤)

𝑤𝛼
= 0 

→
𝜆(𝑤)

𝑤𝛼
= −1 

→ 𝜆(𝑤) = −𝑤𝛼 

By applying Elzaki inverse and put  𝜆(𝑤) = −𝑤𝛼, we get 

𝜑𝑛+1 = 𝐸−1 (𝑤𝛼 ∑  

𝑛−1

𝑘=0

 𝑤2−α+𝑘𝜑(𝑘)(𝜇, 0) + 𝑤𝛼𝐸{𝑅(𝜑𝑛(𝜇, 𝜏) + 𝑁(𝜑𝑛(𝜇, 𝜏) − 𝑔(𝜇, 𝜏)) 

                    = 𝐸−1 (𝑤𝛼 ∑  

𝑛−1

𝑘=0

 𝑤2−α+𝑘𝜑(𝑘)(𝜇, 0)) 

+ 𝐸−1(𝑤𝛼𝐸{𝑅(𝜑𝑛(𝑥, 𝑡) +  𝑁(𝜑𝑛(𝑥, 𝑡) − 𝑔(𝑥, 𝑡))                                   

The solution is given by 

𝜑(𝜇, 𝜏) = lim
𝑛→∞

𝜑𝑛 

 

4- Applications of EVIM 

 

Example 1:  Consider the fractional 2D partial differential equation: 

     𝐷𝑐 𝜏
𝑣  φ(μ, ζ, τ) − 𝜑𝜇𝜇

2 − 𝜑𝜁𝜁
2 − 𝜑 (

8

9
𝜑 + 1) = 0,                                           

where 0 < 𝑣 ≤ 1 and subject to the initial condition 

φ(μ, ζ, 0) = 𝑒
1
3
(𝜇+𝜁)

. 

By taking  Elzaki transform: 
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𝐸[𝜑𝑛+1(μ, ζ, τ)]

𝑆𝑣
− 𝑆2−𝑣𝜑(μ, ζ, 0) − 𝐸 [

𝜕2𝜑𝑛
2

𝜕𝜇2
+

𝜕2𝜑𝑛
2

𝜕𝜁2
−

8

9
𝜑𝑛

2 − 𝜑𝑛] = 0                              

𝐸[𝜑𝑛+1(μ, ζ, τ)] = 𝑆2𝜑(μ, ζ, 0) + 𝑆𝑣𝐸 [
𝜕2𝜑𝑛

2

𝜕𝜇2
+

𝜕2𝜑𝑛
2

𝜕𝜁2
−

8

9
𝜑𝑛

2 − 𝜑𝑛]                                      

𝜑𝑛+1(μ, ζ, τ) = 𝜑(μ, ζ, 0) + 𝐸−1 [𝑆𝑣𝐸 [
𝜕2𝜑𝑛

2

𝜕𝜇2
+

𝜕2𝜑𝑛
2

𝜕𝜁2
−

8

9
𝜑𝑛

2 − 𝜑𝑛]]                                   

The initial iteration 𝜑0(μ, ζ, τ) is given as follows: 

     𝜑0(μ, ζ, τ) = 𝜑(μ, ζ, 0) = 𝑒
1
3
(𝜇+𝜁)

. 

Now, we get the first approximation namely: 

     𝜑1(μ, ζ, τ) = 𝑒
1
3
(𝜇+𝜁)

+ 𝐸−1 [𝑆𝑣𝐸 [
4

9
 𝑒

2
3
(𝜇+𝜁)

+
4

9
 𝑒

2
3
(𝜇+𝜁)

−
8

9
 𝑒

2
3
(𝜇+𝜁)

− 𝑒
1
3
(𝜇+𝜁)

]] 

                        = 𝑒
1
3
(𝜇+𝜁)

+ 𝐸−1 [−𝑆𝑣+2 𝑒
1
3
(𝜇+𝜁)

 ] 

                        = 𝑒
1
3
(𝜇+𝜁)

−
𝜏𝑣

Γ(𝑣+1)
 𝑒

1
3
(𝜇+𝜁)

. 

                        = (1 −
𝜏𝑣

Γ(𝑣+1)
) 𝑒

1
3
(𝜇+𝜁)

. 

The second approximate reads as follows: 

      𝜑2(μ, ζ, τ) = 𝜑(μ, ζ, 0) + 𝐸−1 [𝑆𝑣𝐸 [
𝜕2𝜑1

2

𝜕𝜇2
+

𝜕2𝜑1
2

𝜕𝜁2
−

8

9
𝜑1

2 − 𝜑1]] 

                      = 𝑒
1
3
(𝜇+𝜁)

+ 𝐸−1

[
 
 
 
 
 

𝑆𝑣𝐸

[
 
 
 
 4

9
(1 −

𝜏𝑣

Γ(𝑣+1)
)

2

𝑒
2
3
(𝜇+𝜁)

+
4

9
(1 −

𝜏𝑣

Γ(𝑣+1)
)

2

𝑒
2
3
(𝜇+𝜁)

−
8

9
(1 −

𝜏𝑣

Γ(𝑣+1)
)

2

𝑒
2
3
(𝜇+𝜁)

− 𝑒
1
3
(𝜇+𝜁)

+
𝜏𝑣

Γ(𝑣+1)
𝑒

1
3
(𝜇+𝜁)

]
 
 
 
 

]
 
 
 
 
 

 

                       = 𝑒
1
3
(𝜇+𝜁)

+ 𝐸−1 [−𝑆𝑣+2 𝑒
1
3
(𝜇+𝜁)

+ 𝑆2𝑣+2 𝑒
1
3
(𝜇+𝜁)

 ] 

                        = 𝑒
1
3
(𝜇+𝜁)

−
𝜏𝑣

Γ(𝑣+1)
𝑒

1
3
(𝜇+𝜁)

+
𝜏2𝑣

Γ(2𝑣+1)
𝑒

1
3
(𝜇+𝜁)

 .                                

                       ⋮                                                                                                                                        

    Then, we have: 
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𝜑(μ, ζ, τ) = lim
𝑛→∞

𝜑𝑛(μ, ζ, τ)                                                             

                                                = 𝑒
1
3
(𝜇+𝜁)

 (1 −
𝜏𝑣

Γ(𝑣+1)
+

𝜏2𝑣

Γ(2𝑣+1)
− ⋯)                                          

                                        = 𝑒
1
3
(𝜇+𝜁)

 𝐸𝑣(−𝜏𝑣).                                                                     

When 𝑣 = 1 

     𝜑(μ, ζ, τ) = 𝑒
1
3
(𝜇+𝜁)

 (1 − 𝜏 +
𝜏2

2!
− ⋯) 

                                             = 𝑒
1
3
(𝜇+𝜁)−𝜏 ,                                                    

which is an exact solution to the standard form biological population equation. The Figure 1 show the  

graphs of the approximate and the exact solutions among different values of 𝜏 and 𝑣 when μ and ζ are  

fixed for the biological population equation in the Caputo fractional operator.  

 

 

 

 

 

 

                                 

 

 

 

 

 

 

 

 

Figure 1. The approximate and the exact solutions among different values of 𝝉 and 𝒗 when 

𝛍 𝐚𝐧𝐝 𝛇 are fixed. 
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5-Conclusion  

     The integration of ODEs using the novel fifth-order DIRKTO5 and fourth-order DIRKTO4 methods 

with three stages has been discussed in this paper. In comparison to the implicit RK methods currently 

used in the scientific literature, numerical findings demonstrate that the suggested approaches are much 

more effective in terms of the number of function evaluations while solving the generic 4th-order ODEs. 
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