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Abstract: 

     The variational iteration technique (VIT) is an excellent analytical tool employed in this study to solve 

the nonlinear 3D-fractional differential equations. The Antagana-Baleanu sense is used to characterize the 

fractional derivatives (ABFD). To show the applicability of the recommended technique, example is 

presented. 

Keywords: 3D- Fractional differential equations, Fractional variational iteration method, Atangana- 

Baleanu fractional operator.   

 
1. Introduction 

        In recent years, fractional differential equations have sparked a lot of interest, and they've been studied 

and applied to a lot of real-world situations in a variety of fields. One reason for this unpopularity might be 

that fractional derivatives have numerous non-equivalent definitions [1].  Another issue is that, due to their 

nonlocal nature, fractional derivatives have no obvious geometrical meaning. However, in the last 12 years, 

scientists have begun to pay considerably more attention to fractional calculus. With the use of fractional 

derivatives, it was discovered that a variety of applications, particularly multidisciplinary applications [2-

4], may be neatly described. 
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Many analytical and approximation approaches for solving fractional differential equations have been 

developed in recent years [5-76]. Our objective is to illustrate the FVIM and show how to use it with ABDO 

to solve the Navier-Stokes problem. The remainder of this work is broken down into the sections below. In 

section 2, you'll find some fractional calculus definitions. The FVIM analysis is carried out in Section 3 

utilizing ABDO. Section 4 shows how FVIM may be use. Section 5 is where this effort ends. 

 

2.  Preliminaries 

In this section, we’ll go over some of the most important fractional calculus definitions and           formulas 

[77-79]. 

 

Definition 1. The ABFD of order 𝛼 is given as follows: 

𝐷𝑡  
𝛼

𝑎
𝐴𝐵 𝑢(𝑡) =

𝑀(𝑖𝛼)

𝑖1 − 𝛼
∫ 𝐸𝛼 (

−𝑖𝛼(𝑡𝑖 − 𝑥)𝛼

𝛼 − 1𝑖
) 𝑢′(𝑥)𝑑𝑥

𝑡

𝑎

                                              (2.1) 

where   0 < 𝛼 < 1  and 𝑀(0) = 𝑀(1) = 1. 

Definition 2. The ABFI of order 𝛼 defined as follows: 

   𝐼 𝑡
𝛼 𝑢 ( 𝑡 )𝑎 

𝐴𝐵 =
1 −  𝛼

𝑀 ( 𝛼 )
𝑢 ( 𝑡 ) +

𝛼

𝑀 ( 𝛼 )
  

1

𝛤 (𝛼 )
  ∫( 𝑡 − 𝑥 )𝛼−1 𝑢 ( 𝑥 ) 𝑑𝑥.

𝑡

𝑎

       (2.2) 

     The properties of ABFI  is defined as follows:  

       1.  𝐼 𝑡
𝛼 𝐷𝑎

𝐴𝐵
𝑡
𝛼   𝑢 ( 𝑡 )𝑎 

𝐴𝐵    =  𝑢 ( 𝑡 ) − 𝑢(0).  

       2.  𝐼 𝑡
𝛼  𝑐 =  

𝑐

𝑀 ( 𝛼 )
 ( 1 −  𝛼 +  

𝑡𝛼

ᴦ(𝛼 )
 )𝑎 

𝐴𝐵    .  

       3.  𝐼 𝑡
𝛼   𝑡𝑘  =  

𝑡𝑘

𝑀 ( 𝛼 )
 ( 1 −  𝛼 +  

𝛼 𝛤 ( 𝑘+1 )   𝑡𝛼

𝛤(𝛼+𝑘+1 )
 )𝑎 

𝐴𝐵  . 

 

3.  Analysis of FVIM 

 

Let us consider the following partial differential equations 

𝐷𝑡
𝛼

 
𝐴𝐵  𝑢𝑖(𝑥, 𝑦, 𝑧, 𝑡 ) + 𝑅 𝑢𝑖(𝑥, 𝑦, 𝑧, 𝑡 ) + 𝑁 𝑢𝑖(𝑥, 𝑦, 𝑧, 𝑡 ) = 𝑔𝑖(𝑥, 𝑦, 𝑧, 𝑡), 0 < 𝛼 ≤ 1  (3.1) 

with the initial conditions 

𝑢𝑖(𝑥, 𝑦, 𝑧, 0) = 𝑓𝑖(𝑥, 𝑦, 𝑧), 

where  𝐷𝑡
𝛼

 
𝐴𝐵  𝑢𝑖  is ABFD, 𝑖 = 1,2,3. 

       The correctional functional for (3.1) is approximately expressed as follows: 
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𝑢𝑖(𝑛+1)(𝑥, 𝑦, 𝑧, 𝑡 ) = 𝑢𝑖𝑛(𝑡) + 𝐼 𝑡
𝛼  𝑎 

𝐴𝐵   
 [𝜆𝑖(𝜉 ) ( 𝐷𝜉

𝛼
 

𝐴𝐵 𝑢𝑖𝑛(𝜉) + 𝑅 �̃�𝑖𝑛(𝜉) + 𝑁�̃�𝑖𝑛(𝜉) − 𝑔𝑖(𝜉))], 

(3.2) 

where 𝜆𝑖(𝜉 )  is general Lagrange’s multiplier. �̃�𝑖𝑛 and  𝑔𝑖 are considered as restricted variations. Putting 

the relevant adjustment in place and making it functioning and noticing 𝛿�̃�𝑖𝑛 = 0 and 𝑔𝑖 = 0,  we obtain 

∗ 𝛿𝑢𝑖(𝑛+1)(𝑡 ) = 𝛿𝑢𝑖𝑛(𝑡 ) + 𝐼 𝑡
𝛼 𝑎 

𝐴𝐵   
 [𝛿𝜆𝑖(𝜉 ) ( 𝐷𝜉

𝛼
 

𝐴𝐵 𝑢𝑖𝑛(𝜉))], 

or 

𝛿𝑢𝑖(𝑛+1)(𝑡 ) = 𝛿𝑢𝑖𝑛(𝑡 ) + 𝜆𝑖(𝜉 ) 𝛿𝑢𝑖𝑛(𝑡 ) − 𝐼 𝑡
𝛼 𝑎 

𝐴𝐵   
 [𝜆′𝑖(𝜉 ) 𝛿𝑢𝑖𝑛(𝜉)], 

 which produces the stationary conditions 

𝜆′𝑖(𝜉 ) = 0, 

1 + 𝜆𝑖(𝜉 ) = 0 

Therefore, we identified 𝜆𝑖 = −1  and obtain the following variational iteration formula:     

𝑢𝑖(𝑛+1)(𝑡 ) = 𝑢𝑖𝑛(𝑡 ) − 𝐼 𝑡
𝛼 𝑎 

𝐴𝐵   
 [ 𝐷𝜉

𝛼
 

𝐴𝐵 𝑢𝑖𝑛(𝜉) + 𝑅 𝑢𝑖𝑛(𝜉) + 𝑁𝑢𝑖𝑛(𝜉) − 𝑔𝑖(𝜉)]. 

(3.3)       

Finally, we obtain the solution of (3.1) as follows: 

𝑢𝑖(𝑥, 𝑡) = lim
𝑛→∞

𝑢𝑖𝑛. 

 

4. Illustrative example 

 

Consider the time fractional-order three- dimensional Navier–Stokes equation 

AB𝐷𝑡
𝛼𝑢 +  𝑢𝑢𝑥 + 𝑣𝑢𝑦 + 𝑤𝑢𝑧 = 𝑝[𝑢𝑥𝑥 + 𝑢𝑦𝑦 +  𝑢𝑧𝑧] + 𝑞1 

AB𝐷𝑡
𝛼𝑣 + 𝑢𝑣𝑥 + 𝑣𝑣𝑦 + 𝑤𝑣𝑧 = 𝑝[𝑣𝑥𝑥 + 𝑣𝑦𝑦 + 𝑣𝑧𝑧] + 𝑞2                                                                   (4.1) 

AB𝐷𝑡
𝛼𝑤 +  𝑢𝑤𝑥 + 𝑣𝑤𝑦 + 𝑤𝑤𝑧 = 𝑝[𝑤𝑥𝑥 + 𝑤𝑦𝑦 +  𝑤𝑧𝑧] + 𝑞3,      0 < 𝛼 ≤ 1 

with initial conditions 

𝑢(𝑥, 𝑦, 𝑧, 0) = −0.5𝑥 + 𝑦 + 𝑧  

   𝑣(𝑥, 𝑦, 𝑧, 0) = 𝑥 − 0.5𝑦 + 𝑍    

   𝑤(𝑥, 𝑦, 𝑧, 0) = −𝑥 + 𝑦 − 0.5𝑦 

In view of  (3.3) , (4.1)  and let q1 = q2=q3=0. 

 

𝑢𝑛+1(𝑥, 𝑦 , 𝑡) = 𝑢𝑛

− 𝐼 
𝐴𝐵 𝛼[𝐿𝑢𝑛 + (𝑢𝑛)(𝑢𝑛)𝑥 + (𝑣𝑛)(𝑢𝑛)𝑦 + (𝑤𝑛)(𝑢𝑛)𝑧 − 𝑝[𝑢𝑛𝑥𝑥 + 𝑢𝑛𝑦𝑦 + 𝑢𝑛𝑧𝑧] − 𝑞]𝑑𝜉    
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𝑣𝑛+1(𝑥 , 𝑦, 𝑡) = 𝑣𝑛

− 𝐼 
𝐴𝐵 𝛼[𝐿𝑢𝑛 + (𝑢𝑛)(𝑣𝑛)𝑥 +  (𝑣𝑛)(𝑣𝑛)𝑦 + (𝑤𝑛)(𝑣𝑛)𝑧 − 𝑝[(𝑣𝑛)𝑥𝑥 + 𝑣𝑛𝑦𝑦 + 𝑣𝑛𝑧𝑧] + 𝑞]𝑑𝜉 

𝑤𝑛+1(𝑥 , 𝑦, 𝑡) = 𝑤𝑛 𝐼 
𝐴𝐵 𝛼[𝐿𝑢𝑛 + (𝑢𝑛)(𝑤𝑛)𝑥 +  (𝑣𝑛)(𝑤𝑛)𝑦 +  (𝑤𝑛)(𝑤𝑛)𝑧 − 𝑝[(𝑤𝑛)𝑥𝑥 + 𝑣𝑛𝑦𝑦 + 𝑣𝑛𝑧𝑧]

+ 𝑞]𝑑𝜉 

Therefore, we obtain the successive approximations as follows:  

𝑢0(𝑥, 𝑦, 𝑧, 𝑡) = −0.5𝑥 + 𝑦 + 𝑍 

𝑣0(𝑥, 𝑦, 𝑧, 𝑡) = 𝑥 − 0.5𝑦 + 𝑍 

𝑤0(𝑥, 𝑦, 𝑧, 𝑡) = 𝑥 + 𝑦 − 0.5𝑍 

𝑢1 = −0.5𝑥 + 𝑦 + 𝑍 +  𝐼 
𝐴𝐵 𝛼{−2.25𝑥}  

        = −0.5𝑥 + 𝑦 + 𝑍 + (−2.25𝑥) (1 − 𝛼 +
𝑡𝛼

𝛤(𝛼)
) 

𝑣1 = 𝑥 − 0.5𝑦 + 𝑍 +  𝐼 
𝐴𝐵 𝛼{−2.25𝑦} 

       = 𝑥 − 0.5𝑦 + 𝑍 + (−2.25𝑦) (1 − 𝛼 +
𝑡𝛼

𝛤(𝛼)
) 

𝑤1 = 𝑥 + 𝑦 − 0.5 𝑍 + 𝐼 
𝐴𝐵 𝛼{−2.25𝑍} 

       =  𝑥 + 𝑦 − 0.5 𝑍 + (−2.25𝑍) (1 − 𝛼 +
𝑡𝛼

𝛤(𝛼)
) 

 

u2 =  x + y − 0.5 Z + (−2.25Z) (1 − α +
tα

Γ(𝛼)
) + 𝐼 

𝐴𝐵 𝛼(  −2.25𝑥 + 2.25𝑥 +  2x +  

           2(2.25)[−0.5x + y + Z] (1 − α +
tα

Γ(𝛼)
) +   (2.25)2𝑥 (1 − α +

tα

Γ(𝛼)
)

2

  } 

      =  x + y − 0.5 Z + (−2.25Z) (1 − α +
tα

Γ(𝛼)
) +  (2 x) (1 − α +

tα

Γ(𝛼)
) + 

 2. (−2.25)[−0.5x + y + Z] ((1 − α)2 + 2(1 − α)
tα

Γ(𝛼)
+

𝛼2tα

Γ(2𝛼 + 1)
)        

+ (2.25)2𝑥 ((1 − α)2 (1 − α +
tα

Γ(𝛼)
) + 2 (1 −  α)

tα

Γ(𝛼)
(1 − α +

𝛼Γ( 𝛼 + 1) tα

Γ(2𝛼 + 1)
)

+
t2α

(Γ(𝛼))2
(1 − α +

      αΓ(2𝛼 + 1)tα

Γ(3𝛼 + 1)
))

 

 

    

v2 = x − 0.5y + Z + (−2.25y) (1 − α +
tα

Γ𝛼
) + 𝐼 

𝐴𝐵 𝛼{  ( −2.25𝑦 + 2.25𝑦 +  2y + 
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2(2.25)[x − 0.5 y + Z] (1 − α +
tα

Γ(𝛼)
) +  (2.25)2𝑦 (1 − α +

tα

Γ(𝛼)
)

2

  } 

= x − 0.5y + Z + (−2.25y) (1 − α +
tα

Γ𝛼
) +  (2 y) (1 − α +

tα

Γ(𝛼)
) 

 2. (−2.25)[x − 0.5y + Z] ((1 − α)2 + 2(1 − α)
tα

Γ(𝛼)
+

𝛼2tα

Γ(2𝛼 + 1)
) +  

(2.25)2𝑦 ((1 − α)2 (1 − α +
tα

Γ(𝛼)
) + 2 (1 −  α)

tα

Γ(𝛼)
(1 − α +

𝛼Γ( 𝛼 + 1) tα

Γ(2𝛼 + 1)
)

+
t2α

(Γ(𝛼))
2 (1 − α +

      αΓ(2𝛼 + 1)tα

Γ(3𝛼 + 1)
))

 

 

w2 = x + y − 0.5Z + (−2.25z) (1 − α +
tα

Γ(𝛼)
) + 𝐼 

𝐴𝐵 𝛼{  −2.25𝑧 + 2.25𝑧 +  2z + 

2(2.25)[x +  y − 0.5Z] (1 − α +
tα

Γ(𝛼)
) +   (2.25)2𝑧 (1 − α +

tα

Γ(𝛼)
)

2

  } 

        = x + y − 0.5Z + (−2.25Z) (1 − α +
tα

Γ(𝛼)
) + (2 Z) (1 − α +

tα

Γ(𝛼)
) + 

 2. (−2.25)[x + y − 0.5Z] ((1 − α)2 + 2(1 − α)
tα

Γ(𝛼)
+

𝛼2tα

Γ(2𝛼 + 1)
) +  

                     (2.25)2𝑍 ((1 − α)2 (1 − α +
tα

Γ(𝛼)
) + 2 (1 −  α)

tα

Γ(𝛼)
(1 − α +

𝛼Γ( 𝛼 + 1) tα

Γ(2𝛼 + 1)
)

+
t2α

(Γ(𝛼))
2 (1 − α +

      αΓ(2𝛼 + 1)tα

Γ(3𝛼 + 1)
))

 

 

 

If 1, then the closed form solution of (4.1) is 

𝑢(𝑥, 𝑦, 𝑡) =
−0.5𝑥 + 𝑦 + 𝑍 − 2.25𝑥𝑡

1 − 2.25𝑡2
 

𝑣(𝑥, 𝑦, 𝑡) =
𝑥 − 0.5𝑦 + 𝑍 − 2.25𝑦𝑡

1 − 2.25𝑡2
 

𝑤(𝑥, 𝑦, 𝑡) =
𝑥 + 𝑦 − 0.5𝑍 − 2.25𝑧𝑡

1 − 2.25𝑡2
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Figure 1. Plots of the exact and approximate solutions 𝑢(𝑥, 𝑦, 𝑧, 𝑡) for  

different values of 𝛼  

 

 

 

Figure 2. Plots of the exact and approximate solutions  𝑣(𝑥, 𝑦, 𝑧, 𝑡) for  

different values of 𝛼  
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   Figure 3. Plots of the exact and approximate solutions  𝑤(𝑥, 𝑦, 𝑧, 𝑡) for  

different values of 𝛼  

 

 

 

5. Conclusions 

We used VIT with ABFO to evaluate the fractional-order three-dimensional Navier–Stokes equations in 

this paper. The VIT result closely resembles the precise solution to the provided issues. The convergence 

of the fractional-order answers to integer-order solutions was confirmed by a graphical examination of the 

results. Furthermore, the proposed method is clear, simple, and low-cost to implement; it may be extended 

to solve additional fractional-order partial differential equations. 
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