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Abstract 

     The Yang Adomian decomposition technique (YADM) is an excellent analytical tool employed in this 

study to solve the partial differential equations (PDEs). The result of the suggested approach is stated as a 

series of Adomian components that converges to the precise solution of the problem. To show the 

applicability of the recommended technique, examples are presented. 

Keywords: Partial differential equations; Yang transform; Adomian decomposition method.  

 

1. Introduction 

        Partial differential equations (PDEs) also occupy a large sector of pure mathematical research, in 

which the usual questions are, broadly speaking, on the identification of general qualitative features of 

solutions of various partial differential equations, such as existence, uniqueness, regularity and stability.  

Among the many open questions are the existence and smoothness of solutions to the Navier–Stokes 

equations, named as one of the Millennium Prize Problems in 2000. PDEs are ubiquitous in mathematically 

oriented scientific fields, such as physics and engineering. For instance, they are foundational in the modern 

scientific understanding of sound, heat, diffusion, electrostatics, electrodynamics, thermodynamics, fluid 

dynamics, elasticity, general relativity, and quantum mechanics (Schrödinger equation, Pauli equation etc.). 

They also arise from many purely mathematical considerations, such as differential geometry and the 
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calculus of variations; among other notable applications, they are the fundamental tool in the proof of the 

Poincaré conjecture from geometric topology. It is to be noted that several methods are usually used in 

solving PDEs [1]. The newly developed Adomian decomposition method and the related improvements of 

the modified technique and the noise terms phenomena will be effectively used. The Adomian 

decomposition method was formally proved to provide the solution in terms of a rapid convergent infinite 

series that may yield the exact solution in many cases. Moreover, the other traditional methods, that are 

usually used in solve PDEs and fractional PDEs [2-74]. 

         Our goal is to demonstrate the YADM, which is a coupling technique of YT and ADM, and to utilize 

it to solve the PDEs. The remainder of this work is divided into the following sections. In section 2, the 

definition of Yang transform and its properties are provided. Section 3 implements the YADM analysis. 

Section 4 demonstrates how YADM may be used. The conclusion of this work is found in Section 5. 

2.  Yang Transform 

Definition 2.1 [75]. The Yang transform of the function is 

 

𝑌{𝑢(𝑡)} = ∫ 𝑒−
𝑡
𝑣

 𝑢(𝑡)𝑑𝑡 ,   𝑡 > 0,

∞

0

 

with 𝑣 representing the transform variable. 

 

Few properties of YT is stated as. 

1. 𝑌{1} = 𝑣. 

2. 𝑌{𝑡} = 𝑣2. 

3. 𝑌{𝑢(𝑛)(𝑡)} =
𝑌{𝑢(𝑡)}

𝑣𝑛 − ∑
𝑢(𝑘)(0)

𝑣𝑛−𝑘−1 𝑛−1
𝑘=0 , 𝑛 = 1,2,3, … 

 

3.Analysis of the Yang Adomian decomposition method 
 

The YADM is explored in this section for the solution of nonhomogeneous fractional nonlinear PDEs 

   𝐿𝑡
(𝑛)

 𝑢 (𝑥, 𝑡) + 𝑅 𝑢(𝑥, 𝑡) + 𝑁 𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡 ),     𝑡 > 0,                       (1) 

where R and N are linear and nonlinear operators, respectively, with the initial conditions 

𝑢(𝑘)(𝑥, 0) = 𝑐𝑘 , 𝑘 = 0,1, … . , 𝑛 − 1                                                            (2) 

Taking Yang transform (YT) to Eq. (1), we obtain 

𝑌{𝐿𝑡
(𝑚)

 𝑢 (𝑥, 𝑡)} = 𝑌 { 𝑔 (𝑥 , 𝑡) − 𝑅 𝑢 (𝑥 , 𝑡) + 𝑁 𝑢 (𝑥 , 𝑡)}, 

or 

           
𝑌{𝑢 (𝑥, 𝑡)}

𝑣𝑛
−

 ∑ 𝑢(𝑘)(𝑥, 0) 𝑛−1
𝑘=0

𝑣𝑛−𝑘−1
= 𝑌 {𝑔 (𝑥 , 𝑡) − 𝑅 𝑢 (𝑥 , 𝑡) − 𝑁 𝑢 (𝑥 , 𝑡)}. 
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This equivalent  

𝑌{ 𝑢(𝑥, 𝑡)} = 𝑣𝑢(𝑥, 0) + 𝑣2𝑢′(𝑥, 0) + ⋯ + 𝑣𝑛𝑢(𝑛−1)(𝑥, 0) +  𝑣𝑛 𝑌{𝑔(𝑥, 𝑡)}

− 𝑣𝑛 𝑌{𝑅(𝑢(𝑥, 𝑡)) + 𝑁(𝑢(𝑥, 𝑡))}.                                                                                               (3) 

Applying the inverse of YT of Eq.(3), we have 

            𝑢(𝑥, 𝑡) = 𝑢(𝑥, 0) + 𝑡𝑢′(𝑥, 0) + ⋯ +
𝑡𝑛

𝑛!
𝑢(𝑛−1)(𝑥, 0) + 𝑌−1 (𝑣𝑛 𝑌{𝑔(𝑥, 𝑡)})

− 𝑌−1 (𝑣𝑛 𝑌{𝑅(𝑢(𝑥, 𝑡)) + 𝑁(𝑢(𝑥, 𝑡))}).                                                                                   (4) 

The infinite series shown here reflects the YADM solution of 𝑢(𝑥, 𝑡) as 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡),             

∞

𝑛=0

                                                           (5) 

       The problem's nonlinear term may be written as an Adomian polynomial as follows: 

𝑁 𝑢(𝑥, 𝑡) = ∑ 𝐴𝑛,                                                                (6)

∞

𝑛=0

 

where 

𝐴𝑛 =
1

𝑛!
[

𝜕𝑛

𝜕𝜆𝑛
𝑁 (∑ 𝜆𝑖𝑢

𝑖

𝑛

𝑖=0

)]

𝜆=0

.           

By adding Eq. (5) and Eq. (6) in Eq. (4), we get 

            ∑ 𝑢𝑛 

∞

𝑛=0

= 𝑢(𝑥, 0) + 𝑡𝑢′(𝑥, 0) + ⋯ +
𝑡𝑛

𝑛!
𝑢(𝑛−1)(𝑥, 0) + 𝑌−1 (𝑣𝑛 𝑌{𝑔(𝑥, 𝑡)})

− 𝑌−1  (𝑣𝑛 𝑌 {𝑅 (∑ 𝑢𝑛 

∞

𝑛=0

) + ∑ 𝐴𝑛 

∞

𝑛=0

}).                                                                                    (7) 

When both sides of Eq. (7) are compared, we get: 

𝑢0(𝑥, 𝑡) = 𝑢(𝑥, 0) + 𝑡𝑢′(𝑥, 0) + ⋯ +
𝑡𝑛

𝑛!
𝑢(𝑛−1)(𝑥, 0) + 𝑌−1 (𝑣𝑛 𝑌{𝑔(𝑥, 𝑡)}). 

𝑢1(𝑥, 𝑡) = −𝑌−1 (𝑣𝑛 𝑌{ 𝑅(𝑢0) + 𝐴0})       

𝑢2(𝑥, 𝑡) = −𝑌−1 (𝑣𝑛 𝑌{ 𝑅(𝑢1) + 𝐴1})       

                                     ⋮                                                                  (8) 
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                                  𝑢𝑛+1(𝑥, 𝑡) = −𝑌−1 (𝑣𝑛 𝑌{ 𝑅(𝑢𝑛) + 𝐴𝑛}), 𝑛 = 0,1, …     

Thus, the approximate solution of Eq. (1) is:  

𝑢(𝑥, 𝑡) = 𝑢0 + 𝑢1 + 𝑢2 + ⋯                                                                       (9) 

 

     

4. Applications of YADM 

Example 4.1. Let us consider the partial differential equation 

𝑢𝑡 + 𝑢𝑢𝑥 =  𝑥2 + 𝑥𝑡2,                                                                     (10) 

subject to initial condition 

𝑢(𝑥, 0)  = 0. 
Applying the Yang transform of Eq.(10), we get  

𝑌 {𝑢𝑡(𝑥, 𝑡)} + 𝑌 {𝑢 𝑢𝑥} =  𝑌[𝑥2 + 𝑥𝑡2] 

1

𝑣
𝑌{ 𝑢(𝑥, 𝑡)} − 𝑢(𝑥, 0) = 𝑌{𝑥2 + 𝑥𝑡2} 

𝑌{ 𝑢(𝑥, 𝑡)} = 𝑣 𝑌{𝑥} + 𝑣𝑌 {𝑥𝑡2} − 𝑣𝑌 {𝑢𝑢𝑥} 

𝑢(𝑥, 𝑡) =  𝑌−1(𝑣𝑌{𝑥}) + 𝑌−1(𝑣𝑌{𝑣𝑡2}) − 𝑌−1(𝑣𝑌{𝑢𝑢𝑥 }) 

𝑢(𝑥, 𝑡) = 𝑥𝑡 +  
𝑥𝑡3

3
−  𝑌−1(𝑣𝑌{𝑢𝑢𝑥 }) 

Suppose that 

𝑢 =  ∑ 𝑢𝑛

∞

𝑛=0

 ,     𝑢𝑢𝑥 =  ∑ 𝐴𝑛

∞

𝑛=0

  

Then, we have 

𝑢0 = 𝑥𝑡 + +
𝑥𝑡3

3
 ,  

               𝐴0 =  𝑢0 𝑢0𝑥 = 𝑥𝑡2 + 𝑥
𝑡4

3
+ 𝑥

𝑡4

3
+ 𝑥

𝑡6

9
  

𝑢1 =  −𝑌−1(𝑣 𝑌{𝐴0} ) 

               =  −
𝑥𝑡3

3
−  

2𝑥𝑡4

3
−  

𝑥𝑡7

63
 

⋮                           
Therefore, the approximate solution is 

𝑢(𝑥, 𝑡) =  𝑢0 + 𝑢1 + 𝑢2 + ⋯ = 𝑥𝑡 

 

Example 2.4. Consider the system of partial differential equation 

𝑢𝑡 + 𝑤𝑢𝑥 + 𝑢 = 1                               𝑢(𝑥, 0) = 𝑒𝑥                   
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𝑤𝑡 + 𝑢𝑤𝑥 − 𝑤 = 1                              𝑤(𝑥, 0)= 𝑒−𝑥                              (11) 

Taking YT of (11), we obtain 

𝑌{𝑢𝑡(𝑥, 𝑡)} + 𝑌{𝑤𝑢𝑥(𝑥, 𝑡)} + 𝑌{𝑢(𝑥, 𝑡)} = 𝑌{1 } 

𝑌{𝑤𝑡(𝑥, 𝑡)} + 𝑌{𝑢𝑤𝑥(𝑥, 𝑡)} − 𝑌{𝑤(𝑥, 𝑡)} = 𝑌{1 } 

or  

1

𝑣
𝑌{𝑢 (𝑥, 𝑡)} −  𝑢(𝑥, 0) + 𝑌{𝑤𝑢𝑥} + 𝑌{𝑢} = 𝑌{1 } 

1

𝑣
𝑌{𝑤 (𝑥, 𝑡}) − 𝑤(𝑥, 0) + 𝑌{𝑢𝑤𝑥(𝑥, 𝑡)} − 𝑌{𝑤} = 𝑌{1 } 

This equivalent to 

𝑌{ 𝑢 (𝑥, 𝑡)} =  𝑣𝑡 + 𝑣𝑒𝑥 − 𝑣𝑌{𝑤𝑢𝑥} − 𝑣𝑌{𝑢} 

𝑌{𝑤 (𝑥, 𝑡}) = 𝑣𝑡 + 𝑣𝑒−𝑥 − 𝑣 𝑌{𝑢𝑤𝑥} + 𝑣𝑌{𝑤}  

Applying the inverse of YT, we get 

𝑢(𝑥, 𝑡) = 𝑡 + 𝑒𝑥 − 𝑌−1( 𝑣𝑌{𝑤𝑢𝑥}) − 𝑌−1(𝑣 𝑌{𝑢}) 

𝑤(𝑥, 𝑡) = 𝑡 + 𝑒−𝑥 − 𝑦−1 (𝑣 𝑌{𝑢𝑤𝑥}) + 𝑌−1(𝑣 𝑌{𝑤}) 

Assume that 

𝑢 = ∑ 𝑢𝑛
∞
𝑛=0                      ,                 𝑤𝑢𝑥 = ∑ (𝐴∞

𝑛=0 n) 

𝑤 = ∑ 𝑤𝑛           ∞
𝑛=0 ,                              𝑢𝑤𝑥 = ∑ (𝐵𝑛

∞
𝑛=0 ) 

𝑢0 =  𝑡 + 𝑒𝑥                                          𝐴0 =  𝑤0 𝑢0𝑥 

𝑤0 =  𝑡 + 𝑒−𝑥  𝐵0 = 𝑢0𝑤0𝑥 

𝑢1 = −𝑌−1(𝑣 𝑌(𝐴0)) − 𝑌−1( 𝑣 𝑌(𝑤0) ) 

𝑢1 = −𝑌−1(𝑣𝑌(𝑡𝑒𝑥 + 1)) −  𝑌−1(𝑣 𝑌(𝑡 + 𝑒−𝑥)) 

      =
𝑡2

2!
𝑒𝑥 − 𝑡 −

𝑡2

2!
− 𝑒−𝑥  

𝑤1 = −𝑌−1(𝑣𝑌 {𝑢0𝑤0𝑥}) − 𝑌−1(𝑣 𝑌(𝑤0)) 

       = −𝑌−1(𝑣𝑦(−𝑡𝑒−𝑥))−𝑌−1(𝑣𝑦(𝑡 + 𝑒−𝑥))  

       = −
𝑡2

2!
𝑒−𝑥 − 𝑡 +

𝑡2

2!
+ 𝑡𝑒−𝑥  

      ⋮ 

Therefore, the approximate solution is 

𝑢(𝑥, 𝑡) = 𝑢0 + 𝑢1 + 𝑢2 + ⋯ 
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                                              = 𝑡 + 𝑒𝑥 −
𝑡2

2!
𝑒𝑥 − 𝑡 +

𝑡2

2!
− 𝑡𝑒𝑥 + ⋯ 

                    = 𝑒𝑥 − 𝑡𝑒𝑥 −
𝑡2

2!
𝑒𝑥 + ⋯ 

𝑤(𝑥, 𝑡) = 𝑤0 + 𝑤1 + 𝑤2 + ⋯ 

                                                                                    = 𝑡 + 𝑒−𝑥 − 𝑡 −
𝑡2

2!
𝑒−𝑥 +

𝑡2

2!
−  𝑡𝑒−𝑥 + ⋯    

                            = 𝑒−𝑥 −  𝑡𝑒−𝑥 −
𝑡2

2!
𝑒−𝑥 + ⋯ 

 

5.  Conclusions   

The YADM was effectively used in this work to discover approximate solutions to partial differential 

equations. The analytical approach generates a convergence analysis that fast converges to the exact 

solution. The simplicity and high precision of the analytical method are clearly illustrated, for example, 

involves solving certain equations, like that of linear and nonlinear fractional partial differential 

equations, as well as an example of a nonlinear system of partial differential equations. 
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