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Abstract: 
In this paper, an additive hazard model is considered as a semiparametric model in which the unknown 
parameter consists of finite dimensional and infinite dimensional parts with left truncated and right 
censored data. The full likelihood function for the model is obtained for the parametric part and also for 
the nonparametric part using linear sieve procedure and then compute the maximum likelihood estimators 
for the two parts. The consistency of the maximum likelihood estimators is also proved for the two type 
of parameters. The score operators for the parametric and nonparametric parts are obtained and their 
adjoint score operators are computed. Finally, a simulation study using Monti-Carlo method and R 
language is implemented to compute the maximum likelihood estimators and compare the results of the 
proposed method with the true values. As a real life application, Stanford Heart transplant data is 
considered and the maximum likelihood estimators are computed.  
 
1. Introduction: 
he data collected from survival experiments is usually referred to as survival data, time-toevent data, or 
failure time data and represented by a nonnegative random variable T. The survival function of T is 
defined as S(t) = P (T > t) = 1 − F (t), where F (t) is the Cumulative Distribution Function (CDF). The 
Survival Function S(t) represents the probability that the event occurred not before the time t. Another 
functions which are commonly used in modeling T are the hazard function and the cumulative hazard 
function of T. When T is continuous, the hazard function of T is defined as 
λ(t)  = f(t) S(t)                                                 (1.1) 

 
where f(t) is the probability density function (p.d.f.) of T. It is easy to prove that 
S(t) = ,                                                                                                 (1.2) 
where                                                                                (1-3)   
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is the cumulative hazard function of T. Assume the time of event random variables of 
subjects follow a specific type of semiparametric model which known as additive hazard model (see for 
example Aalen (1989) and Cox and Oakes (1984, page 147)). In this model, we assume that the 
covariates act on an unknown baseline hazard rate in an additive manner. Assume that the time of event 
T 0 and covariates Z0 are modelled as additive hazard model given by λ(t|z) = λ(t) +                                            
(1.4) 
where λ(t|z) is the conditional hazard function of   given  = z, β is an unknown kdimension 
regression parameter and λ is an unknown baseline hazard function i.e. the conditional hazard function 
when z = 0. The cumulative baseline hazard function of this model is given by      Λ(t) =  the 
cumulative hazard function is given by 
Λ(t|z) =  +  = Λ(t) +                                                                 (1.5) 
and the survival function is given by 
F(t|z) = F(t) exp{−  },                                                                                      (1.6) 
where F(t) = exp{−Λ(t)} is the baseline survival function i.e. the conditional survival 
function when z = 0. For the above model, the parameters are θ = (β, Λ), where β  Rk is a finite 
dimensional parameter (parametric part) whereas Λ is in an infinite dimensional2 parameter 
(nonparametric part), hence our model is semiparametric. Usually, β is called the parameter of interest 
and Λ is the nuisance parameter. The true value of parameter θ = (β, Λ) is θ0 = (β0, Λ0). Assume 
further that time of event random variable T 0 is subject to left-truncation time X0 so that the subject is 
observed whenever  ≥ . Moreover, we assume that T 0 is also subject to right-censorship 
mechanism at monitoring time . So that our observation will be ( , , ), where Y 0 is the 
smallest of  and  i.e  =    and ∆0 = I(  ≤ ) is the right-censored indicator and I(A) is 
the indicator function of the set A. Let T 0 has distribution function F with density f,  has distribution 
function G with density g,   has density q and X0 has distribution function H with density h and let F, 
G and H represent the survival functions of ,  and , respectively. We consider the triplet (Y, ∆, 
X) as the observed data which has the same joint distribution as ( , , ) when  ≥  where Y is 
the observed survival time, ∆ is the right censoring indicator and X is the truncation time. Consider H as 
the class of all bounded, continuous and non-decreasing functions over [τ0, τ1]. Then the parameter 
space of the parameter θ = (β, Λ) is defines as Θ = B × H i.e. Λ is considered as a bounded, continuous 
and non-decreasing function over [τ0, τ1]. Throughout the paper, in addition to the assumptions A1 and 
A2, we assume the following assumptions: 
A1 : The parameter space of B of β is a bounded open subset of Rk. 
A2 : Given the covariate , the time of event  the observation time  and the truncated 
time  are independent random variables. Assume also that X0 is independent of 

,  and  . 
A3 : The marginal densities of , X0 and  i.e. g, h and q do not involve the 
parameter 
θ = (β, Λ). 
A4 : (a) The covariate Z is bounded with probability one i.e. there exists a positive constant 
M such that 
 = ≤ M with probability one. 

(b) (Identifiability assumption) For any β1= β2  B we have that P( Z)  Z) > 0 
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A5 : There exists a positive number η such that P(C0 − X0 ≥ η) = 1. 
A6 : There exist 0 < τ0 < τ1 and 0 < m0 < m1 < ∞ such that 
 P(τ0 ≤ X0 < C0 ≤ τ1) = 1  and m0 < Λ(τ0) < Λ(τ1) < m1. 
A7 : For t  [τ0, τ1], assume that λ(t|z) > 0 
The problem of estimating the Regresion parametric and a semiparametric additive hazard model was Lin 
and Ying (1994) developed simple procedures with high efficiencies to estimate the regression parameters 
for the additive risk model with an unspecified baseline hazard function. Huang (1999) studied the partly 
linear additive Cox model as an extension of the (linear) Cox model. He investigated the asymptotic 
properties of the maximum partial likelihood estimator of this model with right censored data using 
polynomial splines. Zeng and Shen (2006) considered a semiparametric additive hazards model with 
interval censored event and their interest focused on the estimation of the effect of risk factors. Wang et 
al. (2010) proposed an estimating equation based approach for regression analysis of interval-censored 
failure time data with the additive hazards model. Song et al. (2011) studied a semiparametric additive 
hazards regression model for right censored data that allows some censoring indicators to be missing at 
random. Huang et al. (2013) considered additive hazards model with left-truncated and right-censored 
data. They used a pairwise pseudo likelihood to eliminate nuisance parameters from the marginal 
likelihood. Lu and Song (2014) considered the partly linear additive hazards regression model with 
current status data. They used polynomial splines approach to estimate both cumulative baseline hazard 
function with monotonicity constraint and nonparametric regression functions with no such constraint. 
Shen (2014b) analyzed left truncated and right censored data using 
additive hazard model models. He used the integrated square error to select an optimal bandwidth of the 
weighted least-squared estimator. Wang et al. (2015) studied the regression analysis of the the additive 
hazards model with left-truncation and current status censored data. They derived the maximum 
likelihood estimators of the unknown parameters. For the infinite dimensional parameter, they used the 
sieve estimation approach that approximates the baseline cumulative hazard function by linear functions. 
Feng et al. (2015) discussed regression analysis of additive hazards model with current status failure time 
data. They focused on the case when some covariates could be missing but there may4 
exist some auxiliary information about the missing covariates. Chen (2016) investigated the additive 
hazards model with left-truncated and right-censored data. He developed a pseudo likelihood estimation 
approach for the parameters of interests.  
 
1.1 Maximum Likelihood Estimatio: 
In this section, we compute the maximum likelihood estimators for the parameter of interest 
β and the nuisance parameter Λ using sieve procedure. The likelihood of β and Λ based on 
a sample of n independent observations Vi = (Yi, ∆i, Xi, Zi), i = 1, 2, · · · , n, can be written 

l n(β, Λ) =    

where 
R(zi; β, Λ)=                                                                     (1.8) 
Using the Assumption A3, the above function can be written (up to terms do not involve 
(β, Λ)) as 

l n(β, Λ) =    

and the corresponding log likelihood has the form 
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For a fixed Λ, the maximum likelihood estimators β ˆ for β is defined as 
β ˆn =  
i.e. β ˆn is the value that maximizes the log likelihood ln(β, Λ) for all β  Θ. The maximum 
likelihood estimator for β is simply computed by differentiating ln with respect to β and 
equating to zero as given below. For βj, j = 1, · · · , k, we have 

 =   zj       where 

  

Hence to find the maximum likelihood estimator for β we need to solve the following 
equation 

Uj(β)=zj

 
For fixed β, to find the maximum likelihood estimator of Λ, we apply the sieve estimation approach 

using piecewise linear function with knots at pre-specified locations (see, for example Huang and 
Rossini (1997) and Wang et al. (2015)). The basic idea of the sieve method is that a sequence of 
increasing subspaces (sieves) is used to approximate a large parameter space such that, asymptotically, 

the closure of the limiting subspace contains the original parameter space. The main idea of sieve 
method is given in the following steps. Let τ0 = t0 < t1 < t2 < · · · < tq = τ1 be a partition of the interval 

[τ0, τ1], where τ0 ad τ1denotes the smallest of truncation times and the largest observation times, 
respectively and the number q is called the sieve number. Following Wang et al. (2015), the dimension 
of the sieve number, q, is usually an increasing integer along with n, sample size, at rate 
O(nr) with 0 < r < 1/2. Define, for i = 1, 2, · · · , q, Λ(ti) = hi   and let 
Λ(t) = 

and 
λ(t) = .=                                                         (1.12) 

where 
 (t)= I(  ≤ t < ) 

 
and I(A) is the indica for function of the set A. Here and in the sequel we adopt the 
convention that  = 0 whenever b < a. Following Wang et al. (2015), to remove the 
monotonicity condition of hi, we assume  =  and  = 0. Then Equations ( ) 
and (1.12) become 
Λ(t) = 

and 

λ(t)=   

Now, the maximum likelihood estimators for γ = ( , · · · , ) can be obtained by differentiating the log 
likelihood function with respect to γ = (  · · · , ) and solving 
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the resulting equations for γ = ( , · · · , ) as given in the following steps.  
 Differentiating Equation(1-7)  with respect to  , r = 1, · · · , q, gives us                 

 =   

where 

 

and 

 

 

 

Hence to find the maximum likelihood estimator for γ, we need to solve the following equations 
Ur(γ) =  

for i=1,2,…….,q                                                                                                          (1-19) 
To find the maximum likelihood estimators, we may use the profile likelihood approach as 
given in the following iteration procedure. 
Step(1) Select initial values  =  and  =  . 
Step(2) For the ith iteration, set β =  and solve Equation (1-19) to find . 
Step(3) Set γ = and solve Equation (1-18) to find . 
Step(4) For a given  ͼ > 0, if 

≤ ͼ  
then set  = and  =  and go to Step (5), otherwise, go to Step (2). Step (5) Compute Λ and λ 
using Equations (1-13) and (1-14), respectively. To perform Step (2) and Step (3), we may use, for 
example, Newton-Raphson method. As a special case, for additive hazard model with right censored 
data, the likelihood function can be simply obtained by substituting R(z; β, Λ) = 1 in Equation (1-19) 
and consequently, the maximum likelihood estimators can be obtained, by solving 
Uj(β) = zj  

Ur(γ) =  

Now, for  = ( , )  Θ, i = 1, 2, define the distance d on the parameter space Θ as 
d( , ) =d(( , ), ( , )) 

                =|  − | + (1.20) 
In the following, we prove the consistency of maximum likelihood estimators for (β.Λ). 
Theorem 1.1 Suppose that the conditions (A1) − (A7) hold. Then we have 
d( , ) = d(( , ), ( , )) → 0 a.s 
i.e. the maximum likelihood estimators ( , ), are consistent estimators of ( , ). 
Proof : We borrow some rdeas of the proof from Wang et al.(2015).Let 

 (y) = p(y; , ) and  (y)  = p(y; , ), 
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where 

p(y, β, Λ) =  

Since ( , ) maximizes the likelihood function over Θ and ( , )  Θ then 

    ≥ 0 

By concavity of log function, for any 0 < α < 1, we have 

   ≥   

n is the empirical measure of ( , , , ), i = 1, 2, ..., n and P is the joint probability 
measure of (δ, Y, X, Z). Now 

   

                                                        =  

                                                         +          (1-21) 

Since B is bounded subset of   then  B is a sequence of bounded vectors. From Bolzano-
Weierstrass theorem, for any subsequence of we can find a subsequence converging to   , the 
closure of B. Since is a sequence of bounded nondecreasing functions then using Helly’s selection 
theorem, for any subsequence of  we can find a subsequence converging to some nondecreasing 
function η . Without loss of generality, we assume that ( , ) converges to ( , ). To prove the 
theorem, it is sufficient to prove that   =  and  =  . Since ( , ) are the maximum likelihood 
estimators of ( , )we obtain  ( , ) ≥  ( , ). 
Let the sample space Ω be defined as Ω = {( , , , ), i = 1, 2, ... } the space 
of all infinite sequences endowed with the σ-field generated by the product topology on 

{0, 1} ×  ×  and the product measure P. 
Now, for the first term of (??), since the class of functions 

 

is uniformly bounded and uniformly Lipschitz of order 1 (see Wang et al. (2015)), so there 
exists a set   Ω with P( ) = 1 such that 

 → 0 for every ω   

Let  (Y ) = p(Y, , ). By the bounded convergence theorem 

                                                  

since               E  

Now, by the concavity of log function and using Jensen’s inequality, we get 

 

                                                                                        ≤  

                                                                                        =  
                                                                                         =0                                                       (1.23) 
Therefore Equations (??) and (??) gives us 
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 which implies that 
 (y) +  zy =  (y)  +  zy   (y)  −  (y) + (  − )zy = 0                   (1.24) 

Let  = . with  and  we obtain 
 (y)  −  (y) + (  − ) y = 0                                                                           (1.25) 
 (y)  −  (y) + (  − ) y = 0                                                                           (1.26) 

By subtracting (??) from (??) we get 
(  − ) (  − )y = 0 
Since  =  and y = 0 and from Assumption  (b) we have  =  and we 
get  =  a.s. Finally, using the bounded convergence theorem, we obtain 

( , ), ( , ))= +  

                                               =  

 
2 Simulation: 
In this section, a Monte-Carlo simulation was carried out to assess the finite sample performance of the 
estimation approach proposed in Section 2 using R language 3.3.0. In the study, we assume that Z  
Bernoulli (0.5). The failure time T was generated from model (??) with λ0(t) = 1 as shown in the 
following steps. Since F(t|z) = 1 −  = 1 −   then for fixed baseline hazard model, λ(t) 
= 1, we have F(t|z) = 1 −   t =   

Hence, to generate random numbers from additive hazard model, we use the following algorithm. 
Step.1 Generate u  U(0,1). 
Step.2 Compute t =  . 

For the left-truncation time X and the observation time C, they were assumed to follow the unform 
distributions U(0, a) and U(0, b), respectively where the constants a and b are chosen to give 
appropriate percentages of left-truncated and right-censored observations. Table 1 presents the 
simulation results of estimation the parameter β based on 500 replications with β0 = 0.5,1,2, sieve 
number q = 5,9 and sample size n = 200,500. For each setup, the results include the bias (BIAS) given 
by the average of 500 point estimates minus the true value, the sample standard error (SSD) of the 500 
point estimates, the average of 500 estimated standard errors (SEE) using the observed information 
matrix, and the 95% empirical coverage probability. Two methods, A and B, are used to perform 
simulation. In method A, we use Equation (1-17) and (1-18) and in method B, we use Equation (1-19) It 
can be seen from the simulation study that the two methods (using score operator’s functions (A) and 
using the full likelihood function (B)) yield very close results. It can be seen that the estimates seem to 
be unbiased and the sample standard deviation is quite close to the estimated standard error, suggesting 
that the proposed variance estimate is reasonable. The empirical coverage probabilities seemed quite 
close to 95% in all setups. We ao investigated the proposed estimation procedure by considering 
different sieve numbers. It is clearly that different sieve numbers seem to give similar results although a 
large sieve number tends to result in slightly better estimate  
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 3 Application: 
In this section, we apply the results of Section 2 on Stanford Heart transplant data of Crowley and Hu 
(1977)( see for example, Kalbfleisch and Prentice (2002), Apendix I, page 230) as a real-life example. 
From 1967 to 1974, 103 patients were recruited in this study. Among them, 69(67%) patients received a 
transplant and 75(73%) patients died (45 transplanted and 30 not transplanted). Patients who received a 
transplant are treated as two cases, before and after the operation, so cases in the transplant group are in 
general both right-censored and left-truncated. For each individual, we have survival (time since 
acceptance into the transplantation program to transplant and to death), event (patient’s status; censored 
or not), age (age at acceptance), year (year of acceptance), surgery (previous surgery;1 = yes; 0 = no) 
and transplant (1 for received transplant, 0 for not). For the analysis here, we interested on the 188 
patients who were received the transplant (transplant=1) and study the effects of age, year and previous 
surgery on the 
patients’s survival 

time. We apply the proposed procedure given in Section 2 by considering several sieve 12 
numbers (q = 10 or 15). With q = 10, we obtained β ˆ = −0.000657 with the estimated 
standard error of 0.00003, β ˆ = −0.011654 with the estimated standard error of 0.00075, 
and β ˆ = −0.05024 with the estimated standard error of 0.00777, for age, year and surgery, 
respectively. The p-value is less than 0.01 for testing β0 = 0 for all of the covariates. For 
q = 15, the method yielded β ˆ = −0.00043 with the estimated standard error of 0.0003, 
β ˆ = −0.014745 with the estimated standard error of 0.00089 and β ˆ = −0.088059 with 
the estimated standard error of 0.00348. Similarly, the p-value is less than 0.01 for testing 
β0 = 0 for all of the covariates. It can be seen that for all the cases, there are significantly 
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effects of the all covariates on the survival function. Figures ?? and ?? display the estimated cumulative 
hazard and survival functions for the two groups of surgery covariate 
(Z = 0 for no previous surgery and Z = 1, otherwise) using sieve number q = 10 and 
q = 15, respectively. 
q11_sur_HApp.jpg 
Figure 1: Estimated survival and cumulative hazard functions using surgery covariate and q = 10 
q15_sur_HApp.jpg 
Figure 2: Estimated survival and cumulative hazard functions using surgery covariate and  
q =13, 15 
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