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Abstract

To solve fractional order fractional order Burger’s equations, a hybrid technique named
Atangana- Baleanu fractional variational iteration method (ABVIM) has been applied.
Two challenges are overcome to validate and demonstrate the efficacy of the current
process. It is also shown that the results acquired using the suggested technique is
extremely like those obtained using other strategies. For a range of science and engineering
difficulties, the proposed solution has been shown to be efficient, dependable, and simple

to implement.

Keywords: Fractional order Burger’s equations, Fractional variational iteration method,

Atangana- Baleanu fractional operator.
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In recent years, engineering and applied sciences have shown a great deal of
fractional calculation. The principles of fractional calculus are located in [1, 2]. One kind
of differential equations are fractional differential equations, or FDEs, which are
considered a broad kind of differential equations, involve derivatives of any complex or
real order. Fractional partial differential equations can be used to solve a variety of
problems in the real world, and they’ve been discovered to be a tool that’s useful for
interpreting and modeling all areas of science and mathematical applications concerns [5,
6, 8].

The precise and estimated results for PDEs with fractions have recently received a lot
of attention (PDEs). For the solution of fractional PDES, numerous motivated strategies
have been used in this work such as HAM, expansion methods, HATM, FDM, operational
method, VIM, HPM, direct approach, Lie symmetry analysis, DTM, reproducing kernel
method, EDTM, mesh less methods, SVIM, SDM, LHPM, LVIM, and other methods [3-
70]. The goal of this paper is introduce ABFVIM and use it to resolve the fractional order
Burger’s equations. The rest is separated as, in section 2, some FC definitions are giving.
In section 3, the analysis of the ABFVIM is achieved. Examples of ABFVIM are shown in

the section 4. Section 5 is where this paper’s conclusion is found.
. Preliminaries

In this section, we’ll go over some of the most important fractional calculus definitions and

formulas [1, 2, 7].
Definition 1. The ABFD of order « is given as follows [44]:

ABDay(t) = % f E, (%}’Wl) W (x)dox 2.1)
where 0 <a <1 and MEIO) =M(1)=1.

Definition 2. The ABFI of order a defined as follows [44]:
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ABra g, t)— u(t)+ f t—x)%Tu(x)dx. 2.2

) =3 M()F(a)( ( @2

The properties of ABFI is defined as follows:

1. 412 4Bpx 4 (¢) = u(t) —u(0).

AB1 @ —
2. 45 M()(l a+r(a))

a4+ al (k+1) t ).

ABy1 k _
3. Iy " = r(a+k+1)

M()

3. Analysis of FVIM
Consider the following: partial differential equation with fractions
ABD@(g(x,t) )+R g(x,t) +Ng(x, t) = h(x, 1), O<w<1

with the initial condition
g(x,0) = F(x)

where 48D is ABFD , R is the linear differential operator ,N denotes the nonlinear

term,and h(x,t) denotes the source term .

The correctional functional for is approximately expressed as follows :

In+1 (X, t) =9n (X,t) + Aglg) [A(H)(ABDZ)gn (X!H) +Rg(X,,u) +Ng(x1 t) -
h(x.))]

—_—~

where A(u) is general lagrane s multipier. and h are considered as restricted

variations .the relevant adjustment in place and making it functioning and noticing 6§ =

0 and h = 0, we obtain

OGn+1(x,t) = 8gn(x,t) + ABILEO [5/1(11) (ABD;(;)gn(xr .U))]

Or
8gn+1(x, ) = 89, (x, 1) + A8 gn (x,t) — “PIL[6A(W) (P DY gn (x, W))]-
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This produces the stationary conditions
AW =0
1+A(u)=0

There for, we identified A = —1,

Gn+1 (6, 8) =gn (1) + 4B12 [A(w) (PDE g (X.11) +R gy (X,11) +Ngp,
(x, £) —h(x,u))]

Finally ,we have

gxt) =limg,

n—

4. Applications of Applications of Burger’s equations

Example 1: Consider the fractional Burger equation
AEDP g+ 99k = gxxr 0 <@ <1
with initial conditions
g(x,0) =x
Solution: Applying ABFVIM to gets,
Gner (060 = gn (6,0) = f; (F2E2 4 g,(g0)x — (Guax ) A(D®
go (x, 1) = x

9% T
gty =x—[ (% +90(go)x — (go)xx) d(7)®

wt? )
INw+1)

=x—x(1—-w+
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w2 _ wt® ) _ [ _ wt® w2t _
92 (x’ t) X (1 ® + INw+1) 2 (1 w) INw+1) + rCw+1) + [(1
thZw w3t3w
w
rCw+1) TIBw+1)
2 _ wt® ) _ [ _ wt® w2t [ _
gn(X, t) —X-w (1 ® + Iw+1) 2 (1 (1)) INw+1) + rCw+1) + (1
thZw w3t3w
w
rCw+1) TIBw+1)
When w = 1, we have
g t)=x[1—t+t>—--..]
- *
T 1-t
0.3
a(x.t) at w i0.5
e e s ||
a(x.t) exact
0.2+
@ 0.15+ =3
« @ i
4l 6 © e}
~ © =
0.05} <o o~
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Figure 1. Plot of the exact and approximate solutions g(x ,t) for different values of w

with fixed values x=1
Example (2): consider the fractional Burger equation
PDP G, t) = Gux — 2995+ (gW)x =0  0<w <1

ABDfW(x, t) =Wy — 2w, + (gw), =0 0<w<1
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The condition g(x, t) = sinx ,and w(x,0) = sinx
Solution : Aplying ABFVIM, we get

t (0Pgn(x,T w
In+1 (x, t) = gn(xr t) — fo (% - (gn)xx - Zgn(gn)x + (gan)x) d(T)

c’)ﬁwn(x T)

War (68) = i (2,6) = f (T = (W) — 2Wn (W) + (GnWn)z ) d(2)F

go(x, t) = sinx wo(x, t) = sinx

9106 t) = sinx = f3 (FLE2 — (g)., = 290(go)sx + (GoWo)x ) A(D)®

t(t)
F(w+1))

= sinx — sinx(1 — w +

wy (e, ) = sinx — [ (220D (1), — 2wo(wods + (gowo)s ) d(x)P

= sinx —sinx(1 - + F(ﬁ+1))

92(x,t) = sinx + sinx [—w (1 Twt F((:t:)) + F(Ljutfl) (1 et F(Ljutjl))] B

thZw

F(w+1) rw+1)

2sinx cosx ((1 - w)?+2(1 - w) ) + sinx cosx(1 — w +

(1 - w)? +2(1 - w)

) + 2sinx cosx[(1 — w)(1 —B) +

F(a+1) r‘( +1) F(z +1)
,8+w
— —_ 1 —cj — 2
1-—w-B+pw)+ I‘(w+ﬁ+1)] sinx cosx[(l B+ r(ﬁ+1)) ((1 w)“ +
2(1 - w) wt?® w?t?®

MNw+1) TQRw+1)

w,(x, t) = sinx + sinx [—ﬁ (1 -p+ r(ﬁgti)) + F(ngl) (1 -B+ F([;tfl))] -

2sinxcosx((1—B)?> +2(1—p) pef

TED r(zﬁ+1)) + sinxcosx (1 - B+

r([;tfl)) [(A-p)2+2(1-5) F(i?t+1) FfZI§+1)] + 2sinxcosx (1 = w)(1 = §) +
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1-w-B+pw)+ I‘(+—B+1)] — sinxcosx ((1 —w+ e +1)) 1-p)?%+

_ m_BtP B*t?F
2(1 ﬁ) r(g+1) I‘(25+1)) l

gn(x,0) =
1o 5 1) ]
Sinx Sinx w w I'(w+1) MNw+1) w IMNw+1)
wztza)

2sinx cosx ((1 —w)?+2(1 - w) ) + sinx cosx(1 —w +

F(w+1) rQw+1)

)(1 —w)?+2(1—-w)

) + 2sinx cosx[(1 — w)(1 — B) +

F(a+1) F( +1) F(z +1)

] — sinx cosx[(l B+ F(B+1)) ((1 —w)? +

+w

1-w-B+pw)+

r(w+[3+1)

) tZo)

l"(a)+1) rCw+1)

2(1 — w)

wy(x, t) =

sinx+sinx[—ﬁ(1—ﬁ+ 13 )+ at? ( -p+

TETD TETD ) + - ] — 2sinx cosx((1 —

F(B+1)

2 _ gtk B2tk _ Y
B +2(1-p) TETD + F(23+1)) + sinx cosx (1 B+ F(B+1)) [1-pB)+

2(1-p) r([,j;ti) + rfz;;)] + 2sinx cosx [(1 —w)(1-BH+A—-—w—-B+pw)+

thte 1 . _ 2 ptP p2t?k
Tw+pB+1) Sinx cosx ((1 ® + IN'w +1)) (1 ﬁ) T 2(1 ﬁ) r(B+1) F(2ﬁ+1)) +

Where w = 8 = 1, we obtain

In(x, t) = sinx [1 —t+= + ] + 2sinxcosx [t— - —] =sinx et

wy(x,t) = sinx [1 —t+ < + ] + 2sinxcosx [t— — —] = sinxet
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Figure 2. Plot of the exact and approximate solutions W(x ,t) for different values of 8,

with fixed values x=1
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Figure 3. Plot of the exact and approximate solutions g(x ,t) for different values of w, 8

with fixed values x=1
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5. Conclusions

In the idea of the ABFVIM were both shown to be extremely successful in solving FPDESs. The solution is
provided in a series form by the suggested algorithm, if there is an exact solution, it converges quickly. It
is obvious from the findings that the ABFVIM produces solutions that are extremely precise with only a
few iterates. Because of the efficacy and versatility shown in the examples given, ABFVIM can be

operational to higher order FPDEs, according to the findings of this study.
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