DOI: https://doi.org/10.32792/jeps.v14i2.433

A new Kind of Discrete Topological Graphs with Some Properties

Khalid A. Mhawis ${ }^{1, *}$, Akram B. Attar ${ }^{2}$
${ }^{1,2}$ Department of Mathematic, College of Computer Sciences and Mathematics, University of Thi-Qar, Thi-Qar, Iraq.
*Corresponding email: t...khaliaqa1@gmail.com.

Received 12 /2/2024, Accepted 28/2/2024, Published $1 / 6 / 2024$

This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract

In this paper. A new definition of discrete topological graph is introduced. Some properties of this graph are proved. If $n>2$ are evaluated G_{τ} has no pendant vertex, not tree, also the value of the diameter and the minimum degree of G_{τ}. If $n \geq 2, G_{\tau}$ has $(2 n-3)$ complete bipartite induced subgraphs, G_{τ} is connected graph, simple graph, has no odd cycle, the clique number also proved, the value of the radius, the maximum degree and the chromatic number of G_{τ} have been studied.

Keywords: Discrete Topology, Topological Graph, clique number.

1-Introduction

This paper, concerned only with undirected simple graphs. All notations on graphs which are not defined here can be found in $[13,15]$. "Topological graph" is an important branch of graph theory studied the embedding graphs in a plain and surfaces [9]. "A graph G "is a pair (V, E), where $V=V(G)$ is a non-empty set whose elements are called vertices, $E=E(G)$ is a set of elements consists of unordered pairs, these elements are called edges or lines. A "trivial graph" is a graph with order $n=1$. If $n>1$ the graph is nontrivial. A vertex u is incident with edge e in G if e lies on it, also e is incident with u.Two vertices u and v of G are adjacent if there is an edge between them where $\mathrm{e}=u v \in E$. The adjacent edges are two or more edges of G incident with a common vertex more than one edge joined two vertices in the
graph. A "degree" of a vertex u is the number of edges that incident on it, denoted by $d(u)$ or $\operatorname{deg}(u)$. The minimum degree of a graph G denoted by $\delta(G)$ is the smallest degree among all degrees of the vertices in G. The maximum degree of G denoted by $\Delta(G)$ is the largest degree among all degrees of the vertices in G. A"pendant" (end vertex or leaf) vertex is a vertex with degree one. A "subgraph" M of a graph G is a graph in which $V(M) \subseteq V(G)$ and $E(M) \subseteq E(G)$. An induced subgraph $G[M]$ is the subgraph of a graph G which is constructed by all vertices of $M \subseteq V(G)$ and every edge incident on two vertices of M. A complete graph K_{n} is a graph in which each vertex has a degree $n-1$. A "null" graph N_{n} is a graph without edges. A path graph P_{n} of order $n,(n \geq 1)$ and size $n-1$ is a sequence of n non-repeated vertices. A cycle graph C_{n} is a closed path with order and size n. A "bipartite" graph G is a graph with two disjoint vertices sets U_{1} and U_{2} such that any edge of G join one vertex from U_{1} and one vertex from U_{2}. A "complete bipartite" graph $K_{n, m}$ of order $(n+m)$ and size $n m$ is a bipartite graph with vertices sets U_{1} of order n and U_{2} of order m, in which each vertex of U_{1} is adjacent with all vertices of U_{2}. The "distance" between two vertices v and u, is the length of a shortest $v-u$ path, denoted by $d(v, u)$. The "eccentricity" of a vertex v is the maximum distance from it to any other vertex, denoted by $e(v)$, where $e(v)=\max \{d(v, u), u \in V(G)\}$. The diameter of a connected graph G, is the maximum distance between any two vertices denoted by $\operatorname{diam}(G)$. Also, the diameter is the maximum eccentricity among all vertices. The radius is the minimum eccentricity among all vertices of, denoted by rad G. The "clique" is complete induced subgraph of a graph G. The clique number is the order of the maximum clique in G, denoted by $\omega(G)$. Many authors studied the construction of graphs see [1-7]. If (X, τ) be any topological space, so the elements of τ are called open sets. If X be any non-empty set, and let τ be the collection of all subsets of X, where $\tau=P(X)$. Then τ is called the discrete topology on X. The topological space (X, τ) is called discrete topological space[8] .

2. Discrete Topological Graph

Many authors introduced a definition for discrete topological graph.

In [10] . Gave the following definition.

Definition 2.1: Let (X, τ) be a topological space. Define the graph $G_{\tau}=(V, E)$ such that $V=\{u: u \in \tau, u \neq \emptyset, \mathrm{X}\}, E=\left\{u v \in \mathrm{E}\left(\mathrm{G}_{\tau}\right)\right.$ if $u \cap v \neq \emptyset, u \neq v$ and $\left.u, v \in \tau\right\}$. They studied many properties of this graph.

In [16] . Introduced the following definition.
Definition2.2: Let X be not empty set, and τ be a discrete topology on X. The discrete topological graph referred to $G_{\tau}=(V, E)$ is a graph with the vertex set $V=\{A ; A \in \tau$, and $A \neq \emptyset, X\}$, and the edge set
$E=\{A B ; A \nsubseteq B$ and $B \nsubseteq A\}$. They studied different properties of this graph.
In[11]. Also defined the discrete topological graph as follows:
Definition2.3: Let X be a nonempty set, and τ be a discrete topological space. The discrete topological graph referred to $G_{\tau}=(V, E)$ is a graph of vertices set, $V\left(G_{\tau}\right)=\tau-\{\varnothing, X\}$ and the edge set defined by $E=\{A B ; A \subset B\}$.

In this research we introduced a new definition of discrete topological graph, with some examples, and properties of this graph.

Definition 2.4: Let X be a nonempty set, and τ be a discrete topology on X. The discrete topological graph referred to $G_{\tau}=(V, E)$ is a graph with vertex set $V=\{A: \in \tau, A \neq \emptyset\}$, and edge set $E=\{A B:|A|=|B|-1, B \in \tau\}$.

Example 2.1: Let X be not empty set with order n, and τ be discrete topology on X. we draw the discrete topological graphs G_{τ} when $|X|=2,3,4$ and 5 .

If $X=\{1,2\}$, then $\tau=\{\emptyset, X,\{1\},\{2\}\}$, and $V\left(G_{\tau}\right)=\{\{1\},\{2\},\{1,2\}\}$. The discrete topological graph G_{τ} is as in Figure 1.

Figure 1. The discrete topological graph \boldsymbol{G}_{τ} when $|\boldsymbol{X}|=2$.
If $X=\{1,2,3\}$, then $\tau=\{\emptyset, X,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\}$, and $V\left(G_{\tau}\right)=\{\{1\},\{2\},\{3\}$, $\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$. The discrete topological graph G_{τ} is as in Figure 2.

Figure 2. The discrete topological graph G_{τ} when $|X|=3$.
If $X=\{1,2,3,4\}$, then $\tau=\{\emptyset, X,\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\},\{1,2,3\}$,
$\{1,2,4\},\{1,3,4\},\{2,3,4\}\}$ and $V\left(G_{\tau}\right)=\{\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}$, $\{1,2,4\},\{1,3,4\},\{2,3,4\},\{1,2,3,4\}\}$. The discrete topological graph G_{τ} is as in Figure 3.

Figure 3. The discrete topological graph G_{τ} when $|X|=4$.

If $X=\{1,2,3,4,5\}$, then, $\tau=\{\emptyset, X,\{1\},\{2\},\{3\},\{4\},\{5\},\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{2,3\},\{2,4\}$, $\{2,5\},\{3,4\},\{3,5\},\{4,5\},\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,4\},\{1,3,5\},\{1,4,5\},\{2,3,4\},\{2,3,5\},\{3,4,5\}$ $,\{1,2,3,4\},\{1,2,3,5\},\{1,2,4,5\},\{1,3,4,5\},\{2,3,4,5\}\}$, and $\mathrm{V}\left(G_{\tau}\right)=\{\{1\},\{2\},\{3\},\{4\},\{5\},\{1,2\} .\{1,3\}$, $\{1,4\},\{1,5\},\{2,3\},\{2,4\},\{2,5\},\{3,4\},\{3,5\},\{4,5\},\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,4\},\{1.3 .5\},\{1,4,5\},\{2,3,4\}$, $\{2,3,5\},\{2,4,5\},\{3,4,5\},\{1,2,3,4\},\{1,2,3,5\},\{1,2,4,5\},\{1,3,4,5\},\{2,3,4,5\},\{1,2,3,4,5\}\}$. The discrete topological graph G_{τ} is as in Figure 4.

Figure 4. The discrete topological graph G_{τ} when $|X|=5$.

Where $u_{1}=\{1\}, u_{2}=\{2\}, u_{3}=\{3\}, u_{4}=\{4\}, u_{5}=\{5\}, u_{6}=\{1,2\}, u_{7}=\{1,3\}, u_{8}=\{1,4\}, u_{9}=\{1,5\}, u_{10}=\{2,3\}$, $u_{11}=\{2,4\}, u_{12}=\{2,5\}, u_{13}=\{3,4\}, u_{14}=\{3,5\}, u_{15}=\{4,5\}, u_{16}=\{1,2,3\}, u_{17}=\{1,2,4\}, u_{18}=\{1,2,5\}$,
$u_{19}=\{1,3,4\}, u_{20}=\{1,3,5\}, u_{21}=\{1,4,5\}, u_{22}=\{2,3,4\}, u_{23}=\{2,3,5\}, u_{24}=\{2,4,5\}, u_{25}=\{3,4,5\}, u_{26}=\{1,2,3,4\}$, $u_{27}=\{1,2,3,5\}, u_{28}=\{1,2,4,5\}, u_{29}=\{1,3,4,5\}, u_{30}=\{2,3,4,5\}, u_{31}=\{1,2,3,4,5\}$.

3. Some Propeies of Discrete Topological Graph.

Here, some properties of discrete topological graph are proved.

Proposition 3.1: Let X be not empty set with order $\mathrm{n} \geq 2$ and τ be discrete topology on X. Then
the discrete topological graph $G_{\tau} \cong P_{F, H}$ where F is the order of the set of odd cardinality in G_{τ}, and H is the order of the set of even cardinality in G_{τ}, and each of $\mathrm{m}, \mathrm{h} \leq n$.
$F=\binom{n}{1}+\binom{n}{3}+\ldots+\binom{n}{m}, \quad m$ is odd.
$H=\binom{n}{2}+\binom{n}{4}+\ldots+\binom{n}{h}, \quad h$ is even.
Proof: Let $X=\{1,2, \ldots, \mathrm{n}\}$ be a set of order $\mathrm{n} \geq 2$, and τ be the discrete topology on X. Let $G_{\tau}=$ (V, E) be discrete topological graph on X. Then by Definition $2.4 V=\{: A \in \tau, A \neq \varnothing\}$.

Let F be the family of sets of odd cardinality in V, and H be the family of sets of even cardinality in V. By Definition 2.4, each edge in G_{τ} is join a vertex in a set of odd cardinality to a vertex in a set of even cardinality in V. No vertex in a set of odd cardinality join to a vertex in a set of odd cardinality, similarly no vertex in a set of even cardinality join to a vertex of even cardinality, That is the elements in the sets of odd cardinality F are disjoint, and the elements in the sets of even cardinality H are disjoint. Thus the vertices in G_{τ} can be partition into two subsets F and H such that each edge in G_{τ} join a vertex in F to a vertex in H, and $G_{\tau} \cong P_{F, H}$.

To explain proposition 3.1, we give the following example.
Example 3.1: If $|X|=4$, then $V\left(G_{\tau}\right)=\{\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\},\{1,2,3\}$, $\{1,2,4\},\{1,3,4\},\{2,3,4\},\{1,2,3,4\}\}$, and the sets of vertices of the bipartite graph $P_{F, H}$ are, $F=\{\{1\},\{2\}$, $\{3\},\{4\},\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\}\}, H=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\},\{1,2,3,4\}\}$. The bipartite graph $P_{F, H}$ as in Figure 5.

Figure 5. The bipartite graph $P_{F, H}$ when $|X|=4$.
Proposition 3.2: Let X be not empty set of order $n,(n \geq 2)$ and τ be discrete topology on X. Then the size and order of discrete topological graph $G_{\tau}=(V, E)$ are :
$|E|=\mathrm{n}\binom{n}{2}+\binom{n}{2}\binom{n}{3}+\ldots+\binom{n}{n-1}\binom{n}{n}$, and
$|V|=\mathrm{n}+\binom{n}{2}+\binom{n}{3}+\ldots+\binom{n}{n-1}+1$
Proof: Let $\left|F_{i}\right|=\binom{n}{i}$ and $\left|H_{j}\right|=\binom{n}{j}$ where i is odd and j is even. From Definition 2.4, each vertex in F_{1} is adjacent to every vertex of H_{2}, and each vertex in H_{2} is adjacent to every vertex of F_{3} and so on up to each vertex in F_{n-1} is adjacent to vertex of H_{n}. That is, the number of edges which are joined F_{1} with H_{2} is $\mathrm{n}\binom{n}{2}$ and the number of edges which are joined H_{2} with F_{3} is $\binom{n}{2}\binom{n}{3}$, and by repeating this process up to F_{n-1} and H_{n} are joined by $\binom{n}{n-1}\binom{n}{n}$ edges. Then the total number of edges in G_{τ} is $|E|=\mathrm{n}\binom{n}{2}+\binom{n}{2}$ $\binom{n}{3}+\ldots+\binom{n}{n-1}\binom{n}{n}$. As G_{τ} is discrete topological graph, then $|V|=n+\binom{n}{2}+\binom{n}{3}+\ldots+\binom{n}{n-1}+1$.

Proposition 3.3: Let $|X|=n$, and G_{τ} be a discrete topological graph on X. Then G_{τ} has $2 \mathrm{n}-3$ complete bipartite induced subgraphs.

Proof: Let $x_{1}, x_{2}, \ldots, x_{n}$ be the sets of vertices in G_{τ} of cardinality $1,2, \ldots, \mathrm{n}$ respectively. To find the complete bipartite induced subgraphs in G_{τ} we have only two cases:
Case i: By Definition 2.4, each vertex in x_{1} is adjacent to every vertex in x_{2}, and the vertices in x_{1} are independent and the vertices in x_{2} are independent. Thus the subgraph which induced by the sets of vertices x_{1} and x_{2} is complete bipartite subgraph $K_{\left|x_{1}\right|,\left|x_{2}\right|}$, similarly for subgraphs induced by $\left\{x_{2}, x_{3}\right\}$
, $\left\{x_{3}, x_{4}\right\}, \ldots,\left\{x_{n-1}, x_{n}\right\}$. Hence the total subgraphs in this case are $n-1$ complete bipartite induced subgraphs.

Case ii: As each vertex in x_{1} is adjacent to every vertex in x_{2} and each vertex in x_{3} is adjacent to every vertex in x_{2}. By Definition 2.4, no vertex in x_{1} is adjacent to a vertex in x_{3}, and the vertices in each of x_{1}, x_{2}, x_{3} are disjoint. Then the induced subgraph induced by x_{1}, x_{2}, x_{3} is complete bipartite subgraph. Similarly for the induced subgraphs induced by x_{2}, x_{3}, x_{4} and $x_{3}, x_{4}, x_{5}, \ldots, x_{n-2}, x_{n-1}, x_{n}$. Then the total number of induced complete bipartite subgraphs in this case is $n-2$. Then the total number of induced complete bipartite subgraphs in the discrete topological graph G_{τ} is $(n-1)+(n-2)=2 n-3$.

Theorem 3.4[14]: A connected graph G is bipartite if and only if G has no odd cycle.
Theorem 3.5 [14]: Let G, be a graph and for each $\mathrm{v} \in G, \mathrm{~d}(\mathrm{v}) \geq 2$. Then G contains a cycle.
Proposition 3.6: Let $|X|=\mathrm{n},(\mathrm{n} \geq 2)$ and G_{τ} be discrete topological graph on X. Then
(i) The discrete topological graph G_{τ} has no pendant vertex for $\mathrm{n} \geq 3$.
(ii) G_{τ} is connected graph.
(iii) G_{τ} has no odd cycle
(iv) G_{τ} is not tree for $n>2$.
(v) G_{τ} is simple graph.

Proof:

(i) If $\mathrm{n}=2$, then by Definition $2.4, G_{\tau} \cong P_{3}$ and G_{τ} has two pendant vertices.

Suppose that $\mathrm{n} \geq 3$. Then G_{τ} has n singleton elements. Let v be a singleton element in G_{τ}. By Definition 2.4, v is adjacent to $\binom{n}{2}$ elements. As $\mathrm{n} \geq 3$, then H_{2} has at least 3 elements, that is v is adjacent to at least 3 elements, and $d(v)$ is at least 3 . Hence no vertex with singleton element is pendent. Similarly let \mathfrak{u} be any set in G_{τ} with order $|\mathfrak{u}|>1$. Then by Definition 2.4, each vertex in U is adjacent to every vertex in a set of order $|u|+1$ and adjacent by every vertex in a set of order $|\mathfrak{u}|-1$. As $n \geq 3$, then the $\mathrm{d}(\mathrm{u}) \geq 3$, and G_{τ} has no pendent vertex.
(ii) Follows from Definition 2.4.
(iii) From (ii) G_{τ} is connected, by proposition 3.1, G_{τ} is bipartite. Then by Theorem 3.4. G_{τ} has no odd cycle.
(iv) From (i) the minimum degree in the topological graph G_{τ} when $n>2$ is greater than 2 . Then by Theorem 3.5, G_{τ} contains a cycle. Hence G_{τ} is not tree
(v) Follows from Definition 2.4.

Proposition 3.7: Let $|X|=\mathrm{n}, \mathrm{n}>2$ and G_{τ} be a discrete topological graph on X. Then
$\Delta\left(G_{\tau}\right)= \begin{cases}\binom{n}{\frac{n}{2}-1}+\binom{n}{\frac{n}{2}+1} & \text { if } \mathrm{n} \text { even } \\ \binom{n}{\left[\frac{n}{2}\right]-1}+\binom{n}{\left.\frac{n}{2} \right\rvert\,+1} & \text { if } \mathrm{n} \text { odd }\end{cases}$
and $\delta\left(G_{\tau}\right)=\mathrm{n}$
Proof: Let $|X|=\mathrm{n}$, and $G_{\tau}=(V, E)$ be discrete topological graph on X. By Definition 2.4,
$V=\{A: A \in \tau, A \neq \varnothing\}$.
Let A_{1} be the family sets of V with singleton element;
A_{2} be the family sets of V with two elements;
:
A_{n-1} be the family sets of V with $n-1$ elements.
A_{n} be the family sets of V with n elements.
Then the order of $A_{1}, A_{2}, \ldots, A_{n-1}, A_{n}$ is $\binom{n}{1},\binom{n}{2}, \ldots,\binom{n}{n-1},\binom{n}{n}$ respectively
If $\mathrm{n}=2$, then $G_{\tau \cong} P_{3}$ and $\Delta\left(G_{\tau}\right)=2$, and $\delta\left(G_{\tau}\right)=1$.
Now, if n is even, then the family sets $A_{\frac{n}{2}}$ has maximum order, and the order of the other family sets arranged in decreasing order from the right side of $A_{\frac{n}{2}}$. That is

$$
\left.\begin{array}{rl}
\left|A_{\frac{n}{2}}\right| & >\left|A_{\frac{n}{2}-1}\right|>\ldots>\left|A_{2}\right|>\left|A_{1}\right| \tag{1}\\
\left|A_{\frac{n}{2}}\right|>\left|A_{\frac{n}{2}+1}\right|>\ldots & >\left|A_{n-1}\right|>\left|A_{n}\right|
\end{array}\right\}
$$

So the elements of $A_{\frac{n}{2}}$ has the maximum degrees, as each element in $A_{\frac{n}{2}}$ is adjacent by
$\binom{n}{\frac{n}{2}-1}$ elements in $A_{\frac{n}{2}-1}$ and adjacent to $\binom{n}{\frac{n}{2}+1}$ elements in $A_{\frac{n}{2}+1}$, Therefore the degree of any element in $A_{\frac{n}{2}}$ is equal to $\binom{n}{\frac{n}{2}-1}+\binom{n}{\frac{n}{2}+1}$ which is the maximum degree in G_{τ}.

If n is odd, then the family of sets $A_{\left[\frac{n}{2}\right]}$ and $A_{\left[\frac{n}{2}\right]}$ has the same order, and the order of the other family of sets arranged in non-decreasing order from the right side of $A_{\left\lfloor\frac{n}{2}\right\rfloor}=A_{\left[\frac{n}{2}\right\rceil}$ the two families $A_{\left\lfloor\frac{n}{2}\right\rfloor}$ and $A_{\left[\frac{n}{2}\right]}$ that is

$$
\left.\begin{array}{l}
\left|A_{\left[\frac{n}{2}\right]}\right|=\left|A_{\left[\frac{n}{2}\right]}\right|>\left|A_{\left[\frac{n}{2}\right]-1}\right|>\ldots>\left|A_{2}\right| \geq\left|A_{1}\right| \tag{2}\\
\left|A_{\left[\frac{n}{2}\right]}\right|=\left|A_{\left[\frac{n}{2}\right]}\right|>\left|A_{\left[\frac{n}{2}\right]+1}\right|>\ldots>\left|A_{n-1}\right|>\left|A_{n}\right|
\end{array}\right\}
$$

So if we take the family $A_{\left\lceil\frac{n}{2}\right\rceil}$, the elements in $A_{\left\lceil\frac{n}{2}\right\rceil}$ has the maximum degree, as each element in $A_{\left\lceil\frac{n}{2}\right\rceil}$ is adjacent by $\binom{n}{\left[\frac{n}{2}\right]-1}$ and adjacent to $\binom{n}{\left[\frac{n}{2}\right]+1}$. Similarly if we take $A_{\left[\frac{n}{2}\right]}$. For the minimum degree in G_{τ}, from (1) and (2) we can see that the family set A_{1} has only n singleton elements and each of them is adjacent to $\binom{n}{2}$ elements in A_{2}, and A_{n} unique vertex with order n , and this vertex is adjacent by $\binom{n}{n-1}$ the elements of $A_{\mathrm{n}-1}$. Now, we discuss with the following cases:

Case 1: if $|X|=2, G_{\tau \cong} P_{3}$ and each element of A_{1} has degree 1 which is the minimum degrees in G_{τ}.
Case 2: If $|X|=3$, then A_{1} has 3 elements each of them is adjacent to the 3 elements in A_{2}. That is the degree of each vertex in A_{1} is 3 , also A_{n} have one vertex only and it is adjacent by 3 elements in A_{2}. That is the degree of the element of A_{n} is 3 . Thus the minimum degree in G_{τ} when $|X|=3$ lies in A_{1} and A_{n}, and in each of them is equal to 3 .

Case 3: If $|X|>3$, in this case and by using the inequalities 1 and 2 above the vertex in A_{n} has the minimum degree of G_{τ}. As A_{n} has only one vertex which is adjacent by $\binom{n}{n-1}$ the elements of A_{n-1}, that is the degree of A_{n} is n.

Theorem 3.8 [13]: Let G be a graph. Then $\chi(G)=2$ if and only if G is bipartite.
Proposition 3.9: Let $|X|=n,(n \geq 2), G_{\tau}$ be a discrete topological graph on X. Then
(i) $\operatorname{Rad}\left(G_{\tau}\right)=\left\lfloor\frac{n}{2}\right\rfloor$
(ii) $\operatorname{Diam}\left(G_{\tau}\right)=n-1$ for $n>2$.
(iii) The chromatic number $\chi\left(G_{\tau}\right)=2$.
(iv) The clique number $\omega(G)=2$.

Proof: Let $A_{1}, A_{2}, \ldots, A_{n}$ be the sets of V in G_{τ}. Then by Definition 2.4, we can see that the eccentricity of the elements of A_{1} are equals. Similarly for the elements of $A_{2}, A_{3}, \ldots, A_{n}$.

Now we discuss two cases:

Case 1: If n is odd, then the eccentricity of any vertex in $A_{\left\lceil\frac{n}{2}\right\rceil}$ is $\left\lfloor\frac{n}{2}\right\rfloor$ and the eccentricity of the elements of G_{τ} is arranged in increasing order from the left and right sides of $\left\lfloor\frac{n}{2}\right\rfloor$ i.e.
$\mathrm{e}\left(\mathrm{v} \in A_{1}\right)>\cdots>e\left(\mathrm{v} \in A_{\left\lceil\frac{n}{2}\right]-2}\right)>\mathrm{e}\left(\mathrm{v} \in A_{\left\lceil\frac{n}{2}\right]-1}\right)>\mathrm{e}\left(\mathrm{v} \in A_{\left\lceil\frac{n}{2}\right\rceil}\right)<\mathrm{e}\left(\mathrm{v} \in A_{\left[\frac{n}{2}\right\rceil+1}\right)<\cdots<\mathrm{e}\left(\mathrm{v} \in A_{n}\right)$.
Then the minimum eccentricity in G_{τ} is in the elements of $A_{\left\lceil\frac{n}{2}\right\rceil}$ and is equal to $\left\lfloor\frac{n}{2}\right\rfloor$. and the maximum eccentricity of G_{τ} is in the elements of A_{1} or the vertex of A_{n} which is equal to $n-1$. Hence $\operatorname{rad}\left(G_{\tau}\right)=$ $\left\lfloor\frac{n}{2}\right\rfloor$ and $\operatorname{diam}\left(G_{\tau}\right)=n-1$ in this case.

Case 2: If n is even, then the eccentricity of any elements in $A_{\frac{n}{2}}$ and $A_{\frac{n}{2}+1}$ is $\frac{n}{2}$, and the eccentricity of the other elements of G_{τ} is arranged in increasing order from the left and right sides of $A_{\frac{n}{2}}=A_{\frac{n}{2}+1}$; i.e. $\mathrm{e}\left(\mathrm{v} \in A_{1}\right)>\cdots>\mathrm{e}\left(\mathrm{v} \in A_{\frac{n}{2}-1}\right)>\mathrm{e}\left(\mathrm{v} \in A_{\frac{n}{2}}\right)=\mathrm{e}\left(\mathrm{v} \in A_{\frac{n}{2}+1}\right)<\mathrm{e}\left(\mathrm{v} \in A_{\frac{n}{2}+2}\right)<\ldots<\mathrm{e}\left(\mathrm{v} \in A_{n}\right)$.

Then the minimum eccentricity in G_{τ} is in the elements of $A_{\frac{n}{2}}$ or in the elements of $A_{\frac{n}{2}+1}$ which is equal to $\frac{n}{2}$. And the maximum eccentricity of G_{τ} in the elements of A_{1} and the vertex of A_{n} which is equal to $n-$ 1. Hence $\operatorname{rad}\left(G_{\tau}\right)=\frac{n}{2}$ and diam $\left(G_{\tau}\right)=n-1$ in this case, and (i), (ii) are proved.

To prove (iii). The proof is follows from Proposition 3.1 and Theorem 3.8.
(iv) Since each of the set $A_{1}, A_{2}, \ldots, A_{n}$ is independent set, then the prooph is follows.

REFERENCES

[1] A. B. Attar and A. A. Alwan, "Subdividing Extension of Eulerian Graph ", Journal of Zankoy Sulaimani part. Vol.17, No.1, 2015.
[2] A. B. Attar and A. A. Alwan," Further Pegults on Extension Graphs an Digraphs" , Modern Scientific research and their practical application, 21414, 4-9, June 2014.
[3] A. B. Attar, "Subdividing Operation on Extension of Graphs ", International Journal of Innovation in Sciences and Mathematics (IJISM), Vol. 2, Issue. 4, (online) 2347-9051, 2014.
[4] A. B. Attar," On Removable cycles Graphs and Digraphs", Caspian Journal of Mathematical Sciences (CJMS), 1.1, 20-26, 2012.
[5] A. B. Attar, "Edge Extensibility of Graphs and Digraphs", Journal of Mathematics and Computer Science, Vol.3, No. 1, 1-10, 2011.
[6] A. B. Attar, " Characterization the Dehtable set of vertices in the (P-3)-Rergular", Journal of Mathematics and Computer Science, Vol. 3, No. 2,156-164, 2011.
[7] A. B. Attar, "Contractibility of Bipartite Graphs ", J. Uni. Thi-qar. Vol.3, No.1, 13-22, 2007.
[8] M. C. Gemignani," Elementry Topology", Courier Corporation, 1990.
[9] J. L. Gross and Tuker. T. W, "Topological graph theory". Courier Corporation, 2001.
[10] A. A. Jabor and A. A. Omran, "Domination in Discrete Topology Graph ", AIP Conference Procedings, 2183.1, 030006, 2019.
[11] M. K. Idan and M, A. Abdlhusein," Different types of dominating sets of the discrete topological graph", (IJNAA), 14.1, 101-108, 2023.
[12] S. A. Morris, "Topology without Tears", university of New England, 1989.
[13] M. S. Rahman, "Basic Graph Theory", Springerm India,9, 2017.
[14] D. B.West," Introduction to graph theory",(second Edition), prendice Hall, USA, 2001.
[15] R. J Wilson," Graph Theory", fourth edition, Longman, 1996.
[16] Z. N. Jwair, and M. A. Abdlhusein," Some results of domination on the Discrete topological graph with its inverse", Int. J Nonlinear Anal. Appl. In Press. 1- 7. 2022.

