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Abstract 

     In this paper, we are concerned with finding approximate solutions to biological population model by 

using fractional Adomian decomposition method (FADM). The presented method is considered in the 

Atangana-Baleanu fractional derivative operator (ABFDO). By using an initial value, the explicit solution 

of the equation has been presented in the closed form and then its numerical solution has been represented 

graphically. The present method performs extremely well in terms of efficiency and simplicity. 

Keywords: Fractional biological population model; Atangana-Baleanu fractional operator; Adomian 

decomposition method.  

 

1. Introduction 

                  Fractional calculus has attracted significant interests in the field of engineering and applied 

sciences in the last few years. The elementary knowledge of fractional calculus can be found in [1,2]. 

Fractional differential equations contain derivatives of any complex or real order, being considered as 

general form of differential equations. The comprehensive applications in real world problems are 

described by fractional partial differential equation and it is found to be an effective tool in interpretation 

and modeling of numerous problems appear in physics and applied mathematics [3-5]. 
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          Recently, a great effort has been expended to develop the exact and approximate behavior of 

fractional partial differential equations (PDEs). In this effort several enthusiastic methods have been 

applied for the solution of fractional PDEs such as homotopy analysis method, expansion methods, 

homotopy analysis transform method, fractional difference method, operational method, variational 

iteration method, homotopy perturbation method, direct approach, Lie symmetry analysis, differential 

transform method, reproducing kernel method, extended differential transform, method, mesh less 

methods, Sumudu variational iteration method, Sumudu decomposition method, Laplace homotopy 

perturbation method, and Laplace variational iteration method and another methods [5-82].  

2. Preliminaries 

Definition 1. Suppose that the function 𝒰 ∈ 𝐻1(ℰ1, ℰ2), ℰ1 > ℰ2,  then the Atangana-Baleanu 

operator in Caputo sense of 𝒰 at 0 < 𝒶 < 1 is, 

  

𝒟𝒜ß
𝒯
𝒶𝒰(𝒯) =

ß(𝒶)

1 − 𝒶
∫ E𝒶 (−

𝒶(𝒯 − 𝛿)𝒶

1 − 𝒶
) 𝒰′(𝛿)d𝛿 ,   𝒯 ≥ 0

t

0

,                            (2.1) 

where ß(𝒶) is a function such that  ß(0) = ß(1) = 1 and 𝒰′(𝛿) is the derivative of 𝒰. 

 

Definition 2. The Atangana-Baleanu fractional integral (ABFI) of order 𝛼 defined as follows  

   𝐼 𝒯
𝛼 𝒰(𝒯)𝑎 

𝒜ß =
1 −  𝛼

𝑀 ( 𝛼 )
𝒰(𝒯) +

𝛼

𝑀 ( 𝛼 )
  

1

𝛤 (𝛼 )
  ∫( 𝒯 − 𝑥 )𝛼−1 𝒰(𝑥) 𝑑𝑥 

𝒯

𝑎

       (2.2) 

     The properties of  ABFI  is defined as follows:  

       1.  𝐼 𝑡
𝛼 𝒟 

𝒜ß
𝒯

𝒶
  𝒰(𝒯)𝑎 

𝐴𝐵    =  𝒰(𝒯) − 𝒰(𝑎).  

       2.  𝐼 𝒯
𝛼  𝑐 =  

𝑐

𝑀 ( 𝛼 )
 ( 1 −  𝛼 +  

𝒯𝛼

ᴦ(𝛼 )
 )𝑎 

𝐴𝐵    .  

       3.  𝐼 𝒯
𝛼   𝒯𝑘  =  

𝒯𝑘

𝑀 ( 𝛼 )
 ( 1 −  𝛼 +  

𝛼 𝛤 ( 𝑘+1 )   𝒯𝛼

𝛤(𝛼+𝑘+1 )
 )𝑎 

𝐴𝐵  . 

 

3. Analysis of FADM 

Let us consider the following fractional partial differential equation: 

       𝐷𝑎
𝐴𝐵

𝒯
𝛼  𝒰(𝒳, 𝒴, 𝒯) + 𝑅 𝒰(𝒳, 𝒴, 𝒯) + 𝑁 𝒰(𝒳, 𝒴, 𝒯) = 𝑔 (𝒳, 𝒴, 𝒯),   0 < 𝛼 < 1, 𝒯 > 0,         (3.1) 

with respect to the initial condition 
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𝒰(𝒳, 𝒴, 0) = 𝑓(𝒳, 𝒴),                                                                                       (3.2) 

where 𝐷𝑎
𝐴𝐵

𝒯
𝛼  𝒰(𝒳, 𝒴, 𝒯) Atangana-Baleanu fractional operator. 

        The technique is based on using the operator 𝐼 𝒯
𝛼  𝑎 

𝐴𝐵 , and operator's inverse 𝐷𝑎
𝐴𝐵

𝒯
𝛼 on both sides of Eq. 

(3.1) to have  

       𝐼𝑎
𝐴𝐵

𝒯
𝛼 { 𝐷𝑎

𝐴𝐵
𝒯
𝛼  𝒰(𝒳, 𝒴, 𝒯)} =  𝐼 𝑎 

𝐴𝐵
𝒯
𝛼[𝑔(𝒳, 𝒴, 𝒯)] −   𝐼 𝑎 

𝐴𝐵
𝒯
𝛼  [𝑅 𝒰(𝒳, 𝒴, 𝒯) + 𝑁 𝒰(𝒳, 𝒴, 𝒯)], 

or equivalent   

𝒰(𝒳, 𝒴, 𝒯) = 𝒰(𝒳, 𝒴, 0) +  𝐼 𝑎 
𝐴𝐵

𝒯
𝛼  [𝑔(𝒳, 𝒴, 𝒯)] −   𝐼 𝑎 

𝐴𝐵
𝒯
𝛼  [𝑅 𝒰(𝒳, 𝒴, 𝒯) + 𝑁 𝒰(𝒳, 𝒴, 𝒯)]      (3.4) 

The infinite series shown here reflects the ADM solution of 𝒰(𝒳, 𝒴, 𝒯)as 

𝒰(𝒳, 𝒴, 𝒯) = ∑ 𝒰𝑛(𝒳, 𝒴, 𝒯),             

∞

𝑛=0

                                                                  (3.5) 

       The problem's nonlinear term may be written as an Adomian polynomial as follows: 

𝑁 𝒰(𝒳, 𝒴, 𝒯) = ∑ 𝐴𝑛,                                                                                                (3.6)

∞

𝑛=0

 

where 

𝐴𝑛 =
1

𝑛!
[

𝜕𝑛

𝜕𝜔𝑛
𝑁 (∑ 𝜔𝑖𝑢

𝑖

𝑛

𝑖=0

)]

𝜔=0

.                                                   

We get Eq. (3.4) by combining Eq. (3.5) and Eq. (3.6) 

∑ 𝒰𝑛(𝒳, 𝒴, 𝒯)

∞

𝑛=0

= 𝑓(𝒳, 𝒴) +  𝐼 𝑎 
𝐴𝐵

𝑡
𝛼  [𝑔(𝒳, 𝒴, 𝒯)] −   𝐼 𝑎 

𝐴𝐵
𝒯
𝛼  [𝑅 (∑ 𝒰𝑛

∞

𝑛=0

)  + ∑ 𝐴𝑛

∞

𝑛=0

].   (3.7) 

We present recursive relations as a continuation of the ADM, 

𝒰0(𝒳, 𝒴, 𝒯)  = 𝑓(𝒳, 𝒴) +  𝐼 𝑎 
𝐴𝐵

𝒯
𝛼  [𝑔(𝒳, 𝒴, 𝒯)],                                                                                       

  𝒰𝑛+1(𝒳, 𝒴, 𝒯)   =  −  𝐼 𝑎 
𝐴𝐵

𝒯
𝛼  [𝑅 (𝒰𝑛(𝒳, 𝒴, 𝒯)) + 𝐴𝑛 ], 𝑛 ≥ 0.                                                          (3.8)  

Consequently, the solution for the series is 

𝒰𝑛(𝒳, 𝒴, 𝒯) = 𝒰0(𝒳, 𝒴, 𝒯) + 𝒰1(𝒳, 𝒴, 𝒯) + 𝒰2(𝒳, 𝒴, 𝒯) + ⋯ 

4.  Applications 

Example 1. Consider the following population model with the Atangana-Baleanu operator 

𝒟 
𝒜ß

𝒯
𝒶 𝒰(𝒳, 𝒴, 𝒯) =

∂2 𝒰2

∂𝒳2
+

∂2 𝒰2

∂𝒴2
+ 𝒰   ,   0 < 𝒶 ≤ 1,                             (4.1) 

subject to the initial condition  𝒰(𝒳, 0) = √𝒳𝒴.  

        Using the operator   𝐼 𝒯
𝛼  𝑎 

𝐴𝐵 , on both sides of Eq. (4.1), we have 

𝐼 𝒯
𝛼   

𝐴𝐵 [ 𝒟 
𝒜ß

𝒯
𝒶 𝒰(𝒳, 𝒴, 𝒯) =

∂2 𝒰2

∂𝒳2 +
∂2 𝒰2

∂𝒴2 + 𝒰],                                           (4.2)                  
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or 

𝒰(𝒳, 𝒴, 𝒯) = √𝒳𝒴 + 𝐼 𝒯
𝛼   

𝐴𝐵 [
∂2 𝒰2

∂𝒳2
+

∂2 𝒰2

∂𝒴2
+ 𝒰].                              (34) 

Suppose that  

                 𝒰(𝒳, 𝒴, 𝒯) = ∑ 𝒰𝑛(𝒳, 𝒴, 𝒯), 𝒰2 = ∑ ℋ𝑛

∞

𝑛=0

 

∞

𝑛=0

 

 

 

ℋ0 = 𝒰0
2, 

ℋ1 = 2𝒰0𝒰1, 

ℋ2 = 2𝒰0𝒰1 + 𝒰1
2. 

⋮ 

Thus,  

∑ 𝒰𝑛

∞

𝑛=0

= √𝒳𝒴 + 𝐼 𝒯
𝛼   

𝐴𝐵 [
∂2 

∂𝒳2
∑ ℋ𝑛

∞

𝑛=0

+
∂2 

∂𝒴2
∑ ℋ𝑛

∞

𝑛=0

− ∑ 𝒰𝑛

∞

𝑛=0

].    (35) 

By comparing both sides of the Eq.(35), the following result is obtained, 

 

𝒰0(𝒳, 𝒯) = 𝒰(𝒳, 0), 

𝒰1(𝒳, 𝒯) = 𝐼 𝒯
𝛼   

𝐴𝐵 [
∂2 

∂𝒳2
ℋ0 +

∂2 

∂𝒴2
ℋ0 − 𝒰0], 

𝒰2(𝒳, 𝒯) = 𝐼 𝒯
𝛼   

𝐴𝐵 [
∂2 

∂𝒳2
ℋ1 +

∂2 

∂𝒴2
ℋ1 − 𝒰1], 

𝒰3(𝒳, 𝒯) = 𝐼 𝒯
𝛼   

𝐴𝐵 [
∂2 

∂𝒳2
ℋ2 +

∂2 

∂𝒴2
ℋ2 − 𝒰2]. 

⋮ 

By the above algorithms, 

𝒰0(𝒳, 𝒯) = √𝒳𝒴, 

𝒰1(𝒳, 𝒯) = −𝑎√𝑥𝑦 + √𝑥𝑦 +
√𝑥𝑦𝑡𝑎

Γ(𝑎)
, 

𝒰2(𝒳, 𝒯) = 𝑎2√𝑥𝑦 − 2𝑎√𝑥𝑦 +
√𝑥𝑦√𝜋𝑎(𝑡𝑎)2

(2𝑎)2Γ(𝑎)Γ(1/2 + 𝑎)
+ √𝑥𝑦 + 2

√𝑥𝑦𝑡𝑎

Γ(𝑎)
− 2

√𝑥𝑦𝑎𝑡𝑎

Γ(𝑎)
 , 

𝒰3(𝒳, 𝒯) =
2

3

√𝑥𝑦𝜋(𝑡𝑎)3𝑎2√3

Γ(𝑎)Γ (𝑎 +
1
3) Γ (𝑎 +

2
3) 27𝑎

− 3
√𝑥𝑦√𝜋(𝑡𝑎)2𝑎2

4𝑎Γ(𝑎)Γ (
1
2 + 𝑎)

− √𝑥𝑦𝑎3 

         +3
√𝑥𝑦√𝜋(𝑡𝑎)2𝑎

4𝑎Γ(𝑎)Γ(1/2 + 𝑎)
+ 3𝑎2√𝑥𝑦 + 3

√𝑥𝑦𝑡𝑎𝑎2

Γ(𝑎)
− 3𝑎√𝑥𝑦 − 6

√𝑥𝑦𝑡𝑎

Γ(𝑎)
+ √𝑥𝑦 + 3

√𝑥𝑦𝑡𝑎

Γ(𝑎)
, 

and so on. 

http://jceps.utq.edu.iq/
mailto:jceps@eps.utq.edu.iq


Journal of Education for Pure Science- University of Thi-Qar 
Vol14, No. 2 (2024) 

Website: jceps.utq.edu.iq                                                                                                      Email: jceps@eps.utq.edu.iq 

  80 

Therefore, the series solution 𝒰(𝒳, 𝒯) of Eq.(3.1) is given by 

𝒰(𝒳, 𝒯) = −√𝑥𝑦𝑎3 + 4√𝑥𝑦 − 6𝑎√𝑥𝑦 + 6
√𝑥𝑦𝑡𝑎

Γ(𝑎)
+ 4𝑎2√𝑥𝑦 +

√𝑥𝑦√𝜋(𝑡𝑎)2𝑎

(2𝑎)2Γ(𝑎)Γ (
1
2 + 𝑎)

 

−8
√𝑥𝑦𝑎𝑡𝑎

Γ(𝑎)
+ 3

√𝑥𝑦𝑡𝑎𝑎2

Γ(𝑎)
+

2

3

√𝑥𝑦𝜋(𝑡𝑎)3𝑎2√3

Γ(𝑎)Γ (𝑎 +
1
3) Γ (𝑎 +

2
3) 27𝑎

− 3
√𝑥𝑦√𝜋(𝑡𝑎)2𝑎2

4𝑎Γ(𝑎)Γ (
1
2 + 𝑎)

 

+3
√𝑥𝑦√𝜋(𝑡𝑎)2𝑎

4𝑎Γ(𝑎)Γ(1/2 + 𝑎)
+ ⋯           (36) 

If we put 𝒶 →  1 in Eq.(36) , we get the approximate  

 

𝒰(𝒳, 𝒯) =
1

2
√𝑥𝑦𝑡2 +

1

6
√𝑥𝑦𝑡3 + √𝑥𝑦 + √𝑥𝑦𝑡 + ⋯.                                                                     

= √𝑥𝑦 𝑒𝒯 .                                                                  
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Figure 1. The graph of approximate and exact solutions to Eq.(3.1). 

 

 

Figure 2. Two-dimensional graph with approximate and exact solutions to Eq.(3.1). 

 

 5.  CONCLUSIONS 

The biological population model with Atangana-Baleanu fractional derivative has been studied. The 

FADM was used to successfully achieve analytical approximation solutions. The solutions were found to 
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be infinite power series that could be expressed in closed form. When 𝛼 = 1, the results of FADM are in 

great agreement with the precise solution, as seen in the example.  
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