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Abstract: 

   This paper centers on an eco-epidemiological predator-prey model that accounts for hunting cooperation 

among predators and prey shelter and fear in afflicted prey. The objective is to investigate the effects of 

parameter factors on the model's bifurcation behavior. Theoretical part of this study demonstrate that a 

transcritical bifurcation can result from infection rate and refuge rate. Furthermore, fear rate can cause a 

Hopf-bifurcation to arise close to the positive equilibrium point. The presence of local bifurcations close 

to the non-trivial equilibrium points is verified by numerical analysis, which also guarantees the veracity 

of the theoretical results. 
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1-Introduction 

The dynamic of eco-epidemiological models is one of the main theme in mathematical biology, it considers 

the dynamics of infectious disease spreading among the ecosystem, notably prey-predator models with 

infectious diseases. Many studies shown that prey-predator relations have a significant impact on the way 

the ecosystems are organized, even though they considering predation as the alone source of interaction 

between the predator and its prey [1-4]. Recently in some theoretical and experimental studies prey 

individuals have been noted to alter their typical foraging behavior due the psychological strain of being 
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discovered and slain by predators [5-8]. Through these and other studies, researchers have shown how 

crucial indirect effects like fear are in determining the dynamics between preys and predators. 

In the last few years, many prey-predator mathematical models have been developed to investigate the 

consequences of fear effect. In [9-12] ecological models with fear effect are investigated, while, fear effect 

in eco-epidemiological models are thoughtful in [13-17]. Various biological deductions have been reached 

based on the different assumptions included in these mathematical models. Researchers in [18-19] 

discovered that the impact of fear can minify the numbers of various species, both prey and predators. 

Additionally, this fear-induced effect may initiate a process where diseases within the prey or predator 

population have a tendency to go extinct.  

In most ecological systems, predators species are living in social groups for a variety of reasons, the most 

crucial being mating, more effective hunting and team attacks on large prey or other predators, in addition 

to increased protection against other predators. In ecosystems the widespread and important of population 

cooperation is shown in many different taxa, including birds, aquatic organisms, and carnivores [20-22]. 

Through the use of mathematical, ecological, and eco-epidemiological models, lots of studies have been 

investigated the implications of intra-species cooperation. For instance, cooperative hunting can change 

how predator-prey models behave, and may resulting in intricate patterns with  several periodic cycles [15-

17, 23-26]. So, including the function of cooperation in ecological and eco-epidemiological systems is 

essential to study and analysis species interactions and population dynamics. Preys’ disease and the 

collaborative hunting efforts of predators can result in heightened fear among prey and an increased 

likelihood of being captured by predators. Therefore, the presence of prey refuge plays a crucial role in the 

field of mathematical biology, as it can be viewed as a form of anti-predator behavior that helps safeguard 

against the extinction of prey populations [1,2,6,8,9,26, 27]. In last years, some research papers have 

proposed models that explore the dynamics between preys and predators, specifically focusing on the 

presence of diseases within prey species. These studies have also investigated the impact of fear on the 

growth of susceptible prey and its role in reducing interactions between susceptible and infected individuals 

[13-17]. While authors in [14, 15, 17] assume the predator eating both healthy and ill preys, and hence they 

used the cost of fear on the healthy preys growth and their contact with ill preys. In [16] the authors assume 

the predator eating only ill preys and they used the cost of fear only on the growth of healthy preys. While 

in [13] the authors used the predation assumption as in [16] but the impact of fear as in [14, 15, 17]. 

In dynamical systems, a bifurcation arises when a slight, continuous adjustment to the parameter values 

known as bifurcation (critical) values of a system results in an abrupt alteration in its behavior, either 

qualitatively or topologically. Typically, during a bifurcation, the stability characteristics of local equilibria, 

periodic orbits, or other invariant sets undergo modifications. Local bifurcations, which involve changes in 
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stability in the saddle-node, transcritical, pitchfork, and Hopf bifurcations of the system, are restricted to 

the vicinity of a periodic solution or a fixed point of the system [28-30 ]. The mathematical analysis of 

models in [ 13-17] showed the existence of different types of local bifurcation due to the effect of fear or 

other  parameters of their eco-epidmological models. 

Our work is motivated by the studies mentioned above (particularly [13-17 ]).  In this paper, we investigate 

a prey-predator model in which predator subject to hunting cooperation, while diseased prey subject to the 

anti-predator behaviors such as the fear impact and prey refuge. In this study we assume the predators 

exclusively consume infected preys, and so we incorporate fear as a factor influencing only the contact 

between infected and susceptible individuals. Also, we consider the saturated incident as a function of 

disease transmission. The bifurcation theory and numerical results of this study can reveal how the 

interactions between disease transition, fear effect, prey refuge and hunting cooperation influence the 

dynamic structure of the system.The rest of the paper is organized as follows. In section 2, we formulate 

an eco-epidomoloigical mathematical model including the above factors. In section 3, we perform the 

equilibrium and their local stability conditions of the model. In section 4, we perform the bifurcation 

analysis. In section 5, we illustrate our analytical findings numerically with discussion. A brief conclusion 

is finding at the end section. 

2- Mathematical model formulation 

In this study, we make our assumption that predators exclusively consume infected prey (as in [13, 16]), 

but we think this leads to incorporate fear as a factor influencing only the contact between infected and 

susceptible individuals. Additionally, we introduce the concept of infected prey seeking refuge and 

exhibiting anti-predator behavior as a means of defending against predator hunting cooperation.   

In this section, to construct our model, we begin by considering the principle assumptions: the populations 

are composed into prey species 𝑁(𝑇) and predator species 𝑄(𝑇). Prey species also divide into susceptible 

prey 𝑅(𝑇) and infected prey 𝑃(𝑇), i.e 𝑁 =  𝑅 + 𝑃. Infected population 𝑃(𝑇) is unable to recover or build 

immunity, and the disease does not spread to predators via eating or any other methods. According to 

Holling-two functional response predator population 𝑄(𝑇) exclusively consuming infected prey, where the 

disease infection renders the prey weak and vulnerable. Further, only infected prey has prey refuge and fear 

effect, while predator has hunting cooperation. Furthermore, the disease spreads occurs when infected prey 

comes into contact with susceptible prey, based on saturated incident rate. Therefore, from the 

aforementioned assumptions, the following eco-epidemiological model is derived. 

   
𝑑𝑅

𝑑𝑇
= 𝑟𝑅 (1 −

𝑅+𝑃

𝐾
) −

𝛽𝑅𝑃

(1+𝑚𝑃)(1+𝐾1𝑄)
− 𝑑1𝑅 

𝑑𝑃

𝑑𝑇
=

𝛽𝑅𝑃

(1+𝑚𝑃)(1+𝐾1𝑄)
−
(𝑎+𝑄)(1−𝜃)𝑃𝑄

𝐶+(1−𝜃)𝑃
− 𝑑2𝑃                                            (1)  
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𝑑𝑄

𝑑𝑇
=
𝑒(𝑎+𝑄)(1−𝜃)𝑃𝑄

𝐶+(1−𝜃)𝑃
− 𝑑3𝑄   

with initial 𝑅(0) > 0, 𝑃(0) > 0, 𝑄(0) > 0. In this system, r is the susceptible prey logistic growth rate and 

𝐾 is the total prey environmental carrying capacity. 𝛽 is the infection force and 𝑎 is the predation rate. The 

terms 
1

1+𝑚𝑃
 and 

1

1+𝐾1𝑄
 are modeling the saturated incident rate and the fear effect, where m  and 𝐾1 

represent saturation and fear factors, respectively. 𝜃 is infected prey refuge and 𝑒 is conversion efficiency 

of 𝑄 on 𝑃. The death rates of susceptible prey, infected prey, and predator are given by 𝑑1, 𝑑2, and 𝑑3, 

respectively. Now the next dimensionless variables are applied in the system (1): 

𝑥𝑠 =
𝑅

𝐾
   , 𝑥𝑖 =

𝑃

𝐾
 , 𝑦 =

𝑄

𝐾
    and  𝑡 = 𝑟𝑇. 

Then (after some simplification) system (1) takes the form: 

          
𝑑𝑥𝑠

𝑑𝑡
= 𝑥𝑠(1 − 𝑥𝑠 − 𝑥𝑖) −

𝛼𝑥𝑠𝑥𝑖

(1+𝑀𝑥𝑠)(1+𝑘2𝑦)
− 𝐷1𝑥𝑠 = 𝑥𝑠𝑓1(𝑥𝑠, 𝑥𝑖 , 𝑦)   

𝑑𝑥𝑖

𝑑𝑡
=

𝛼𝑥𝑠𝑥𝑖

(1+𝑀𝑥𝑠)(1+𝑘2𝑦)
−
𝛾(𝐴+𝑦)(1−𝜃)𝑥𝑖𝑦

𝜂+(1−𝜃)𝑥𝑖
− 𝐷2𝑥𝑖 = 𝑥𝑖𝑓2(𝑥𝑠, 𝑥𝑖 , 𝑦)                                                      (2) 

           
𝑑𝑦

𝑑𝑡
=
𝛾1(𝐴+𝑦)(1−𝜃)𝑥𝑖𝑦

𝜂+(1−𝜃)𝑥𝑖
− 𝐷3𝑦 = 𝑦𝑓3(𝑥𝑠, 𝑥𝑖, 𝑦)  

where,  𝑘2  =  𝐾𝐾1, 𝛼 =
𝛽𝐾

𝑟
, 𝑀 = 𝑚𝐾,𝐷1 =

𝑑1

𝑟
, 𝛾 =

𝐾

𝑟
, 𝜂 =

𝐶

𝐾
, 

             𝐴 =
𝑎

𝐾
, 𝐷2 =

𝑑2

𝑟
, 𝐷3 =

𝑑3

𝑟
, 𝛾1 =

𝑒𝐾

𝑟
 . 

 

 

 

3- Equilibrium Points and Local Stability  

System (2) possesses four equilibria that are non-negative. The conditions for their existence and local 

stability will be stated in this section. The points of equilibrium are as follows: 

1. The trivial equilibrium :Ɛ0 (0, 0, 0). 

2. The axial equilibrium Ɛ1 (�̂�𝑠, 0, 0), where �̂�𝑠 =  1 − 𝐷1.                                                                 

3. Thepredator-freeboundary equilibriumƐ2 (x̅s, x̅i, 0),  

   x̅s =
D2

α
(   1 + M x̅i),   x̅i =

−     ζ2+√ζ2
2−4ζ1ζ3

2ζ1
  ,  where,  ζ1 = M(D2M+ α) ,  ζ2 = α

2  +
ζ1

M
+

   Mζ3,      ζ3 = D2  −  α(1 − D1).                                                                                                               

4. Interior equilibrium: Ɛ3 (xs
∗, xi

∗, y∗).  

 The Jacobian matrix of Sys.(2) which evaluated at any arbitrary point (xs, xi, y) is expressed as follows: 

           J (xs, xi, y) =  (ωij)3×3                                                                   (3) 

where, 
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ω11  = 1 −  2xs  −  xi −
αxi

(1+Mxs)(1+k2y)
− D1,  ω12 = −xs −

αxi

(1+Mxs)2(1+k2y)
  ,          

  ω13 =
αk2xsxi

(1+Mxs)(1+k2y)2
, ω21 =

αxi

(1+Mxs)(1+k2y)
, ω22 =

αxi

(1+Mxs)(1+k2y)
−
γη(A+y)(1−θ)y

(η+(1−θ)xi)
2
− D2,  

ω23 =
−αk2xsxi

(1+Mxs)(1+k2y)2
−
γ(A+2y)(1−θ)xi

η+(1−θ)xi
  

ω31 = 0,  ω32 =
γ1η(A+y)(1−θ)y

(η+(1−θ)xi)
2

,  ω33 =
γ1(A+2y)(1−θ)xi

η+(1−θ)xi
− D3 . 

The existence and local stability conditions of these equilibria may be summarized as follows: 

The trivial equilibrium Ɛ0 (0, 0, 0)is exist trivially, and unstable saddle node point due that the Jacobin 

matrix (3) at Ɛ0 has the eigenvalues: λ1 = 1 − D1, λ2 =−D2 , and λ3 = −D3.  

The axial equilibrium Ɛ1 (x̂s, 0, 0)is exist when D1 < 1, and local asymptotically stably provided that:  

xŝ <
D2

α
 . 

The predator-free boundary equilibrium Ɛ2 (x̅s, x̅i, 0) exists if D2  <  α(1 − D1), and local asymptotically 

stable if x̅i <
D3η

(1−θ)[γ1A−D3]
 .  

Interior equilibrium: Ɛ3 (xs
∗, xi

∗, y∗) if exist then its local asymptotical stable if the following conditions 

hold: ϑ33 < min{−ϑ11, −ϑ22} and q3 > 0, where 

q3 = ϑ11ϑ23ϑ32 + ϑ12ϑ21ϑ33 − ϑ11ϑ22ϑ33 − ϑ21ϑ13ϑ23, 

 ϑ11 = −xs
∗ < 0 ,   ϑ12 = −xs

∗ −
αxs
∗

(1+Mxi
∗)
2
(1+k2y∗)

< 0,    ϑ13 =
αk2xi

∗xs
∗

(1+Mxi
∗)(1+k2y∗)2

> 0, 

  ϑ21 =
αxi
∗

(1+Mxi
∗)(1+k2y∗)

> 0,   ,  ϑ22 =
αxs
∗

(1+Mxi
∗)
2
(1+k2y∗)

−
ηγ(A+y∗)(1−θ)y∗

(η+(1−θ)xi
∗)
2 − D2 < 0,     

ϑ23 =
−αxs

∗xi
∗k2

(1+Mxi
∗)(1+k2y∗)2

−
γ(1−θ)(A+2y∗)xi

∗

η+(1−θ)xi
∗ < 0  ,  ϑ32 =

ηγ1(1−θ)(A+y
∗)y∗

(η+(1−θ)xi
∗)
2 > 0, 

 ϑ33 =
γ1(1−θ)xi

∗y∗

η+(1−θ)xi
∗ < 0. 

 

4-Bifurcation Analysis 

In a dynamic system, bifurcation happens when a control parameter affects the system's state and causes 

the system to branch out to a different state at a crucial control parameter value. Stated otherwise, a 

bifurcation is a moment at which behavior begins to diverge into distinctly different categories. Usually, 

there is a rapid shift as opposed to a slow, steady evolution. The relationship between the multiplicity of 

solutions and the control parameter is the focus of bifurcation theory. Bifurcations are categorized based 

on how an equilibrium solution's stability varies. Determining the existence and stability of different 

branches of the solution, such as equilibrium points and periodic orbits, is the aim of bifurcation theory. 

For a local bifurcation to appears, it is essential but not sufficient that the equilibrium point be non-

hyperbolic. Because the parameters are not fixed values and always changing based on the conditions of 

the environment in which the system's organisms reside, it is imperative to investigate the bifurcation of 
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the system (2).  

In this section, Sotomayor's bifurcation theorem was utilized to ascertain whether local bifurcation may 

occur close to the system's (2) equilibrium points when the parameter crosses a particular value that turns 

the equilibrium point into a non-hyperbolic point. For simplicity, rewrite system (2) as follow in vector 

form:  

𝑑𝑥

𝑑𝑡
=  𝐹(𝑋), 𝑋 =  (𝑥𝑠, 𝑥𝑖 , 𝑦), 𝐹 =  (𝑥𝑠𝑓1 , 𝑥𝑖𝑓2, 𝑦𝑓3)                                                                     (4) 

Let 𝑈 = (𝑢1 , 𝑢2, 𝑢3)
𝑇  be any vector, then the second directional derivative of the system (2) may be 

written as: 

𝐷2𝐹(𝑋)(𝑈, 𝑈)  =  [𝔇𝑖1]3×1                                                                         (5) 

where,  

𝔇11 = −2𝑢1
2 − 2(

(1+𝑘2𝑦)(1+𝑀𝑥𝑖)
2+𝛼

(1+𝑘2𝑦)(1+𝑀𝑥𝑖)
2 )𝑢1𝑢2  +(

2𝛼𝑀𝑥𝑠

(1+𝑘2𝑦)(1+𝑀𝑥𝑖)
3) 𝑢2

2 + (
2𝛼𝑘2𝑥𝑖

(1+𝑘2𝑦)(1+𝑀𝑥𝑖)
2) 𝑢1𝑢3  

        +(
2𝛼𝑘2𝑥𝑠

(1+𝑘2𝑦)2(1+𝑀𝑥𝑖)
2) 𝑢2𝑢3 + (

2𝛼𝑘2
2𝑥𝑠𝑥𝑖

(1+𝑘2𝑦)3(1+𝑀𝑥𝑖)
) 𝑢3

2,  

𝔇21 = (
2𝛼

(1+𝑘2𝑦)(1+𝑀𝑥𝑖)
2) 𝑢1𝑢2 + 2(

𝛼𝑀𝑥𝑠 

(1+𝑘2𝑦)(1+𝑀𝑥𝑖)
3 +

2𝜂𝛾𝑦(𝐴+𝑦)(1−𝜃)2

(𝜂+(1−𝜃)𝑥𝑖)
3 )𝑢2

2 − (
2𝛼𝑘2𝑥𝑖

(1+𝑘2𝑦)2(1+𝑀𝑥𝑖)
) 𝑢1𝑢3 −

2(
𝛼𝑘2𝑥𝑠

(1+𝑘2𝑦)(1+𝑀𝑥𝑖)
3 −

𝜂𝛾(1−𝜃)(𝐴+2𝑦)

(𝜂+(1−𝜃)𝑥𝑖)
2 )𝑢2𝑢3 − 2(

𝛼𝑘2
2𝑥𝑠𝑥𝑖

(1+𝑘2𝑦)(1+𝑀𝑥𝑖)
3 +

𝛾(1−𝜃)𝑥𝑖

𝜂+(1−𝜃)𝑥𝑖
)𝑢3

2, 

𝔇31 =
−2𝜂𝛾1𝑦(𝐴+𝑦)(1−𝜃)

2

(𝜂+(1−𝜃)𝑥𝑖)
3 𝑢2

2 +
2𝜂𝛾1(1−𝜃)(𝐴+𝑦)

(𝜂+(1−𝜃)𝑥𝑖)
2 𝑢2𝑢3 +

2𝛾1(1−𝜃)𝑥𝑖

𝜂+(1−𝜃)𝑥𝑖
𝑢3
2.  

Theorem 1:  Let �̂�  equal to the value of 
𝐷2

1−D1
. In this case, system (2) at Ɛ1 = (�̂�, 0, 0), when 𝛼 equal �̂� ,  

offers a transcritical bifurcation. 

Proof : The Jacobian matrix (3) at 𝛼 equal �̂� can be written as follow: 

𝐽Ɛ1 = 𝐽(Ɛ1 , �̂�) = (
−𝑥�̂� −(1 + �̂�)𝑥�̂� 0
0 0 0
0 0 −𝐷3

) 

The triangle matrix 𝐽Ɛ1 has three eigenvalues expressed as follows: 

𝜆1  = −𝑥�̂� < 0, 𝜆2  =  0, 𝜆3  =  −𝐷3 < 0. 

Hence Ɛ1 is a non-hyprbolic point.   

Now, considering the eigenvalue 𝜆2  =  0, let 𝔘1  =  (𝑢11, 𝑢12, 𝑢13)
𝑇 be the eigenvector with respect to the 

matrix 𝐽Ɛ1. In this situation,  𝐽Ɛ1𝔘1  =  0, which leads to 𝔘1  =  (−(1 + �̂�)𝑢12, 𝑢12, 0)
𝑇, where 𝑢12 ≠ 0  be 

any real number. Additionally, let 𝛩1  =  (𝜃11, 𝜃12, 𝜃13)
𝑇 be the eigenvector of the transpose of matrix 𝐽Ɛ1

𝑇 . 

Consequently, 𝐽Ɛ1
𝑇 𝛩1  =  0, which implies that 𝛩1   =  (0, 𝜃12, 0)

𝑇  where 𝜃12 ≠ 0  be any real number. 

Now, according to the Sotomayor’s theorem, one can deduce that: 
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𝜕𝐹

𝜕𝛼
= 𝐹𝛼(𝑋, 𝛼) = (

−𝑥𝑠𝑥𝑖

(1+𝑘2𝑦)(1+𝑀𝑥𝑖)
𝑥𝑠𝑥𝑖

(1+𝑘2𝑦)(1+𝑀𝑥𝑖)

0

)                                                      (6) 

and hence                 

𝜕𝐹

𝜕𝛼
|𝛼=�̂�
𝑋=Ɛ1

= 𝐹𝛼(Ɛ1, �̂�) = (0, 0, 0)
𝑇 .  

Because of that, 𝛩1
𝑇𝐹𝛼(Ɛ1, �̂�)  = 0. Therefore, system (2) has no saddle node bifurcation.  

Moreover, given that:  

𝐷𝐹𝛼(Ɛ1, �̂�) = (
0 −𝑥�̂� 0
0 𝑥�̂� 0
0 0 0

), 

𝐷𝐹𝛼(Ɛ1, �̂�)𝔘1= (−𝑥�̂�𝑢12, 𝑥�̂� 𝑢12, 0)
𝑇 .                                             (7) 

Consequently, 𝛩1
𝑇𝐷𝐹𝛼(Ɛ1, �̂�)𝔘1 = 𝑥�̂� 𝑢12𝜃12 ≠ 0, further, through using equation (5), may deduce that: 

𝐷2𝐹(Ɛ1, �̂�)(𝔘1, 𝔘1)  =  [�̂�𝑖1]3×1                                                     (8) 

where, 

�̂�11 = 2𝑢12
2 (𝑀�̂� 𝑥�̂� + 2(1 + �̂�)

2), �̂�21 = 2�̂� 𝑢12
2 (𝑀 𝑥�̂� − (1 + �̂�)), �̂�31=0 . 

Thus, it is simple to confirm that: 

𝛩1
𝑇𝐷2𝐹(Ɛ1, �̂�)(𝔘1, 𝔘1) = 2�̂� 𝑢12

2 (𝑀 𝑥�̂� − (1 + �̂�)) ≠ 0 

Hence, the proof complete.                                                                                                                        ∎ 

 

Theorem 2: Let 𝐷3  <  𝛾1𝐴, 𝛾1 < 𝛾  are satisfied, then the system (2) at Ɛ2  undergoes a transcortical 

bifurcation when the parameter θ passes through the value θ̅  =  1 −
𝐷3𝜂

�̅�𝑖 (𝛾1𝐴−𝐷3)
 , as long as the following 

condition met              

�̅�𝑠
2 <

𝐷2
2�̅�𝑖
2𝛾2

𝐷3[𝛾2+𝛾]
                                                           (9) 

where 𝛾2 = 𝑘�̅�𝑖𝛾1 . 

Proof. : Then Jacobian matrix(3) 𝐽Ɛ2 at θ equal θ̅ may be written as follows 

𝐽Ɛ2 = 𝐽(Ɛ2 , θ̅) = (
𝜔11 𝜔12 𝜔13
𝜔21 𝜔22 �̅�23
0 0 0

), 

where �̅�23 = 𝜔23 at θ equal θ̅. The matrix 𝐽Ɛ2  has three eigenvalues given by �̅�1 = �̅�33  =  0, and the 

roots of quadrate polynomial  𝜆2  −  ℏ1𝜆 − ℏ2 = 0. Therefore, Ɛ2 is a non-hyprbolic point. 

Let 𝔘2  =  (𝑢21, 𝑢22, 𝑢23)
𝑇  be the eigenvecctor corresponding to eigenvalue �̅�1 = 0. Thus, 𝐽Ɛ2𝔘2  =  0, 

gives that 𝔘2  =  (𝛬1𝑢23, 𝛬2𝑢23, 𝑢23)
𝑇 , where 𝑢23 ≠ 0  be any real number, and 𝛬1 = −{  

𝛬2𝜔12+𝜔13

𝜔11
}, 
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while   𝛬2 =
𝜔21𝜔13−𝜔11�̅�23

𝜔22𝜔11−𝜔21𝜔12
 . Clearly, 𝛬1  <  0 and 𝛬2  >  0, provided that (9).  

Further, let 𝛩2  =  (𝜃21, 𝜃22, 𝜃23)
𝑇 represents the eigenvector corresponding to the eigenvalue �̅�1 =  0 of 

the matrix 𝐽Ɛ2
𝑇 . Thus, 𝐽Ɛ2

𝑇 𝛩2  =  0 gives that 𝛩2   =  (0, 0, 𝜃23)
𝑇 where 𝜃23 ≠ 0  be any real number. Now, 

Applying Sotomayor’s theorem, leads to 

𝜕𝐹

𝜕θ
= 𝐹θ(𝑋, θ) =

(

 

0
𝜂𝛾(𝐴+𝑦)𝑥𝑖𝑦

(𝜂+(1−𝜃)𝑥𝑖)
2

−𝜂𝛾1(𝐴+𝑦)𝑥𝑖𝑦

(𝜂+(1−𝜃)𝑥𝑖)
2)

                                                                     (10) 

and 

𝐹θ(Ɛ2, θ̅) = (0, 0, 0)
𝑇 

Then we find, 𝛩2
𝑇𝐹θ(Ɛ2, θ̅)  =  0, therefore, the system (2) has no saddle node bifurcation.  

Moreover, with the help of (10), one can have 

𝐷𝐹θ(𝑋, θ)=

(

 

0 0 0

0
𝜂𝛾(𝐴+𝑦)𝑥𝑖𝑦(𝜂−(1−𝜃)𝑥𝑖)

𝜂+(1−𝜃)𝑥𝑖

𝜂𝛾(𝐴+2𝑦)𝑥𝑖

(𝜂+(1−𝜃)𝑥𝑖)
2

0 −
𝜂𝛾1(𝐴+𝑦)𝑥𝑖𝑦(𝜂−(1−𝜃)𝑥𝑖)

𝜂+(1−𝜃)𝑥𝑖
−
𝜂𝛾1(𝐴+2𝑦)𝑥𝑖

(𝜂+(1−𝜃)𝑥𝑖)
2)

  

Hence, it follows 

𝐷𝐹θ(Ɛ2, θ̅)𝔘2= (0, 0,
𝜂𝐴�̅�𝑖(𝛾−𝛾1)

(𝜂+(1−𝜃)�̅�𝑖)
2 𝑢23)

𝑇 ,                                                      (11) 

and so,  

𝛩2
𝑇𝐷𝐹θ(Ɛ2, θ̅)𝔘2 =

𝜂𝐴�̅�𝑖(𝛾 − 𝛾1)

(𝜂 + (1 − 𝜃)�̅�𝑖)2
≠ 0. 

Moreover, using equation (5), it follows that 

𝐷2𝐹(Ɛ2, θ̅)(𝔘1, 𝔘1)  =  [�̅�𝑖1]3×1 ,                                                            (12) 

where,       

�̅�11 = −2(𝛬1𝑢23)
2 − 2(

(1+𝑀�̅�𝑖)
2+𝛼

(1+𝑀�̅�𝑖)
2 )𝛬1𝛬2𝑢23

2  +(
2𝛼𝑀�̅�𝑠

(1+𝑀�̅�𝑖)
3) (𝛬2𝑢23)

2 

        +(
2𝛼𝑘2�̅�𝑖

(1+𝑀�̅�𝑖)
2) 𝛬1𝑢23

2 + (
2𝛼𝑘2

2�̅�𝑠

(1+𝑀�̅�𝑖)
2)𝛬2𝑢23

2 + (
2𝛼𝑘2

2�̅�𝑠�̅�𝑖

(1+𝑀�̅�𝑖)
) 𝑢23

2  

�̅�21 = (
2𝛼

(1+𝑀�̅�𝑖)
2) 𝛬1𝛬2𝑢23

2 + 2(
𝛼𝑀�̅�𝑠

(1+𝑀�̅�𝑖)
3)(𝛬2𝑢23)

2 − (
2𝛼𝑘2�̅�𝑖

(1+𝑀�̅�𝑖)
)𝛬1𝑢23                                                  

       −2(
𝛼𝑘2�̅�𝑠

(1+𝑀�̅�𝑖)
2 −

𝜂𝛾(1−𝜃)𝐴

(𝜂+(1−𝜃)�̅�𝑖)
2)𝛬2𝑢23

2   −(
2𝛼𝑘2�̅�𝑠�̅�𝑖

(1+𝑀�̅�𝑖)
2 +

𝛾(1−𝜃)�̅�𝑖

𝜂+(1−𝜃)�̅�𝑖
)𝑢23
2  

�̅�31  =
2𝜂𝛾1(1−𝜃)𝐴

(𝜂+(1−𝜃)�̅�𝑖)
2 𝛬2𝑢23

2  +
2𝛾1(1−𝜃)�̅�𝑖

𝜂+(1−𝜃)�̅�𝑖
𝑢23
2  

Accordingly, may obtained that: 

𝛩2
𝑇𝐷2𝐹(Ɛ2, θ̅)(𝔘1, 𝔘1)   =  

2𝜂𝛾1(1−𝜃)

(𝜂+(1−𝜃)�̅�𝑖)
(

𝜂𝐴𝛬2

(𝜂+(1−𝜃)�̅�𝑖)
+ �̅�𝑖) 𝑢23

2 . 
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Therefore, under the condition (9), 𝛩2
𝑇𝐷2𝐹(Ɛ2, θ̅)(𝔘1, 𝔘1) ≠ 0, and the proof is finished.                ∎       

Theorem 3: A Hopf bifurcation of sys.(2) arises in the vicinity of Ɛ3 with regard to 𝑘2 if 

−(𝑞2  −  3𝜛
2) (

𝑑𝑞3

𝑑𝑘2
− 𝜛2

𝑑𝑞1

𝑑𝑘2
) + 2𝑞1𝜛

2  
 𝑑𝑞2

𝑑𝑘2
≠ 0                                                (13) 

Proof. : 

According to bifurcation theory, it is observed that a dynamical system (2) experiences a Hopf bifurcation 

when the characteristic equation of (5) at Ɛ3 has three roots, one has a negative real part and other two are 

purely imaginary, further 𝑅𝑒(
𝑑𝜆

𝑑𝑘2
) ≠ 0 at the bifurcation value 𝑘2

∗.  

Assume the characteristic equation given by 

𝜆3 + 𝑞1𝜆
2 + 𝑞2𝜆 + 𝑞3 = 0,                                                                (14) 

where, 

𝑞1 = −( 𝜗11 + 𝜗22 + 𝜗33),                                                        

𝑞2 = 𝜗11𝜗22 + 𝜗11𝜗33 + 𝜗22𝜗33 − 𝜗32𝜗23 − 𝜗21𝜗12,        

𝑞3 = 𝜗11𝜗23𝜗32 + 𝜗12𝜗21𝜗33 − 𝜗11𝜗22𝜗33 − 𝜗21𝜗13𝜗23, 

and, 

  𝜗11 = −𝑥𝑠
∗ < 0  , 𝜗12 = −𝑥𝑠

∗ −
𝛼𝑥𝑠

∗

(1+𝑀𝑥𝑖
∗)
2
(1+𝑘2𝑦∗)

< 0,   𝜗13 =
𝛼𝑘2𝑥𝑖

∗𝑥𝑠
∗

(1+𝑀𝑥𝑖
∗)(1+𝑘2𝑦∗)2

> 0,  

      𝜗21 =
𝛼𝑥𝑖

∗

(1+𝑀𝑥𝑖
∗)(1+𝑘2𝑦∗)

> 0,  𝜗22 =
𝛼𝑥𝑠

∗

(1+𝑀𝑥𝑖
∗)
2
(1+𝑘2𝑦∗)

−
𝜂𝛾(𝐴+𝑦∗)(1−𝜃)𝑦∗

(𝜂+(1−𝜃)𝑥𝑖
∗)
2 − 𝐷2 < 0,   

  𝜗23 =
−𝛼𝑥𝑠

∗𝑥𝑖
∗𝑘2

(1+𝑀𝑥𝑖
∗)(1+𝑘2𝑦∗)2

−
𝛾(1−𝜃)(𝐴+2𝑦∗)𝑥𝑖

∗

𝜂+(1−𝜃)𝑥𝑖
∗ < 0,   𝜗31 = 0 ,     𝜗32 =

𝜂𝛾1(1−𝜃)(𝐴+𝑦
∗)𝑦∗

(𝜂+(1−𝜃)𝑥𝑖
∗)
2 > 0 

    𝜗33 =
𝛾1(1−𝜃)𝑥𝑖

∗𝑦∗

𝜂+(1−𝜃)𝑥𝑖
∗ < 0 . 

 Furthermore, let △ (𝑘2
∗)  = 𝑞1𝑞2  −  𝑞3  =  0 , then Eq.(14) take the form                         

                               

                                          (𝜆 + 𝑞1)(𝜆
2 + 𝑞2) =  0.                                                           (15) 

Direct computation gives that  

𝜆1 = − 𝑞1,  𝜆2,3 = ±𝑖𝜛 = ±𝑖√𝑞2. 

Now consider the derivative of Eq.(14) with respect to 𝑘2 we state 

𝑑𝜆

𝑑𝑘2
= −

𝜆2
𝑑𝑞1
𝑑𝑘2

+ 𝜆
𝑑𝑞2
𝑑𝑘2

+
𝑑𝑞3
𝑑𝑘2

[3𝜆2 + 2𝑞1𝜆 + 𝑞2]
 

Moreover, for 𝜆 =  𝑖𝜛, may have that 

(
𝑑𝜆

𝑑𝑘2
)𝜆 =𝑖𝜛 = −

(𝑖𝜛)2
𝑑𝑞1
𝑑𝑘2

+ (𝑖𝜛)
𝑑𝑞2
𝑑𝑘2

+
𝑑𝑞3
𝑑𝑘2

3(𝑖𝜛)2 + 2𝑞1(𝑖𝜛) + 𝑞2
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                      = −
(
𝑑𝑞3
𝑑𝑘2

−𝜛2
𝑑𝑞1
𝑑𝑘2

) + (𝑖𝜛)
𝑑𝑞2
𝑑𝑘2

(𝑞2 − 3𝜛2) + 2𝑞1𝑖𝜛
 

Consequently, 

( 
𝑑(𝑅𝑒𝜆)

𝑑𝑘2
)𝜆 =𝑖𝜛 =

−(𝑞2 − 3𝜛
2)(
𝑑𝑞3
𝑑𝑘2

−𝜛2
𝑑𝑞1
𝑑𝑘2

) + 2𝑞1𝜛
2 𝑑𝑞2
𝑑𝑘2

(𝑞2 − 3𝜛2)2 + 4𝑞1
2𝜛2

 

 

Therefore, if (13) is violated, one may obtain 𝑒( 
(𝑑𝜆)

𝑑𝑘2
)𝜆 =𝑖𝜛 ≠ 0 .                                                            ∎ 

 

5- Numerical Analysis and Discussion 

Some numerical simulations are offered in this part to back up our analytical and mathematical findings. 

These simulations also reveal the systems fascinating, complicated behavior. In this section, we will use a 

hypothetical collections of data in several examples, and numerical solutions are run using Matlab (8.1) 

software to back up our earlier findings. 

We consider the following hypothetical data as parametric values of model (2): 

 

𝑘2 = 6,   𝛼 = 0.5,   𝑀 = 0.5, 𝐷1 = 0.05, 𝐷2 = 0.105, 𝐷3 = 0.05,  

                𝛾 = 1,   𝛾1 = 0.75,   𝐴 = 0.15, 𝜂 = 0.2, 𝜃 = 0.615.                                (16) 

 

Example 1. In this example, to verify numerically the accuracy of the analytical results of theorem 1, we 

suppose 𝛼 ∈  (0.05, 0.3) and other parameters values of model (2) as given in the data set (16). 

 

Figure 1 shows that sys.(2)’s dynamic is steady at Ɛ1  =  (0.95, 0, 0) for 𝛼 ≤  0.11, but at the bifurcation 

value of  turns out to no longer be a hyperbolic point. As a consequence of this, the model’s dynamics is 

shown to loses the stability at Ɛ1 when 𝛼 >  0.1103, and this supporting the claim that made in (Ɛ1 is 

locally asymptotically stably provided that: 𝑥�̂� <
𝐷2

𝛼
. The graphical presentation of phase diagram, for 𝛼 =

 0.1,  0.2, 0.3, that shown in Fig.2 may confirmed this results  
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Figure 1: Bifurcation diagram illustrate that for 𝛼 ≤  0.1103, the equilibrium solution Ɛ1 is stable, and 

unstable for 𝛼 >  0.1103. 
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Figure 2: Phase portrait of system (2) for the value set (16) with different values of α. System (2) around 

equilibrium solution Ɛ1  it is asymptotically stable for 𝛼 ≤  0.1103,  and loses this stability for 𝛼 >

 0.1103. 

 

 

Figure 3: Bifurcation diagram illustrate that for 𝜃 ≤  0.577, system (2) loses it is stability near Ɛ2. 

 

Example 2.   In this example, we take the parameters value as in (16) and 𝛾1 = 0.49  with infected prey 

refuge  𝜃 ∈  (0.5, 0.6) to verify the analytical results of theorem 2. 

Figure 3 shows that for 𝜃 ≥  0.577 susceptible prey, infected prey, and predator are stable around the 

equilibrium solution Ɛ2, while decrease the amount of infected prey refuge 𝜃 <  0.577 create instability 

of the predator. Phase diagram, for 𝜃 =  0.5, 0.6 is shown in Fig. 4. illustrate that the amount of infected 

prey refuge has a great impact to change the stability of Ɛ2. 

 

Example 3. This example, we use 𝑘2 as a bifurcation parameter while other parameters as in (16) to verify 

the analytical results of theorem 3. 

Here can show that when 𝑘2 take the value not more than (16), the equilibrium solution Ɛ3is unstable and 

the system undergoes a Hopf bifurcation around Ɛ3 as plotted in Fig. 5a for 𝑘2 = 1.15, and when increasing 

the value of 𝑘2 more than (16) by increasing the value of fear level, the equilibrium solution Ɛ3is stable 

after periodic dynamics (see Fig. 5(b-c)). This periodic oscillation can be controlled with more value of 
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fear level 𝑘2as seen in Fig. 5(d). 

 

 

Figure 4: Phase portrait of system (2) for the value set (16) with different values of θ. System (2) around 

equilibrium solution Ɛ2it is asymptotically stable for 𝜃 =  0.6 ≥  0.577, and loses this stability for 𝜃 =

 0.5 <  0.577. 
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Figure 5: Phase portrait illustrate the effect of 𝑘2 on the stability of system (2). 

 

 

 

 

 

 

Figure 6: Bifurcation diagram illustrate that for 𝑘2  ≤  1.77, system (2) undergoes Hopf bifurcation around 

Ɛ3. 

 

6-Conclusions 

 

This paper involved the study of the impact of infected prey refuge and fear effect on the dynamic of eco-

epidemiological system of the prey-predator in the present of hunting cooperating. The proposed 

mathematical model contains at most four equilibrium points. The local bifurcation analysis near these 

equilibria are studies theoretically. To confirm the analytical findings and understand the impact of 

parameters on the dynamic of the system (2), numerical simulation was used. Figures (1-2) show that the 

infection force parameter 𝛼 has an extinction effect on the infected prey and predator species. Figures (3-
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4) show that the infected prey refuge parameter 𝜃 has the same effect on the predator species. Finally, as 

shown in Figure (5-6), fear level rate 𝑘2 has a beneficial effect on the overall coexistence of the system 

since it is an instability effect at the start, but when it exceeds a certain level, it has a stability effect and the 

system switches for cyclic dynamic to stable oscillations and then to stable steady state. 
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