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Abstract 

Image processing is a challenging task in the field of computer vision. Fourth-order 

equations are a powerful tool for removing noise, as they can avoid the block effect 

typically seen in second-order equations. In addition, these equations show high efficiency 

in high-frequency regions. This paper suggests combining the direction of isophote and 

fourth-order partial differential equations to reduce the problem of edges loss and preserve 

important details of the image. The direction of the isophote can regulate the direction of 

diffusion. Thus, we have a proposed model that can remove the noise in the area while 

preserving the important edges and details of the image. We have proven the efficiency 

and superiority of the proposed model by applying it to a set of images and solving it 

numerically using the finite difference method (FDM). 
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1. Introduction  

Image denoising is one of the initial stages of image processing. Many models based on 

the diffusion method have been used to smooth the image. It is known that the diffusion 

force is more effective in areas of high frequency. So, one of the problems, we face in the 

model based on the diffusion method is its possible loss of edges. Amongst many image-

denoising methods, the use of partial differential equations (PDES) plays a significant role 

in the process due to their high efficiency without any prior knowledge and their high 

ability to preserve image edges. Models based on partial differential equations and 

techniques for solving them have garnered attention due to their numerous applications in 

diverse domains, including engineering [1, 2] and medicine [3]. In the image processing 

process, these methods rely on either the axiomatic approach of nonlinear diffusions [4] or 

the variational approach of energy functional minimization [5, 6]. Anisotropic diffusion 

equations, introduced by Perona and Malik [7], remain among the most widely used and 

effective techniques for image denoising. The authors of [7] suggested taking into account 

the Perona Malik (PM) second-order PDE, a second-order non-linear diffusion model. 

Although it is efficient, it causes a block effect that gives the image a distorted appearance. 

This problem was solved by You and Kaveh [8], who introduced a new fourth-order model 

to reduce image noise, where he replaced the gradient operator in the PM second-order 

PDE model with the Laplace operator. We have noticed an increase in studies recently that 

rely on fourth-order models due to their advantages and efficiency in reducing oscillation 

in high-frequency regions. We have observed many studies that rely on these models in the 

process of reducing medical image noise [9, 10]. Also, Yadava and Srivastava proposed a 

fourth-order model to remove Poisson noise from microscopic lung biopsy images, and to 

improve the model, it was multiplied by the maximum likelihood estimate [11].  
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       For the first time, Bavirisetti introduced a fourth-degree partial differential equation 

for use in the image-merging process [12]. Calatroni investigated the application of 

directional splitting techniques to fourth-order nonlinear diffusion problems [13]. Laghrib 

proposed a new model based on fourth-order differential equations, combining the features 

of Berona Malik's diffusion model [7] in flat places and the Wickert model near boundaries 

with a higher order of diffusion [14]. Ying developed the LLT model, whose high-order 

PDE-based approach was first proposed by Lysaker, Lundervold, and Tai [15] by adding a 

weighted function [16]. Khoeiniha proposed a model based on fourth-order differential 

equations with elastic parameters determined using the optimal control problem, thus being 

adaptable to any application [17]. Because the second-order PDEs' evolution weakens in 

high-frequency regions, the fourth-order PDEs are better at suppressing oscillation at high 

frequencies than the second-order PDEs. Therefore, as mentioned before, we may lose 

some details in the images processed using models based on fourth-degree equations under 

the diffusion process. Consequently, we proposed a model that combines fourth-degree 

equations and the direction of the isophote. 

           This paper proposes a new fourth-order differential equation denoising model to 

deal with different types of noise in images. The model was built by combining the YK 

model and isophote operator, enabling the denoising method to remove the noise and 

preserve the edges and corners in the images without artifacts; more details can be found 

in Section 4. The rest of the paper is organized as follows: Section 2 presents a fourth-order 

differential equation (YK) model for image noise reduction. Section 3 displays the concept 

of the isophote operator. Section 4 introduces the proposed model for reducing image noise. 

Several numerical results of the proposed model and other models for image noise 

reduction have been presented and compared, and the conclusions will be discussed and 

presented in Section 5. Finally, conclusions and future works are introduced in Section 6. 
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2. Fourth-order PDE model (YK model) 

It was introduced in 2000 by You and Kaveh [8], unlike the approximation in smooth 

constant second-order PDE, fourth-order PDE will evolve and settle down to a piecewise 

smooth picture if the image support is infinite. It is widely recognized that piecewise 

smooth images appear more natural than piecewise constant images. As a result, the block 

effects will be decreased, leaving the image looking more natural. The optimization 

formula is presented as follows: 

min
𝑢

{∫ ||𝑓 − 𝑢|| + ‖∆𝑢‖}

 

Ω

  𝑑Ω                                        (1) 

Where ∆ denoted Laplacian operator, 𝑓  is a noise image, 𝑢  is a denoising image. This 

formula is solved using the Euler-Lagrange equation as follows:   

−∆[𝑐|∆𝑢|∆𝑢] + (𝑓 − 𝑢) = 0                                            (2) 

Using the Gradient descent method on above equation (2) as below: 

𝜕𝑢

𝜕𝑡
= −∆[𝑐|∆𝑢|∆𝑢] + (𝑓 − 𝑢)                                            (3) 

Another advantage of this model is that it can successfully suppress oscillations in high-

frequency regions, unlike second-order models. When using several functional behaviors 

in the formulation, there is flexibility available [18]. 

3. Direction of isophote Operator 

The lines of similar intensity in a 2D image and the surfaces of equal intensity in a 3D 

image are known as isophotes [19], which means an isophote is a curve on an image 

connecting points of equal brightness. In [20], the direction of the isophote operator is 

defined as follows: 
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∇⊥𝑢(𝑥, 𝑦) = (−
𝜕

𝜕𝑦
,

𝜕

𝜕𝑥
) 𝑢(𝑥, 𝑦)                                             (4) 

Where 𝑢(𝑥, 𝑦) presents the color value of the point (𝑥, 𝑦). 

4. YK-I Proposed Model  

The fundamental tenet of the model is that to preserve the edge, the isophote direction 

operator should constantly extend into the area that has to be repaired after reaching the 

region border. So, we combined between YK model to smooth the area and direction of 

the isophote operator to regulate the direction of diffusion. This model is given as follows: 

𝜕𝑢

𝜕𝑡
= −∆[𝑐|∆𝑢|∆𝑢] + 𝜆 𝛻𝑢              (5) 

Where the λ  is a parameter used to control the direction and amount of information 

diffusion. An iterative method can be used to numerically solve equation (5). Considering 

a space grid size of h=∆x=∆y and a time step size of we quantize the space and time 

coordinates as follows: 

𝑡 = 𝑛∆𝑡,     𝑛 = 0,1,2 …                                                          (6) 

𝑥 = 𝑖ℎ,        𝑖 = 0,1,2 … 𝐼                                                          (7) 

𝑦 = 𝑗ℎ, 𝑗 = 0,1,2 … 𝐽                                                        (8) 

where the picture support size is expressed as 𝑖ℎ ×  𝑗ℎ. The Laplacian of the image 

intensity function is given as follows 

∆𝑢𝑖,𝑗
𝑛 =

𝑢𝑖+1,𝑗 
𝑛 + 𝑢𝑖−1,𝑗

𝑛 + 𝑢𝑖,𝑗+1
𝑛 + 𝑢𝑖,𝑗−1

𝑛 − 4𝑢𝑖,𝑗
𝑛

ℎ2
               (9) 

with symmetric boundary conditions 

𝑢−1,𝑗
𝑛 = 𝑢0,𝑗

𝑛 ,           𝑢𝐼+1,𝑗
𝑛 = 𝑢𝐼,𝑗

𝑛       𝑗 = 0,1,2, … 𝐽               (10) 
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𝑢𝑖,−1
𝑛 = 𝑢𝑖,0

𝑛 , 𝑢𝑖,𝐽+1
𝑛 = 𝑢𝑖,𝐽

𝑛 , 𝑖 = 0.1.2, … 𝐼               (11) 

𝑙𝑒𝑡 𝐴(∆𝑢) = 𝐶(|∆𝑢|∆𝑢)               (12) 

as 

𝐴𝑖,𝑗
𝑛 = 𝐴(∆𝑢𝑖,𝑗

𝑛 )                                                                           (13) 

the Laplacian of the 𝐵𝑖,𝑗
𝑛  is given as follows: 

∆𝐴𝑖,𝑗
𝑛 =

𝐴𝑖+1,𝑗 
𝑛 + 𝐴𝑖−1,𝑗

𝑛 + 𝐴𝑖,𝑗+1
𝑛 + 𝐴𝑖,𝑗−1

𝑛 − 4𝐴𝑖,𝑗
𝑛

ℎ2
               (14) 

with symmetric boundary conditions 

𝐴−1,𝑗
𝑛 = 𝐴0,𝑗

𝑛 ,           𝐴𝐼+1,𝑗
𝑛 = 𝐴𝐼,𝑗

𝑛       𝑗 = 0,1,2, … 𝐽               (15) 

𝐴𝑖,−1
𝑛 = 𝐴𝑖,0

𝑛 , 𝐴𝑖,𝐽+1
𝑛 = 𝐴𝑖,𝐽

𝑛 , 𝑖 = 0.1.2, … 𝐼               (16) 

𝑙𝑒𝑡 𝐵 = (−𝑢𝑦, 𝑢𝑥)               (17) 

as 

𝐵𝑖,𝑗
𝑛 = (

𝑢𝑖,𝑗
𝑛 − 𝑢𝑖,𝑗+1

𝑛

ℎ
  ,

𝑢𝑖+1,𝑗
𝑛 − 𝑢𝑖,𝑗

𝑛

ℎ
)                                      (18) 

finally, the numerical approximation of equation (5) is provided as: 

𝑢𝑖,𝑗
𝑛+1 = 𝑢𝑖,𝑗

𝑛 − ∆𝑡 ∆𝐴𝑖,𝑗
𝑛 + ∆𝑡 𝜆 𝐵𝑖,𝑗

𝑛                                             (19) 

5. Numerical Experiments And Results 

The proposed fourth-order model was implemented and solved numerically using the FDM 

method [8] on 100 color images from the Berkeley database [21], where they represent the 

low- and high-texture color images, as seen in Figure 1. The numerical solutions of the 

YK-I model were compared with obtained results using the YK model using statistical 
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quality measures (SQMs), such as mean square error (MSE), peak signal-to-noise ratio 

(PSNR) [22], structural similarity index (SSIM) [23, 24], and entropy of original (Eo) and 

denoised (Ed) image Which represent quantitative measurements of disturbance in the 

image. These (SQMs) are used to evaluate the efficiency and effectiveness of the model in 

terms of its ability to preserve image texture, the taken time to obtain results was also 

studied. The noise removal procedure was implemented in MATLAB code, where (elapsed 

for MATLAB, version R2023a, running on a 2.11 GHz, Intel core i5-10210U CPU laptop 

with 1.60GHz of L2 memory and 8G of RAM). Three experiments were conducted in this 

section. The experiment of analyzing the behavior of models with different types of noise 

is introduced in section 5.1; the experiment of analyzing the behavior of models with 

different noise levels is displayed in section 5.2, and the experiment of analyzing the 

behavior of models with different iterations of the digital process is presented in section 

5.3. 

 

Figure 1. Example of eight out of 100 training natural images. 

5.1. Different types of noise 

This section discusses how the proposed model behaves with different types of noise such 

as Gaussian, Poisson [25], salt & pepper [26, 27], and speckle [28, 29], as shown in Figure 

2. This was performed based on the standard noise ratio and the value of λ is 0.0001, and 

the iteration of the numerical process was 100. The results of the YK-I model were 

compared with the obtained results using the YK model. Tables 1–4 provide the analysis 
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of (Yk) and (YK-I) models by showing the values of MSE, PSNR, SSIM, and entropy for 

different types of noise as well as the computation time. 

TIME(S) dE oE SSIM PSNR MSE sSQM 

0.87757 7.449229 7.144132 0.368449 29.02173 82.37074 YK 

1.397505 7.141616 7.144132 0.65021 32.00343 43.06723 YK-I 

Table 1. Models analysis when the Gaussian noise. 

TIME(S) dE oE SSIM PSNR MSE sSQM 

0.972698 7.269202 7.144132 0.735034 32.87746 35.04768 YK 

1.558207 7.050174 7.144132 0.724246 33.25688 34.04465 YK-I 

 Table 2. Models analysis when the Poisson noise. 

TIME(S) dE oE SSIM PSNR MSE sSQM 

0.846464 7.143245 7.144132 0.409725 40.13152 6.381876 YK 

1.364674 7.014932 7.144132 0.745159 34.18429 28.61177 YK-I 

 Table 3. Models analysis when the salt & pepper noise.  

TIME(S) dE oE SSIM PSNR MSE sSQM 

0.812736 7.350486 7.144132 0.481419 29.47579 76.78437 YK 

1.130258 7.094158 7.144132 0.633186 31.10851 53.24902 YK-I 

 Table 4. Models’ analysis when the speckle noise. 

 

Figure 2. Different types of standard ratio noise. 

The advantages of the suggested approach over the YK model are readily apparent, as is 

its capacity to manage many kinds of noise, including Gaussian, Poisson, and Speckle 
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noise. The two images are more similar and of greater quality, as evidenced by the 

noticeable decrease in the mean squared error ratio and increase in the PSNR ratio. As for 

entropy, compared to the YK model, the YK-I model entropy is closer to that of the original 

image. Additionally, we note that the two images' structural similarity is indicated by a 

greater SSIM ratio. A special case should be paid to salt and pepper noise, where we 

observe an increase in the squared error ratio. Still, there is a clear increase in the SSIM 

ratio, which indicates a significant structural improvement in the YK-I model, as shown in 

Figure 3. 

 

Figure 3. Salt & Pepper noise removal image. 

5.2. Different ratios of added noise 

This section discusses how the proposed model behaves across four noise levels: 0.1, 0.2, 

0.3, and 0.4, as shown in Figure 4. This was performed based on the salt and pepper noise 

and the value of λ is 0.0001, and the iteration of the numerical process was 300. The results 

were compared with the YK model. Tables 5–8 provide the analysis results of (YK) and 

(YK-I) models by showing the values of MSE, PSNR, SSIM, and entropy for four noise 

levels as well as the computation time. 

 

 

 

http://jceps.utq.edu.iq/
mailto:jceps@eps.utq.edu.iq


Journal of Education for Pure Science- University of Thi-Qar 
Vol.14, No. 3 (2024) 

Website: jceps.utq.edu.iq                                                                     Email: jceps@eps.utq.edu.iq 

77 

 

TIME(S) Ed Eo SSIM PSNR MSE SQMs 

16.06824 7.298161 7.144132 0.237168 31.19683 50.94918 YK 

22.19715 6.951409 7.144132 0.611037 32.21696 42.41315 YK-I 

 Table 5. Models analysis when the salt & pepper noise ratio is 0.1. 

TIME(S) dE oE SSIM PSNR MSE SQMs 

14.47611 7.442206 7.144132 0.135977 30.09553 65.29566 YK 

21.42959 6.956847 7.144132 0.60571 32.1679 42.81551 YK-I 

 Table 6. Models analysis when the salt & pepper noise ratio is 0.2. 

TIME(S) dE oE SSIM PSNR MSE SQMs 

14.52023 7.528283 7.144132 0.092648 29.44104 75.96078 YK 

21.56208 6.964528 7.144132 0.599253 32.10481 43.34191 YK-I 

 Table 7. Models analysis when the salt & pepper noise ratio is 0.3. 

TIME(S) dE oE SSIM PSNR MSE SQMs 

16.91997 7.56053 7.144132 0.066561 29.00537 84.08089 YK 

24.32754 6.973421 7.144132 0.592564 32.02594 44.01248 YK-I 

 Table 8. Models’ analysis when the salt & pepper noise ratio is 0.4. 

 

Figure 4. Different ratios of added salt & pepper noise. 

Even though we see an inverse relationship between model efficiency and noise ratio in 

this subsection, we can also see how good YK-I model is and how it can adapt and evolve 

to different noise levels by looking at the statistical values and noting the higher PSNR and 

SSIM and lower mean square error ratio when compared to the YK model. Additionally, 
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the YK-I model's entropy is closer to the original image's entropy than the YK model. It 

can be visually observed that YK-I model outperforms the YK model from the results 

shown in Figure 5, which clearly highlight the model’s performance. 

 

Figure 5. Salt & Pepper noise removal when the ratio is 0.4. 

5.3. Different iterations of numerical solutions 

In this section, the behavior of the proposed model is studied over different iterations of 

the numerical process: 100, 300, 500, and 700, as shown in Figure 6. Based on salt and 

pepper noise, the value of λ is 0.0001, and a noise ratio of 0.4. The results were compared 

with the YK model.  

 

Figure 6. Salt & Pepper noise removal using YK-I model with different iterations process. 

Tables 9–12 provide the YK and YK-I models' analysis by showing the results of some 

statistical quality measures across four different iterations of the numerical process as well 

as the computation time. 

TIME(S) dE oE SSIM PSNR MSE SQMs 
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4.931557 7.090079 7.144132 0.059471 30.40401 60.15364 YK 

7.477763 7.003164 7.144132 0.638706 32.71599 38.24024 YK-I 

 Table 9. Models analysis when the iteration of the numerical process is 100. 

TIME(S) dE oE SSIM PSNR MSE SQMs 

16.91997 7.56053 7.144132 0.066561 29.00537 84.08089 YK 

24.32754 6.973421 7.144132 0.592564 32.02594 44.01248 YK-I 

 Table 10. Models analysis when the iteration of the numerical process is 300. 

 

TIME(S) dE oE SSIM PSNR MSE SQMs 

23.18683 7.663312 7.144132 0.074934 28.9453 86.14521 YK 

38.99474 6.953219 7.144132 0.56914 31.6612 47.41221 YK-I 

 Table 11. Models analysis when the iteration of the numerical process is 500. 

TIME(S) Ed Eo SSIM PSNR MSE SQMs 

32.46879 7.654805 7.144132 0.085153 29.1105 83.86054 YK 

49.00545 6.936225 7.144132 0.55369 31.40124 50.0117 YK-I 

 Table 12. Models’ analysis when the iteration of the numerical process is 700. 

This subsection describes the inverse relationship between model efficiency and the 

number of iterations, where the YK-I model performs better at low iterations as shown in 

Figure 6, and it is clear from the low MSE ratio as well as the high PSNR and SSIM ratio. 

Also, the entropy value closest to the original image was at the lowest iterations. The YK-

I model consistently outperforms the YK model between iterations. It can be visually 

observed that YK-I model outperforms the YK model from the results shown in Figure 7, 

which highlight the model’s performance. 
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Figure 7. Salt & Pepper noise removal when the iteration of the numerical process is 100 

6. Conclusions and Future Works  

To lessen the issue of missing edges and significant details in the image, this research 

suggested a new model that blends the direction of the isophote operator with a fourth-

order partial differential equation. the SQMs were used to compare the outcomes of 

multiple numerical experiments with the YK model to demonstrate the effectiveness of the 

proposed model. We examined MSE, PSNR, SSIM, and ENTROPY. These SQMs allowed 

to see that the proposed model outperforms the YK model in handling various kinds of 

noise and adjusting to varying noise ratios without compromising its performance. 

Additionally, we discovered an inverse correlation between the proposed model efficiency 

and the number of iterations, leading to the conclusion that the model proposed reaches a 

steady state with a few iterations. In the future, the YK-I can be applied to another dataset 

to study and check its performance. The YK-I model can also be theoretically studied to 

prove its uniqueness, stability, and existence. On the other hand, different operators may 

be used with a fourth-order equation to introduce a new model for noise removal in images. 
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