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Abstract

This paper investigates the use of the fractional variational iteration method (FVIM) to
obtain approximate analytical solutions to two dimensional Burger’s Equations with the
Atangana-Baleanu fractional operator (ABFO). This study provides insight on the fractional
variational iteration method's accuracy and reliability while approximating fractional

differential equation solutions.
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1. Introdution

Fractional calculus is one of the branches of mathematics that studies the properties of
integrals and derivatives of non-integer orders which are called fractional integrals and derivatives,
fractional calculus is three centuries older than standard calculus, it is not widely used in science
and engineering (fluid flow, electrical network, singnal processing and optics, etc ) . This subject
is unique since fractional derivatives and integrals are not limited to a certain location or amount.
This takes into account both historical and non-local dispersed impacts. In other words, perhaps
this subject better represents the truth of nature! Making this subject more accessible to the
scientific and engineering community enhances our understanding of basic nature. It's possible

that nature knows fractional calculus, making communicating with it more efficient. [1-4].

There are many analytical and numerical methods to solve FPDEs [5-23]. The J.M. Burger’s
equation, also known as Burger’s equation, isignificant and commonly used non-linear PDE. The
first person to introduced it was Bateman and later corrected by Burger’s. This equation is
employed to simulate numerous physical phenomena, for example ( acoustics, diffraction, heat
conduction water waves, shock waves and turbulence issues, among others) .This research focuses
on the approximate solutions of the two-dimensional Burger’s equations[25-28]. The fractional
variational iteration method (FVIM) is utilized for solving Burger’s equations. Approximate
results obtained using the FVIM approach are then compared with the exact results of Burgers’s
equation, the suggested strategy’s convergence is illustrated through graphs of approximate

solutions.

2- Preliminaries

Definition 1. The ABFD of order « is given as follows [24]:
t

M( a)J —a(t —x)°

B (Fo 0"

AADEg() = —— ]

) g'(x)dx (2.1)

a
where 0 <a <1 and M(0) =M(1) =1.
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Definition 2. The ABFI of order a defined as follows [24]

1—
Afl‘t"g(t)—M(

59O+ g s j(t—x)“g(x)dx 22)

The properties of ABFI is defined as follows:

1. 4B1 ¢ 4Bpr g (t) = g (t)—g(0).

ar(k+1) te

ABra +k _
2. %ale t r(a+k+1) )

_M()

3- Analysis of FVIM
Consider the following: partial differential equation with fractions

4Bp@g(x,t) +R g(x,t) +Ng(x,t) = h(x,t), <w<1 (3.1)

with the initial condition
g9(x,0) = F(x)

where 4D is ABFD , R is the linear differential operator ,N denotes the nonlinear term,and h(x,t)
denotes the source term .

The correctional functional for (3.1) is approximately expressed as follows :

In+1 (6, t) =gy (K1) + 421 [A(W) (ABp, gn (X, +RG(X,1) +NG (x,1) ~h(x.))],  (3.2)

—~

where A(u) is general Lagrange’s multiplier. g is considered as restricted variations. The relevant
adjustment in place and making it functioning and noticingd g = 0, we obtain

Ogns1(x,t) = 8gn(x,t) + ABIEU [6/1(.11) (ABD;CLL)gn(x: #))]

Or
8Gn+1 (6, 1) = 89y (%, 1) + A(WEgn (x, 1) — “PIL[62(W) (*P DY gy (x, ).

This produces the stationary conditions

A =0

1+A(w) =0

There for, we identified A = —1,

Gn+1 (6, 8) =gn (1) + 4B1E [A() (*PDL gy (X,1) +R g (x,10) +Ngy, (x, £) ~h(x,1))].  (3.3)

36


http://jceps.utq.edu.iq/
mailto:jceps@eps.utq.edu.iq

Journal of Education for Pure Science- University of Thi-Qar
Vol.14, No. 3 (2024)
Website: jceps.utq.edu.iq Email:jceps@eps.utq.edu.iq

Finally,we have

gx,t) =limg,

n—-oo

4- Applications of FVIM

Example 1. Consider the 2D-fractional Burger equation

PDE + ggx + 99y = Gxx + Gyys (4.1)
with gx,y,0)=x+y
From (3.3) and) (4.1),

(6 gn(x Y.7)

In1(6, ¥, 8) = gn(x,y,t) — f + 9n(9n)x + gn(gn)y (Gn)xx — (gn)yy) d(r)“ .

Then,

go(x:ylt) = X+y

(6 go(x Y,7)

g1yt =G+~ [ + 90(90)x + 90(d0)y = (90)xx — (G0)yy)

= (x+y)(1—2[1—w+r((:t:) b

g0y, t) = (x +) <1 —2 [“‘”ﬁ])

t (0%gn(x,y,
— Jy (2D 4 6,91 + 92(91)y — (9)2x — (G1)yy)

—(x+y)—2(x+y)(1—a+ ) 8(x+y)[(1—a)2+2(1—a)r( 0

at®
I'(a+ 1))

I'la+1)
a’t?®

a’t?a ]
I‘(a+ 1) TQa+1)

rea+1)

] 8(x + Y[(1—a)?+2(1 — a) — 1l—a+
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— — — — 2 — T
gn(,y,t) =(x+y) ll 2 (1 a+ F( +1)) +8 l(l a)?+2(1 —a)— F(a+1) TZarD

— )2 _ a’t?® ( t¢ ) ]
8 [(1 a') t 2(1 a) F(a+1) + ra+1) l—a+ F(a+1) + !
When a =1,
x+y

906y, t) = (x+y)[1— 2t + 4(0)2 + ] = T2

0.18

—&— g(x,y.t) at\ omega =0.5
0.16 } —&— g(x,y,t) at\ omega =0.7 =
g(x,y.t) at\ omega =1
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Figure 1. Plot of the exact and approximate solutions g(x, y, t) for different values of w with fixed values x=1

Example 2. Consider the 2D-fractional coupled Burger’s equations

BDEg(x,y,t) + ggx + Wy = Gux + Gyy O<w<1
ABDtBW(x, V1) + gwyx + wwy, = Wiy + Wy, 0<p<1 4.2)
with

gx,y,0)=x+y
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w(x,y,0) =x—y
In view of (3.3) and (4.2),

t(9g,(xy1)
In+1 (x, b2 t) = gn(x' Bz t) - fo (T + gn(gn)x + Wn(gn)y - (gn)xx - (gn)yy) d(T)w

0Pz, (xy,
Wiir (59,60 = wp(6,y,0) — [ (22920 1 g (W) + W (Wn)y — Wn)xx — (W), ) d(DE.
0t

Then,
go(x;y; t) =X +y

wo(x,y,t) =x—y

91 (30 = e+ 9) = fi (PR 4 g4 (go). + Wo(Go)y — (90)x — (Godyy ) A

=x+y)—2x(1—-w+

F(w+1))

ﬁWQ X,y,T
w1 (69,0 = (= 9) = [y (5522 40 W) + Wo(Wody — (Woax = (Wo)yy ) D)

— (v — ) — _ pth

o) = e 21w 25)

— (PB4, (g2 + w91y — (@02 — (92)yy ) A

e )—Zx(l w +

IMN'w+1) ) +4x [(1 N w)Z

=@+y)—2x0(1-w+-= o

] +2y[(1—a))2+ 2(1—0))(1 W+

21 -w) ( —ot F(w+1)) F(2w+1)

O )+ 2 21— 0~ B+ Bw) + (1= B+ (1 - )

INw+1) rQw+1) F(w+1) F(,B+1)
wﬂtw+ﬁ

Iw+1)T(B+1)

wy (x,y,t) = (x —y) — 2y (1 b+ F(Bfl))
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~f (a MIEPD 4 gy (W) + Wy W)y — Wy — (wl)yy) d(t)

_ _ _ _ _ 2
= -y - -p+i -2y (1-p+ ) ray[a-p +
pth B2t 2 _ Btk p2eP
2(1 ﬁ) r(B+1) 1“(2/3+1)] + Zx[(l B) + 2(1 '8) r(B+1) + F(2/3’+1)] +
(J)Bt(‘H-B
2x[(A—w=f+po)+ A =Bt r( eyl G )I‘(ﬂ+1) T+ DI(B+1)
g(xy,t)—llmgn(xy,t)—x+y—2x(1— ( )+4x[(1—w)2+ 2(1 -
n—-oco
Wt® L \2 B B w220
®) ForD F(2w+1)] +2y[ w) + 20 -w) (1 ST +1)) rGornl T

wBtw+B
F(B+ 1) T(w+1)T(B+1)

2y[A-w=B+Bw)+ (A =P rpmt (1 —w)

F( +1)

w(x, 3;20— limw,(x,y,t) = (x —y) — 2y (1 g+ 1"(13+1)) [(1 -B)?*+

Bk 2 pth B>tk o
21-p) F(ﬂ+1) F(2[3+1)] +2x (1 B+ 2 =B Tramnl T A -0 - B+
1 1 O)ﬁtw+6
pw)+ A - B r( pTA-w I‘(B+1) rwrorgol T

When w =8 =1,

glx,y,t) = x+y— 2xt + 2xt? + 2yt? +

_ X—2xt+y
T 1-2¢2

w(x,y,t) =x —y — 2yt + 2xt? — 2yt? +

__ x=2yt-y
T 1-2¢2
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Figure 2. Plot of the exact and approximate solutions g(x, y, t)for different values of 8, w with
fixed values x=1
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Figure 3. Plot of the exact and approximate solutions w(x, y, t)for different values of 5, w with
fixed values x=1
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5. Conclusions

In the idea of the Atangana-Baleanu fractional operator, the variational iteration method
(VIM) was shown to be extremely successful in solving 2D-FPDEs. The solution is
provided in a series form by the suggested algorithm, if there is an exact solution, it
converges quickly. It is obvious from the findings that the VIM produces solutions that are
extremely precise with only a few iterates. As a result of the efficiency and flexibility
demonstrated in the provided examples, VIM may be used to additional FPDEs of higher
order, according to the findings of this study.
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