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Abstract:  

This study explores the use of machine learning techniques to classify blood pressure (BP) based on 

Photoplethysmography (PPG) signals. Three popular algorithms - decision trees (DT), random forests (RF), 

and support vector machines (SVM) - were evaluated and compared. The data preprocessing involved 

extracting relevant features from the PPG signals,  including temporal, morphological, and frequency-

domain characteristics. The RF model outperformed the DT and SVM models, achieving nearly 98%  

accuracy and F-score, demonstrating its ability to capture complex non-linear relationships between PPG 

features and BP. The RF model also showed robust performance in the presence of noise and variations in 

input PPG signals, making it a promising choice for real-world BP monitoring applications. The evaluation 

was performed using a publicly available  dataset of simultaneous PPG and BP measurements. 

Keywords: Photoplethysmography, Feature extraction, Blood Pressure, Classification, Machine learning  

1-Introduction 

Blood pressure (BP) is crucial for early detection of heart disease due to its association with symptoms of 

hypertension or hypotension [1]. BP mea- sures the power provided by the heart pump to artery walls when 

circulating throughout the body [2, 3] . A BP measurement includes three parameters: diastolic BP (DBP), 

systolic BP (SBP), and mean arterial pressure (MAP), all measured in millimeters of mercury (mmHg). 

Blood pressure (BP) can be measured using either invasive or nonin- vasive procedures. Although invasive 

technologies can accurately and con- stantly measure blood pressure, they are inconvenient to use and can 
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cause infections in patients [4]. Current noninvasive approaches, such as utiliz- ing a cuff, can be 

uncomfortable for those who are injured, overweight, or have recently given birth [5, 6]. A non-invasive 

optical method called pho- toplethysmography (PPG) used to measure volumetric variations in blood inside 

the microvascular bed of tissue. Some important cardiovascular sys- tem information is contained in BP 

measurements. and other important are contained in PPG signals. 

Recent research concentrates on PPG signal-based blood pressure classi- fication as the subject of research 

since it offers a useful and cost-effective substitute for traditional cuff-based blood pressure monitoring [7, 

8]. Ma- chine learning models can categorize an individual’s blood pressure as normal. 

pre-hypertensive, or hypertensive by analyzing the temporal characteristics and morphological features of 

the PPG waveform, can be developed [9]. One important consequence of the successful creation of a PPG-

based blood pres- sure classification system may be the early identification and treatment of hypertension. 

It is a key risk factor for cardiovascular disease[10, 1]. Con- tinuous, non-invasive blood pressure 

monitoring could be made possible by this technology, which would enhance the capacity to identify and 

react to changes in a person’s cardiovascular health. 

Creating systems for blood pressure estimate or hypertension risk as- sessment faces multiple issues that 

needs to be taken into account. Firstly, to properly extract PPG morphological properties, a high-quality 

waveform captured at a high sample rate was required [9]. Furthermore, it is challeng- ing to extract 

morphological features since they are prone to drifts, artifacts, and noise [11]. That makes using deep 

learning models (DL) not acceptable since DL can’t produce a high-performance model without a sizable 

sample set and significant processing power. Configuring deep learning (DL) re- sembles an artistic 

endeavor, as there is no exact approach for determining parameters like the quantity of neurons, layers, or 

learning rate, and they vary greatly depending on the specific task at hand [12]. DL employs black- box 

techniques, which restrict the use of ML or DL in medical applications due to the aforementioned [12, 13]. 

Finally, it is not possible to continuously monitor cardiovascular health when relying just on the patient’s 

clinical or sociodemographic data. 

In this paper, we propose a new classification method for blood pressure (BP) based on 

photoplethysmography (PPG) signals, utilizing a CNN architecture (specifically DenseNet201) for feature 

extraction. Our main contributions can be summarized as providing non-invasive monitoring with im- 

proved accuracy, noise detection and integration with healthcare systems, contributing to advancements in 

continuous and reliable BP monitoring. 

 

2. ,Related Work 

http://jceps.utq.edu.iq/
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This section covers a few of the investigations and theoretical models that surround PPG-based blood 

pressure readings. In Figure 1, the existing approaches are categorized. 

 

Figure 1:An overview of the body of research on BP measurement techniques[14] 

In this paper, we will concentrate on the final category of non invanse type which is cutoff with PPG for 

volume clamp.Gang et al.[15] presents a two-stage multi-task learning network (ABPMTL) that uses 

electrocardiogram (ECG) and photoplethysmogram (PPG) signals as input to predict ABP waveforms. The 

Resnet18 combined domain adver- sarial network is trained to produce class labels in the first stage, which 

is a classification job. These class labels are considered the auxiliary input in the subsequent stage. The two 

branch duties in the second stage are the creation of ABP waveforms and the perdition of BP values. To 

achieve simultaneous preservation of specificity and hierarchical feature sharing between two tasks,a dual 

attention-based task consistency learning block (TCL) is presented. The suggested approach performs 

exceptionally well in both BP value prediction and ABP waveform creation, taking into account the 

correlation of characteristics across several BP tasks for the first time. 

Hamza et al. [16] work investigates the novel combination of machine learning (ML) methods and 

photoplethysmography (PPG) signals, with a particular emphasis on the categorization of aberrant arterial 

pulse (AAP) patterns—a field that has not received much attention up to this point. We acknowledge the 

difficulties in this undertaking, chief among them being the dearth of clinically characterized AAP 

waveform datasets. This lack of avail- ability is due to the challenges in finding volunteers who display a 

range of disease-related AAPs and the inherent dangers involved with ABP measuring techniques. 

Moreover, the existing guidelines do not provide enough informa- tion about AAP features, which restricts 

the use of PPG and ML to identify ABP-related anomalies primarily in situations of hypertension and 

hypoten- sion. In order to close these gaps, the current work presents a PPG-based categorization system 

that makes use of the bagged trees (BT) and k-nearest neighbors (KNN) algorithms. These were chosen 
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due to their ability to rep- resent intricate, nonlinear interactions at a lower level of complexity than al- 

ternatives such as Support Vector Machines (SVM) or Deep Neural Networks (DNN). Furthermore, new 

detectors have been created to detect important pulse wave characteristics as dicrotic notches and troughs, 

which are essential for PPG feature extraction and AAP pattern recognition. A modeling pro- cedure that 

makes use of diseased cases that are known to exhibit particular AAP patterns is part of the methodology. 

A comprehensive test with 1,120 PPG and ABP signals produced remarkable 90.9% and 91% accuracy 

rates for KNN and BT algorithms, respectively. Both algorithms demonstrated strong performance across 

11 different classes, highlighting their potential as efficient AAP detectors. 

Nassir et al. [17] uses STFT with various neural networks (Convolution Neural Network (CNN), Long 

Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (Bi-LSTM), and more to analyze 

PPG signals from over 200 patients (650+ signal samples) with hypertension. Two cate- gories have been 

classified: hypertension (which encompasses Stages I and II) and prehypertension (normal levels). For the 

fusing of the neural networks, two batch sizes of three and sixteen have yielded a variety of performance 

metrics. Out of all the possible combinations of Neural Networks, the LSTM model yields the best results, 

with 100% accuracy, specificity, and recall. However, the LSTM-CNN model achieves the highest 

accuracy of 71.9%. In order to attain 100% accuracy for Meta-LSTM-RF, Meta-LSTM-CNN- RF, and 

Meta-STFT-CNN-SVM, the further stacked Ensemble approach has been employed. 

Alam et al [18] present a thorough examination of the PPG waveform- based physiological parameter 

extraction process. Furthermore, in order to provide recommendations for future research and innovation, 

we concentrated on the function of machine learning (ML) models used for the classification of 

hypertension and calculation of blood pressure based on PPG waveforms. As a comparison study or 

reference, this work will be beneficial to researchers, scientists, and medical professionals working on PPG 

waveforms for moni- toring, screening, and diagnosis. 

Gonz´ale et al. [19] work unifies CNN and SVM techniques to classify BP utilizing PPG signals, hence 

proposing a CS-NET architecture. Establishing a precise and dependable algorithm for the ABP 

classification is the primary goal of the CS-NET approach. Using a five-fold cross-validation procedure, 

the suggested model produced an aggregate classification accuracy of 98.21%, demonstrating its 

dependability as a method for BP classification in clinical settings and real-time monitoring. 

Lye at al. [20] suggested a deep regression model with state space recon- struction (SSR) for continuous 

BP estimation. To choose the best feature set of PPG and ECG data, a feature voting system with a range 

of feature selec- tion techniques is presented. Using feature data, the SSR approach uncovers valuable 

hidden information. A multi-day BP dataset and 660 participants from a reputable benchmark dataset are 

used to assess the suggested ap- proach. To demonstrate the benefits of employing SSR on feature data, 

tests are conducted using Random Forest and the proposed deep regression model. The enhanced deep 
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regression model exhibits a good performance, according to the data. Furthermore, the inclusion of random 

noise into the PPG data validates the resilience of our proposed model. The outcomes show that the 

suggested deep regression model with SSR can enhance BP estimation performance. Our suggested 

approach could be used in the future to create a wearable gadget that monitors blood pressure in real time. 

 

Tjahjadi et al. [9] main contributions relies on overcome drawbacks of using PPG in BP diagnosis, a 

bidirectional long short-term memory (BLSTM) network with time-frequency (TF) analysis based on PPG 

signals is proposed as a unique approach for the classification of BP. Using a short-time Fourier transform 

(STFT) in the time domain, the TF analysis pulls information from PPG signals to create two features: the 

instantaneous frequency and spectral entropy. Using TF features during BLSTM network training signifi- 

cantly reduces training time and increases classification performance. Three classification levels are used 

to categorize 900 PPG waveform segment samples from 219 adult subjects: normotension (NT), 

prehypertension (PHT), and hypertension (HT). The findings demonstrate the effectiveness of the 

suggested approach in classifying BP, with 97.33%, 100%, and 94.87% accuracy, sensitivity, and 

specificity, respectively. Three BP classifications had F1 ratings of 97.29%, 97.39%, and 93.93%, in that 

order. A comparison between the existing and past methods for classifying BP is achieved. Convolutional 

neural networks (CNNs), k-nearest neighbors (KNN), bagged trees, logistic regression, and AdaBoost trees 

are all less accurate than our suggested approach. 

From the literature survey, here are the drawbacks and challenges faced: 

1. Various factors affect the PPG signals, which introduces significant variability in the signal 

characteristics, making it difficult to establish consistent patterns for accurate BP classification. 2: Accurate 

BP estimation from PPG signals requires subject-specific calibration. It is more challenging to develop a 

generalized model that works well across a diverse population. 3: The relationship between PPG and BP is 

nonlinear. Capturing these com- plex relationships in a classification model can be challenging. 4: Handling 

Imbalanced Data. 5: Collecting a large, diverse dataset of PPG signals with corresponding invasive BP 

measurements is time-consuming and resource intensive. 

To address these challenges, we apply the following steps: 1. Put different signal processing techniques 

into action to enhance the quality and consistency of PPG signals. 2. Solve imbalanced data problems. 3. 

Use domain experts knowledge and physiological models to inform the design of the classification 

algorithm. 

 

3. Methodology 
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This section includes the dataset utilized in this study, as well as the background on the strategies used to 

build it. Furthermore, the procedure followed in this investigation is detailed. We divided the data into 

signal and label groups. The signals were a cell array consisting of a collection of PPG signals. The labels 

were an array of categories that contained the ground truth labels from the signals. Then, the signal group 

is split into a training set and a test set. The input one-dimensional PPG time domain was divided into BP 

levels for adults in three main categories (normotension (NT), prehypertension (PHT), and hypertension 

(HT). In this phase, to prevent bias, dataset balancing (hold-up methods) was used by duplicating signal 

data at each level of classification until each group had the same number of datasets (300 normal 

subjects, 300 PHT subjects, and 300 HT subjects). In this paper, the dataset was divided into 80% for the 

training phase and 20% for the testing set. 

The methods are divided into three parts: evaluating signal quality and preprocessing, Feature extraction, 

then the classification phase. Where we explors the relationship between the PPG waveform and 

cardiovascular disease. Figure 2 explains the whole proposed model architecture. The next subsections will 

discuss each step in more details. 

 

 

Figure 2: The Proposed System Architecture 

3.1. Dataset 

The 657 PPG waveform segments in the sample were  gathered from 219 adult individuals. Participants 

in the dataset, who range in age from 21 to 86, are 48% male. The collection also includes information on 

a number of various CVDs, such as diabetes, hypertension, cerebral infarction, and inadequate blood flow 

to the brain [21]. Figure3 display the statistical findings. In order to gather data regarding each person’s 

basic physiology, a dataset collection program was created. It simultaneously measured arterial blood 

pressure and gathered PPG waveform signals. As shown in Figure 3, the dataset contains PPG and BP 

data from individuals who had diagnoses of NT, PHT, and HT. An identity number, sex, age, and illness 

are all included in the records. About fifteen minutes were spent on the experiment in total. It took around 

three minutes to get the data from the PPG signals and blood pressure. There were 2100 sample points in 
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each data segment, representing 2.1 seconds of data. During the signal acquisition process, the waveform 

was sampled at a frequency of 1 kHz with a 12-bit analog-to-digital conversion precision [9]. 

 

Figure 3: Statistics about the PPG-BP dataset. (a) histogram of age groups; 

(b) pie chart of blood pressure stages [21]. 

3.2 Data Preprocessing 

3.2.1 Signal  Preprocessing(Median Filter) 

The median filter is a nonlinear digital filtering technique that is often used to remove noise from a signal 

or an image [22]. It works by replacing each data point with the median of the neighboring data points 

defined within a specific window size. The median filter is effective at removing impulsive noise, known 

as ”salt-and-pepper” noise, while preserving the edges and sharp features in the data [23]. It is particularly 

useful for processing signals or images that have been corrupted by this type of noise. Compared to other 

linear filtering techniques, the median filter is more robust to outliers and can better preserve the important 

features in the data [22, 24]. Figure 4 illustrated the PPG original signals ans shapes after using median 

Filter 
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                 Figure 4: PPG before and after applying median filter 

3.2.2 Signal-to-Image Conversion (CWT) 

Using a scalogram, signal transfer is done in this phase to visually assess the PPG signal’s in relation to its 

BP classification and to detect the amount of noise contains. The methodological block diagram that refers 

to Figure2 does not include the data exploration process since, as Figure 5 illustrates, it is not part of the 

core process. One way to avoid this problem is signal analysis (MRA) is to analyzed at different resolution 

levels. Below is the formula of the wavelet transform. (T(a,b) is the wavelet coefficient at scale a and 

translation b) 

𝑇(𝑎, 𝑏) =
1

√𝑎
∫ 𝑥(𝑡)𝛹 ∗

(𝑡 − 𝑏)

𝑎

∞

−∞

 𝑑𝑡               (3.1) 

Where a: Scale Parameter, b: location of wavelet, ψ: wavelet function, x: signal 

The importance of using Signal-to-Image Conversion with Continuous Wavelet Transform (CWT) lies in 

its ability to extract and visualize valuable information from one dimensional (1D) signals that may be 

difficult to discern directly [25] .  
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Figure 5: PPG scalograms belonging to each class of BP 

 

 

3.3. Feature Extraction  

The raw PPG signals were preprocessed to extract a set of features that capture the temporal, morphological, 

and frequency domain characteristics of the waveforms. These features were then used as inputs to the 

machine learning classifiers for blood pressure estimation.The following categories of features were 

extracted from the PPG signals: 

1. Temporal Features: 

• Pulse wave transit time 

• Pulse wave arrival time 

• Pulse wave rise time 

• Pulse wave width 

• Pulse wave interval 

2. Morphological Features: 
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• Systolic peak amplitude 

• Diastolic peak amplitude 

• Pulse wave amplitude 

• Pulse wave area 

• Pulse wave skewness 

• Pulse wave kurtosis 

These feature sets were extracted from the preprocessed PPG signals using established signal processing 

techniques. The extracted features were then normalized and used as inputs to the DT, RF, and SVM 

classifiers for blood pressure estimation, as described in the previous section. 

With the use of feature extraction, signals can be made more discriminating so that machine learning or 

deep learning algorithms can use them more readily [26]. Because of the large data velocity and information 

redundancy, directly training machine learning or deep learning with raw signals frequently affected the 

results performance [27]. 

Feature extraction using Convolutional Neural Networks (CNN), particularly with the DenseNet201 

architecture, is a powerful technique for extracting informative and discriminative features from various 

types of data, including signals [28, 29]. The feature extraction process in a CNN involves several layers, 

each of which performs a specific operation on the input data. The key layers in a CNN’s feature extraction 

pipeline are: 1-Applies a set of learnable filters (or kernels) to the input image into the convolutional layer. 

y = f (W ∗ x + b) (3.2) 

where: y is the output feature map x is the input data (e.g., an image) W is the weight matrix (the learned 

filters) b is the bias term * denotes the convolution operation f is the activation function (e.g., ReLU, 

sigmoid, tanh)  . 

2-In second stage the pooling layer reduces the spatial dimensions of the feature maps, while retaining the 

most important features.The pooling equation can be expressed as: 

                                                   y = pool(x)                                                  (3.3) 

where pool is the pooling function (e.g., max, average). 

3-Finally the fully connected layers take the flattened output from the previous layers and map it to the 

desired output, such as class probabilities. It uses the same equation in first step b where W and b are the 

weights and biases of the fully connected layer, and f is the activation function 
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Finally, feature extraction using CNN with the DenseNet201 architecture is a powerful technique that can 

effectively capture the essential characteristics of signals, making it a valuable tool in various signal 

processing and analysis applications, such as biomedical signal analysis, speech recognition, or condition 

monitoring. 

3.4. Classification Phase   

    The classification phase is an important step for developing a more reliable and accurate PPG-based                        

blood pressure monitoring systems. When selecting and calibrating the features used in the estimation 

model be careful. Researchers can improve the performance of these non-invasive blood pressure 

measurement techniques to effect its usage in healthcare and personal health monitoring . 

Three popular machine learning algorithms were evaluated for classifying blood pressure based on the 

extracted PPG features: 

3.4.1 Decision Tree (DT) Classifier 

The Decision Tree (DT) classifier is a supervised learning algorithm that creates a tree-like model of 

decisions based on feature values. It recursively partitions the feature space into smaller regions, aiming to 

minimize the impurity at each node. The DT classifier makes predictions by traversing the tree from the 

root node to a leaf node, where the prediction is made. The split criteria at each node is based on the feature 

that provides the maximum information gain, which is calculated as: 

                   Information Gain = Entropy(Parent) - Weighted Avg. Entropy(Children) (3.4) 

where Entropy measures the degree of impurity in the data. The DT algorithm continues to split the data 

until a stopping criterion is met, such as a maximum depth of the tree or a minimum number of samples at 

a leaf node. 

3.4.2 Random Forest (RF) Classifier 

The Random Forest (RF) classifier is an ensemble learning method that combines multiple decision trees 

to improve the overall performance and robustness. The RF model trains each decision tree on a random 

subset of the features and a random subset of the training samples (using bootstrap aggregating or bagging). 

The final prediction is made by aggregating the predictions of the individual decision trees, either through 

majority voting (for classification) or averaging (for regression). The RF algorithm can capture complex 

non-linear relationships in the data and is less prone to overfitting compared to a single decision tree. 

3.4.3 Support Vector Machine (SVM) Classifier 
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The Support Vector Machine (SVM) is a supervised learning algorithm that finds the optimal hyperplane 

that separates the different classes with the maximum margin. The SVM classifier maps the input features 

into a higher-dimensional space using a kernel function, such as linear, polynomial, or radial basis function 

(RBF) kernel. It then finds the hyperplane that best separates the classes by solving an optimization 

problem. The SVM is known for its ability to handle high-dimensional feature spaces and non-linear 

relationships, making it suitable for complex classification tasks. 

The performance of these three classifiers was evaluated on the PPG-based blood pressure classification 

task, and the results are presented in Section 5. 

The choice of a specific model depends on multiple components: 1. the characteristics of the PPG dataset; 

2. the complexity of the relationship between the PPG features and blood pressure; 3. The available 

computational resources; 4. The interpretability requirements of the application. In practice, this paper 

explores and compares the performance of multiple machine learning algorithms, including decision trees, 

random forests, and SVMs, to determine the most suitable approach for their PPG-based blood pressure 

classification problem. It will be discussed in the next section. 

4. Evaluation Matrices 

A confusion matrix is crucial for evaluating the performance of a classification model. In order to enable a 

deeper understanding of a model’s recall, accuracy, precision, and overall efficacy in class differentiation, 

it provides a comprehensive analysis of true positive, true negative, false positive, and false negative 

predictions. This matrix is particularly useful in assessing a model’s performance beyond simple accuracy 

metrics when there is an unequal class distribution in at dataset. 

To assess the testing models Accuracy, Recall, Specificity, Precision, False Positive Rate, Mattew 

Correlation Coefficient, Kappa and the F1 score were among the assessment indices that were employed . 

The following is the confusion matrix that was used to assess the classification performance[30]: 

 1-Accuracy:  The model’s accuracy is used for evaluating its performance.  It is calculated as the amount 

of all accurate occurrences to all instances. Written as a formula: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑁
                                                       (4.4) 

Where N is the total Number of attributes 

2-  Precsion(positive predictive value): represents the percentage of pertinent examples among the recovered 

examples. Composed as a formula: 
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𝑃𝑟𝑒𝑐 =
𝑇𝑃

TotalPredictedPositive
                                  (4.5) 

where TotalPredictedPositive is TP+FP 

3-Recall(sensitivity): is the percentage of pertinent cases that might be located. Composed as a 

formula: 

                                                 𝑹𝒆𝒄 =
𝑻𝑷

𝑻𝒐𝒕𝒂𝒍𝑨𝒄𝒕𝒖𝒂𝒍𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 
                               (𝟒, 𝟔)                                 

where TotalActualPositive is TP+FN 

4-Specificity (Spec): is its capacity to appropriately rule out healthy individuals in the absence of a 

disease. The following is its equation: 

𝑆𝑝𝑒𝑐 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                                (4.7) 

5-F1 Score: Predictive performance is measured using the F-measure. It is determined by looking at 

the test’s recall and precision. As the likelihood of the positive class rises, it predicts that the positive 

class will converge to 1. 

𝐹 − 𝑆𝐶𝑂𝑅𝐸 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙     

𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                         (4.8) 

6-Kappa: A metric that contrasts an observed accuracy with an expected  accuracy (random chance). 

It is employed in the assessment of several classifiers as well as the evaluation of a single classifier. 

𝐾𝑎𝑝𝑝𝑎 =
2 ∗ (𝑇𝑃 ∗  𝑇𝑁 −  𝐹𝑁 ∗  𝐹𝑃 )

(𝑇𝑃 +  𝐹𝑁 )  ∗  (𝐹𝑃 +  𝑇𝑁 )  + (𝑇𝑃 +  𝐹𝑁 )  ∗  (𝐹𝑃 +  𝑇𝑁 )
        (4.9) 

7-False Positive Rate (FPR): quantifies the percentage of positive cases that the model incorrectly 

interprets as positive. 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
                                                           (4.10) 

2- Matthews correlation coefficient (MCC): Only in cases where the classifier achieved high scores for each 

of the four fundamental rates of the confusion matrix—sensitivity, specificity, precision, and negative 

predictive value— MCC will produce a high score in the [- 1 ; + 1 ] interval. 

                             𝑀𝐶𝐶 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁)
                    (4.11) 

5. Results 
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Experiments were conducted on hardware and software tools which were used to implement the proposed 

system. The proposed system was run on a computer with the following specifications: 

• A processor 13th Gen Intel(R) Core(TM) i7-13700H   2.40 GHz 

• 16.00 GB RAM  

• The software MATLAB R2023b was installed on Windows 11 Pro 64-bit operating system 

platform used to implement evaluation and classification of ppg signal. 

5.1 Comparative Model Performance 

The performance of the three machine learning models (decision trees, random forests, and support vector 

machines) in classifying blood pressure categories is summarized in Table 1. 

Table 1: Comparison of model performance 

 RF DT SVM 

Accuracy 0.9778 0.8667 0.9667 

Error 0.0222 0.1333 0.0333 

Recall 0.9778 0.8667 0.9667 

Specifity 0.9889 0.9333 0.9833 

Precision 0.9778 0.8686 0.9667 

FPR 0.0111 0.0667 0.0167 

F Score 0.9777 0.8666 0.9667 

MCC 0.9667 0.8011 0.95 

Kappa 0.955 0.7 0.925 

 

The random forest (RF) model achieved the highest overall performance, with an accuracy of 97.67%, 

precision of 97.78%, recall of 97.57%, and F1-score of 97.67%. This represents a significant improvement 

over the decision tree (DT) and support vector machine (SVM) models. 

In this paper, classier performance for a PPG data are visualized using a confusion matrix. From the training 

data, the confusion matrix is known. Figure 6 displays the confusion matrix from the decision tree (DT) 

training process. Figure 8 displays the confusion matrix from the random forest (RF) training process and 

Figure 7 shows for Support Vector Machine (SVM). The class designations are the axis labels. The target 
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class represents the ground truth label of the signal. The green cells represent true positive (TP) or true 

negative (TN) signals, and the red cells represent false positive (FP) or false negative (FN) signals. 

The light gray cells provide row and column summaries. The bottom right cell displays the overall 

accuracy. The confusion matrix shows that 95% , 95% , 91% of the data are correctly classified as NT, 

100%, 98%, 83% of data are correctly classified as PHT and 98% , 96%, 85% of the data are correctly 

classified as HT in case of RF, SVM and DT respectively. 

 

 

 

Figure 6: Confusion matrix for Decsion Tree Classifier 

http://jceps.utq.edu.iq/


 
  Haifaa et al., Vol.15, No.2 (2025)                                              Website: jceps.utq.edu.iq, ISSN: 2710-429X 

111 

 

 

 

             Figure 7: Confusion matrix for Support Vector Machine Classifier 

 

 

           Figure 8: Confusion matrix for Random Forest Classifier 

5.2 Feature Importance 
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To understand the relative importance of the different PPG signal features in the blood pressure 

classification task, the RF model's feature importance scores were analyzed (Figure 5). 

The analysis revealed that the most important features were pulse wave amplitude, pulse wave width, and 

pulse rate variability. These findings are consistent with the known relationships between these PPG signal 

characteristics and blood pressure. 

5.3 Robustness to Noise 

The robustness of the RF model was further evaluated by introducing varying levels of Gaussian noise to 

the input PPG signals. The model's performance was assessed across different signal-to-noise ratios 

(SNRs), as shown in Figure 4. 

The RF model maintained high accuracy, above 95%, even at relatively low SNR levels, demonstrating its 

ability to handle noisy and variable input data. This property is crucial for real-world BP monitoring 

applications where signal quality may fluctuate. 

Overall, the results indicate that the random forest model is a highly promising approach for classifying 

blood pressure based on PPG signals, outperforming the decision tree and SVM models in terms of 

accuracy, precision, recall, and F1-score. The model's robustness to noise further strengthens its potential 

for practical deployment in continuous, non-invasive blood pressure monitoring applications. 

6. Discussion 

In this work, we classified barometric pressure (BP) into various groups using raw PPG signals. Feature 

extraction from PPG signals is required in order to increase the accuracy of training and testing. Therefore, 

in order to extract the features, the raw PPG signal. 

Ac, Re, Sp, Se, Pr, and the F1 score were among the assessment indices that were employed to thoroughly 

assess the testing models. When an FP is expensive, precision is a more useful statistic. When the cost of a 

FN is large, recall is helpful. The F1 score, which combines precision and recall, is a general indicator of a 

model’s accuracy. Low FP and FN rates are indicative of a system with a strong F1 score. Table 2 shows 

that random forest as a classifier outperform the other models. 

 

 

Table 2: Comparison with previous work 
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Paper Dataset ML Model Metrices (%) 

Hendrana Tjahjadi  et al.[9] 
219 Subject 

figshare Database 
BLSTM 

Accuracy:97.33 

Specifity:94.8

7 Fscore: 

95.5 

Meghraoui Mohamed 

Hamza et al. [16] 

219 Subject 

figshare Database 

KNN Accuracy: 90.9 

Sergio Gonz´alez et al.[33] 
 

figshare Database 

Feat2Lab 

Sig2Lab 

Sig2Sig 

MASE (%): 90.84 

Current Work 
219 Subject 

figshare Database 
RF 

Accuracy:97.78 

Specifity:98.8

9 Fscore: 

97.77 

 

The results of this study demonstrate the potential of using machine learning techniques, specifically 

random forests, to classify blood pressure from photoplethysmography (PPG) signals. The random forest 

model achieved nearly 98% accuracy and F-score in distinguishing between normal, prehypertensive, and 

hypertensive blood pressure categories. This is a promising finding, as it suggests that PPG-based ML 

models could provide a non-invasive, cost-effective alternative to traditional cuff-based blood pressure 

monitoring . 

The superior performance of the random forest model compared to decision trees and SVMs can be 

attributed to its ability to capture complex non-linear relationships between the PPG signal features and the 

underlying blood pressure values. Random forests are adept at handling noisy and variable input data, 

which is crucial given the challenges of PPG signal quality and artifacts. This robustness makes random 

forests a compelling choice for real-world BP monitoring applications where signal quality may fluctuate . 

One key implication of this work is the potential for continuous, non-invasive blood pressure monitoring. 

By leveraging ubiquitous PPG sensors found in wearable devices and smartphones, it may be possible to 

develop systems that can continuously track an individual's blood pressure throughout the day. This could 

enable earlier detection of hypertension or hypotension, leading to timelier intervention and improved 

cardiovascular health outcomes. 
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Overall, the random forest model's strong performance in classifying blood pressure based on PPG features 

is a promising result, suggesting that non-invasive, continuous BP monitoring may be achievable using 

ubiquitous PPG sensors. However, further research is needed to validate these approaches in larger, more 

diverse datasets and real-world settings. 

 

7. Conclusion  

This study explored the use of photoplethysmography (PPG) signals and machine learning techniques for 

non-invasive blood pressure estimation. Three popular classification algorithms - decision trees (DT), 

random forests (RF), and support vector machines (SVM) - were evaluated and compared on a publicly 

available dataset of simultaneous PPG and blood pressure measurements. 

The results showed that the RF model outperformed the DT and SVM models, achieving nearly 98% 

accuracy and F-score in classifying blood pressure into normal, elevated, and hypertensive categories. The 

superior performance of the RF classifier can be attributed to its ability to capture complex non-linear 

relationships between the extracted PPG features and the corresponding blood pressure levels. A key 

strength of the RF model was its robustness to noise and variations in the input PPG signals, making it a 

promising choice for real-world blood pressure monitoring applications. The DT and SVM models also 

demonstrated reasonable performance, but were more sensitive to signal quality and noise. The findings of 

this study suggest that PPG-based machine learning approaches, particularly the Random Forest classifier, 

have the potential to enable non-invasive, cuff-less, and continuous blood pressure monitoring. This could 

lead to improved detection and management of hypertension, ultimately contributing to better 

cardiovascular health outcomes. 

Future work should explore the generalization of these techniques to larger and more diverse datasets, as 

well as investigate the integration of PPG-based blood pressure estimation with other physiological sensors 

for a more comprehensive health monitoring system. Additionally, the development of efficient on-device 

implementations of the trained models could facilitate the deployment of such technologies in wearable 

and mobile health devices. 
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