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Abstract: In this work, we investigated the generalized Laplace transform method (GLTM) for obtaining an exact 

solution to some linear partial differential equations of fractional order. It is shown that under specific conditions for 

our method, other related methods are deduced. Theorems about the existence and uniqueness of transform is 

established. Furthermore, we provide examples to demonstrate the method’s applicability. 
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1-Introduction  

 

In 1880, Oliver Heaviside, developed the telegraph equation, a partial differential equation that appears in 

different fields of science and engineering [1]. This equation is used to represent electrical signal propagation down 

a telegraph line as well as reaction diffusion. Many scientists have researched the solution to the telegraph equation. 

For example, in [1], the authors used the double Laplace transform to obtain accurate solutions to linear and nonlinear 

space-time fractional telegraph equations. Elzaki et al. [2] solved a telegraph equation with the Elzaki-Laplace 

transform method. In their paper [3], the author’s investigated the double Laplace-Sumudu transform strategy to 

solving partial differential equations. Furthermore, in their study [4], the authors have successfully used the natural 

transform and Adomian decomposition method to drive approximate solutions of the telegraph equation. In contrast, 

integral transformations are an effective technique for solving linear differential equations. It will enable us to convert 

a differential problem into an algebraic equation, and then, by solving this algebraic equation, we can quickly retrieve 

the unknown function by using the inverse transform [14]. H. Kim has recently presented a generalized integral 

transform [5]. Under certain conditions, this integral transform yields to other integral transforms, such as, the 

Laplace transform, the Aboodh transform [6], the Elzaki transform [7], and the Sumudu transform [8], and so on. 

Which was successfully applied to solve differential equations with fractional order [9]. Recently, the researchers in 

[10] investigated the generalized Laplace transform to determine the exact solution of the Burger’s and the coupled 

Burger’s equations. Ref. [11] studied a time-fractional Navier-Stokes equation in one and two dimensions utilizing 
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the double Sumudu-generalized Laplace transform decomposition approach. The conventional form of the telegraph 

equation is given by [1] 

𝜕2𝜓(𝑥, 𝜏)

𝜕𝑥2
= 𝑎1

𝜕2𝜓(𝑥, 𝜏)

𝜕𝜏2
+ 𝑎2

𝜕𝜓(𝑥, 𝜏)

𝜕𝜏
+ 𝑎3𝜓(𝑥, 𝜏) + 𝓀(𝑥, 𝜏), 𝑥, 𝜏 ≥ 0.                            (1.1) 

where 𝜓(𝑥, 𝜏) represent the resistance and the constants 𝑎1, 𝑎2, and 𝑎3 are related to the inductance, capacitance, and 

conductance of the cable, respectively, 𝓀(𝑥, 𝜏) is the given function. It is obvious that the telegraph equation is a 

linear partial differential equation. Under specific scenarios, depending on the electrical parameters of the cable, two 

linear equations emerge: the heat diffusion equation and the wave equation. For more details, see [13]. 

The primary goal of this study is to investigate and develop the use of the Laplace-Generalized Laplace 

transform method (LGLTM) to obtain exact solutions to the linear homogeneous and nonhomogeneous telegraph 

equation using the Caputo fractional derivative. The fractional-order telegraph equation with the Caputo fractional 

derivative is given as 

𝜕𝜚𝜓(𝑥, 𝜏)

𝜕𝑥𝜚
= 𝑎1

𝜕𝜎𝜓(𝑥, 𝜏)

𝜕𝜏𝜎
+ 𝑎2

𝜕𝜍𝜓(𝑥, 𝜏)

𝜕𝜏𝜍
+ 𝑎3𝜓(𝑥, 𝜏) + 𝓀(𝑥, 𝜏),       𝑥, 𝜏 ≥ 0.                (1.2) 

with initial and boundary conditions, 

{
𝐼𝐶𝑠,     𝜓(𝑥, 0) = 𝜓1(𝑥), 𝜓𝑡(𝑥, 0) = 𝜓2(𝑥),

𝐵𝐶𝑠,      𝜓(0, 𝜏) = 𝜓3(𝜏), 𝜓𝑥(0, 𝜏) = 𝜓4(𝜏).
                                           (1.3) 

where 1 < 𝜚, 𝜎 ≤ 2,   0 < 𝜍 ≤ 1. 

The paper is organized as follows: Section 2, introduces some basic principles. Section 3, discusses the 

existence and uniqueness of the suggested transform. In Section 4, the proposed method is used to solve the fractional 

telegraph equation. Section 5, contains some examples that demonstrate the applicability of the previous strategy. 

The final section has a conclusion. 

 

1. Preliminaries 

This section discuses some fundamental concepts and properties of the Laplace-generalized Laplace 

transform, which are useful in solving fractional-order partial differential equations. 

Definition 2.1. [5] The generalized Laplace transform of the continuous function 𝜓(𝜏), 𝜏 ≥ 0, is defined as: 

G𝛼[𝜓(𝜏)] = Ψ𝛼(𝜑) = 𝜑
𝛼∫ 𝜓(𝜏) 𝑒𝑥𝑝 (−

𝜏

𝜑
)𝑑𝜏

∞

0

, 𝜑 ∈ ℂ, 𝛼 ∈ ℤ,                     (2.1) 

Specifically, for 𝛼 = 0 and 𝜗 =
1

𝜑
, we have the Laplace transform as follows: 

ℒ[𝜓(𝜏)] = Ψ(𝜑) = ∫ 𝜓(𝜏) 𝑒𝑥𝑝(−𝜗𝜏) 𝑑𝜏

∞

0

.                                                               (2.2) 

Definition 2.2. The double integral of the continuous function 𝜓(𝑥, 𝜏), called as the Laplace-Generalized Laplace 

transform (LGLT) is defined as follows: 
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ℒ𝑥G𝛼[𝜓(𝑥, 𝜏)] = Ψ𝛼(𝜗, 𝜑) = 𝜑
𝛼∫ ∫ 𝜓(𝑥, 𝜏) 𝑒𝑥𝑝 (−𝜗𝑥 −

𝜏

𝜑
)𝑑𝜏𝑑𝑥.

∞

0

∞

0

                            (2.3) 

The inverse Laplace-Generalized Laplace transform of the function Ψ𝛼(𝑝, 𝜑), is defined as: 

ℒ𝑥
−1G𝛼

−1[Ψ𝛼(𝜗, 𝜑)] = 𝜓(𝑥, 𝜏) =
−1

(2𝜋)2
∫ ∫ 𝜑𝛼  Ψ𝛼(𝜗, 𝜑) 𝑒𝑥𝑝 (𝜗𝑥 +

𝜏

𝜑
)𝑑𝜗𝑑𝜑.

𝑏+𝑖∞

𝑏−𝑖∞

𝑎+𝑖∞

𝑎−𝑖∞

       (2.4) 

Corollary 1. Based on the previous definition of the Laplace-Generalized Laplace transform, we conclude the 

following definitions: 

• If 𝛼 = 0, 𝜑 =
1

𝜑
, we obtain the double Laplace transform [1, 16]. 

ℒ𝑥ℒ𝑡[𝜓(𝑥, 𝜏)] = Ψ𝛼(𝜗, 𝜑) = ∫ ∫ 𝜓(𝑥, 𝜏) 𝑒𝑥𝑝(−𝜗𝑥 − 𝜑𝜏) 𝑑𝜏𝑑𝑥.

∞

0

∞

0

 

• If 𝛼 = 1, we obtain the Laplace-Elzaki transform [2]. 

ℒ𝑥Ε𝑡[𝜓(𝑥, 𝜏)] = Ψ𝛼(𝜗, 𝜑) = 𝜑∫ ∫ 𝜓(𝑥, 𝜏) 𝑒𝑥𝑝 (−𝜗𝑥 −
𝜏

𝜑
)𝑑𝜏𝑑𝑥.

∞

0

∞

0

 

• If 𝛼 = −1, we obtain the Laplace-Sumudu transform [3]. 

ℒ𝑥S𝑡[𝜓(𝑥, 𝜏)] = Ψ𝛼(𝜗, 𝜑) =
1

𝜑
∫ ∫ 𝜓(𝑥, 𝜏) 𝑒𝑥𝑝 (−𝜗𝑥 −

𝜏

𝜑
)𝑑𝜏𝑑𝑥.

∞

0

∞

0

 

•  If 𝛼 = −1,𝜑 =
1

𝜑
, we obtain the Laplace-Aboodh transform [15]. 

ℒ𝑥Α𝑡[𝜓(𝑥, 𝜏)] = Ψ𝛼(𝜗, 𝜑) =
1

𝜑
∫ ∫ 𝜓(𝑥, 𝜏) 𝑒𝑥𝑝(−𝜗𝑥 − 𝜑𝜏) 𝑑𝜏𝑑𝑥.

∞

0

∞

0

 

• If 𝛼 = 2, 𝜑 =
1

𝜑
, we obtain the Laplace-Mohand transform. 

ℒ𝑥M𝑡[𝜓(𝑥, 𝜏)] = Ψ𝛼(𝜗, 𝜑) = 𝜑
2∫ ∫ 𝜓(𝑥, 𝜏) 𝑒𝑥𝑝(−𝜗𝑥 − 𝜑𝜏) 𝑑𝜏𝑑𝑥.

∞

0

∞

0

 

• If 𝛼 = −2, we obtain the Laplace-Sawi transform. 

ℒ𝑥S𝑡[𝜓(𝑥, 𝜏)] = Ψ𝛼(𝜗, 𝜑) =
1

𝜑2
∫ ∫ 𝜓(𝑥, 𝜏) 𝑒𝑥𝑝 (−𝜗𝑥 −

𝜏

𝜑
)𝑑𝜏𝑑𝑥.

∞

0

∞

0

 

• If 𝛼 = 0, we obtain the Laplace-Kamal transform. 

ℒ𝑥Κ𝑡[𝜓(𝑥, 𝜏)] = Ψ𝛼(𝜗, 𝜑) = ∫ ∫ 𝜓(𝑥, 𝜏) 𝑒𝑥𝑝 (−𝜗𝑥 −
𝜏

𝜑
)𝑑𝜏𝑑𝑥.

∞

0

∞

0

 

Comment 1. Based on the preceding explanation, we may conclude that the definition of double integral known as 

Laplace-generalized Laplace transform (LGLT) is more generic than the aforementioned transforms. 

We must note certain useful properties of LGLT employed in the paper, which are as follows: see [10, 16]. 

For that, let ℒ𝑥G𝛼[𝜓1(𝑥, 𝜏)] = Ψ1𝛼(𝜗, 𝜑) and ℒ𝑥G𝛼[𝜓2(𝑥, 𝜏)] = Ψ2𝛼(𝜗, 𝜑) 

• ℒ𝑥G𝛼[𝜁𝜓1(𝑥, 𝜏) + 𝜉𝜓2(𝑥, 𝜏)] = 𝜁Ψ1𝛼(𝜗, 𝜑) + 𝜉Ψ2𝛼(𝜗, 𝜑), 

• ℒ𝑥G𝛼[𝑐] = 𝑐
𝜑𝛼+1

𝜗
, 

• ℒ𝑥G𝛼[𝑒𝑥𝑝 (𝜁𝑥 + 𝜉𝑦)] =
𝜑𝛼+1

(𝜗−𝜁)(1−𝜉𝜑)
, 
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• ℒ𝑥G𝛼[ 𝑥
𝜁𝑦𝜉] =

Γ(𝜁+1)Γ(𝜉+1)𝜑𝛼+𝜉+1

𝜗𝜁+1
, 

• ℒ𝑥G𝛼[ cos(𝜁𝑥 + 𝜉𝑦)] =
𝜗𝜑𝛼+1−𝜁𝜉𝜑𝛼+2

(𝜗2+𝜁2)(1+𝜉2𝜑2)
, 

• ℒ𝑥G𝛼[ sin(𝜁𝑥 + 𝜉𝑦)] =
𝜁𝜑𝛼+1+𝜉𝜗𝜑𝛼+2

(𝜗2+𝜁2)(1+𝜉2𝜑2)
. 

where 𝑐, 𝜁, and 𝜉 are constants, and Γ is the Gamma function. 

Definition 2.3. [10] The Laplace-generalized Laplace transform for the partial derivatives of order 𝑛 ∈ Ν is defined 

as: 

{
 
 

 
 ℒ𝑥G𝛼 [

𝜕𝑛𝜓(𝑥, 𝜏)

𝜕𝑥𝑛
] = 𝜗𝑛Ψ𝛼(𝜗, 𝜑) −∑𝜗𝑛−𝑖

𝑛

𝑖=1

G𝛼 [
𝜕𝑖−1𝜓(0, 𝜏)

𝜕𝑥𝑖−1
] ,

ℒ𝑥G𝛼 [
𝜕𝑛𝜓(𝑥, 𝜏)

𝜕𝑡𝑛
] =

Ψ𝛼(𝑝, 𝑠)

𝜑𝑛
− 𝜑𝛼∑

1

𝜑𝑛−𝑖

𝑛

𝑖=1

ℒ𝑥 [
𝜕𝑖−1𝜓(𝑥, 0)

𝜕𝜏𝑖−1
] ,

                                (2.5) 

Definition 2.4. [1] The Caputo fractional derivative of the function 𝜓(𝑥, 𝜏) of order 𝜚 is defined as: 

𝜕𝜚𝜓(𝑥, 𝜏)

𝜕𝑥𝜚
=

1

Γ(𝑛 − 𝜚)
∫(𝑥 − 𝜂)𝑛−𝜚−1

𝜕𝑛𝜓(𝜂, 𝜏)

𝜕𝑥𝑛
𝑑𝜂

𝑥

0

, 𝑛 − 1 < 𝜚 ≤ 𝑛,                 (2.6) 

Definition 2.5. [1] The Laplace-generalized Laplace transform for the partial fractional Caputo derivatives operator 

is defined as: 

{
 
 

 
 ℒ𝑥G𝛼 [

𝜕𝜚𝜓(𝑥, 𝜏)

𝜕𝑥𝜚
] = 𝜗𝜚Ψ𝛼(𝑝, 𝜑) −∑𝜗𝜚−𝑖

𝑛

𝑖=1

G𝛼 [
𝜕𝑖−1𝜓(0, 𝜏)

𝜕𝑥𝑖−1
] ,

ℒ𝑥G𝛼 [
𝜕𝜚𝜓(𝑥, 𝑡)

𝜕𝜏𝜚
] =

Ψ𝛼(𝑝, 𝑠)

𝜑𝜚
− 𝜑𝛼∑

1

𝜑𝜚−𝑖

𝑛

𝑖=1

ℒ𝑥 [
𝜕𝑖−1𝜓(𝑥, 0)

𝜕𝜏𝑖−1
] ,

                              (2.7) 

where 𝑛 − 1 < 𝜚 ≤ 𝑛, 𝑛 ∈ Ν. 

Definition 2.6. [12] The generalized Mittag-Leffler function with parameters 𝜁 and 𝜉 is defined as: 

Ε𝜁,𝜉(𝜏) = ∑
𝜏𝑛

Γ(𝜁𝑛 + 𝜉)

∞

𝑛=0

,                                                                  (2.8)  

Specifically, for 𝜉 = 1, the Mittag-Leffler function with parameter 𝜁 is defined as: 

Ε𝜁(𝜏) = ∑
𝜏𝑛

Γ(𝜁𝑛 + 1)

∞

𝑛=0

,                                                                 (2.9)  

Therefore, the Laplace and generalized Laplace transforms for the function 𝜏𝜉−1Ε𝜁,𝜉(𝜆𝜏
𝜁) take the form: 

ℒ[𝜏𝜉−1Ε𝜁,𝜉(𝜆𝜏
𝜁)] =

𝜗𝜁−𝜉

𝜗𝜁 − 𝜆
, G𝛼[𝜏

𝜉−1Ε𝜁,𝜉(𝜆𝜏
𝜁)] =

𝜑𝛼+𝜉

1 − 𝜆𝜑𝜁
.                       (2.10) 

2. The Existence and Uniqueness of Laplace-Generalized Laplace Transform 
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In this section, we will look at the existence and uniqueness of the Laplace-generalized Laplace transform. 

Definition 3.1. The function 𝜓(𝑥, 𝜏), 0 ≤  𝑥, 𝜏 < ∞, is called an exponential function of orders 𝛼, 𝛽 > 0, if we get 

a positive constants 𝑃, 𝑋 𝑎𝑛𝑑 𝑇, which make  

|𝜓(𝑥, 𝜏)| ≤ 𝑃𝑒𝛼𝑥+𝛽𝜏, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 > 𝑋, 𝜏 > 𝑇,                                      (3.1) 

when 𝑥, 𝜏 → ∞, we have  

𝜓(𝑥, 𝜏) = 𝑂𝑒𝛼𝑥+𝛽𝜏.                                                                    (3.2) 

In the same line, we get 

lim
𝒙→∞,𝝉→∞

𝑒
−𝜗𝑥−

𝜏
𝜑|𝜓(𝑥, 𝜏)| = 𝑃 lim

𝒙→∞,𝝉→∞
𝑒
−(𝜗−𝛼)𝑥−(

1
𝜑
−𝛽)𝜏

= 0, 𝜗 > 𝛼, 𝜑 >
1

𝛽
 .        (3.3) 

Theorem 1. The Laplace-generalized Laplace transform of the continuous function 𝜓(𝑥, 𝜏) in every finite interval 

(0, 𝑋) and (0, 𝑇) of exponential order 𝑒𝛼𝑥+𝛽𝜏 is exists for all 𝜗 and 𝜑, and provided that 𝜗 > 𝛼 and  
1

𝜑
> 𝛽. 

Proof. Considering the definition 3.1 and definition 2, we have  

|Ψ𝛼(𝜗, 𝜑)| = |𝜑
𝛼∫ ∫ 𝜓(𝑥, 𝜏) 𝑒𝑥𝑝 (−𝜗𝑥 −

𝜏

𝜑
)𝑑𝜏𝑑𝑥

∞

0

∞

0

| ≤ 𝑃𝜑𝛼∫ ∫ 𝑒
−(𝜗−𝛼)𝑥−(

1
𝜑
−𝛽)𝜏

𝑑𝜏𝑑𝑥

∞

0

∞

0

 

=
𝑃𝜑𝛼+1

(𝜗 − 𝛼)(1 − 𝛽𝜑)
, ∀ 𝜗 > 𝛼,

1

𝜑
> 𝛽 .                                                            (3.4)  

Theorem 2. Let 𝜓1(𝑥, 𝜏)  and 𝜓2(𝑥, 𝜏)  are continuous functions on every finite interval 𝑥, 𝜏 ≥ ∞,  and     

ℒ𝑥G𝛼[𝜓1(𝑥, 𝜏)] = Ψ1𝛼(𝜗, 𝜑)  and  ℒ𝑥G𝛼[𝜓2(𝑥, 𝜏)] = Ψ2𝛼(𝜗, 𝜑) . If Ψ1𝛼(𝜗, 𝜑) = Ψ2𝛼(𝜗, 𝜑),  then 𝜓1(𝑥, 𝜏) =

𝜓2(𝑥, 𝜏). 

Proof. From Equation (2.5) we have   

ℒ𝑥
−1G𝛼

−1[Ψ𝛼(𝜗, 𝜑)] = 𝜓(𝑥, 𝜏) =
−1

(2𝜋)2
∫ ∫ 𝜑𝛼  Ψ𝛼(𝜗, 𝜑) 𝑒𝑥𝑝 (𝜗𝑥 +

𝜏

𝜑
)𝑑𝜗𝑑𝜑,

𝑏+𝑖∞

𝑏−𝑖∞

𝑎+𝑖∞

𝑎−𝑖∞

            (3.5) 

we deduce that 

 

𝜓1(𝑥, 𝜏) =
−1

(2𝜋)2
∫ ∫ 𝜑𝛼  Ψ1𝛼(𝜗, 𝜑) 𝑒𝑥𝑝 (𝜗𝑥 +

𝜏

𝜑
)𝑑𝜗𝑑𝜑

𝑏+𝑖∞

𝑏−𝑖∞

𝑎+𝑖∞

𝑎−𝑖∞

 

 

=
−1

(2𝜋)2
∫ ∫ 𝜑𝛼  Ψ2𝛼(𝜗, 𝜑) 𝑒𝑥𝑝 (𝜗𝑥 +

𝜏

𝜑
)𝑑𝜗𝑑𝜑

𝑏+𝑖∞

𝑏−𝑖∞

𝑎+𝑖∞

𝑎−𝑖∞

= 𝜓2(𝑥, 𝜏).    (3.6) 

Thus, the demonstration of uniqueness is completed. 

 

3. LGLTM Applied to the Fractional Telegraph Equation 

In this section, we will examine the solution to the partial differential equation of the type (1.2) with initial 

and boundary conditions (1.3). 

Firstly, by applying the Laplace-generalized Laplace transform to both sides of equation (1.2), we obtain 
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𝜗𝜚Ψ𝛼(𝜗, 𝜑) − 𝜗
𝜚−1Ψ𝛼(0, 𝜑) − 𝜗

𝜚−2
𝜕Ψ𝛼(0, 𝜑)

𝜕𝑥

= 𝑎1 [
Ψ𝛼(𝜗, 𝜑)

𝜑𝜎
−
𝜑𝛼+1

𝜑𝜎
Ψ𝛼(𝜗, 0) −

𝜑𝛼+2

𝜑𝜎
𝜕Ψ𝛼(𝜗, 0)

𝜕𝑡
] + 𝑎2 [

Ψ𝛼(𝜗, 𝜑)

𝜑𝜍
−
𝜑𝛼+1

𝜑𝜍
Ψ𝛼(𝜗, 0)]

+ 𝑎3Ψ𝛼(𝜗, 𝜑)

+ℋ𝛼(𝜗, 𝜑),                                                                                                                                                  (4.1)  

where ℋ𝛼(𝜗, 𝜑) is the Laplace-generalized Laplace transform of the function 𝒽(𝑥, 𝜏). 

Secondly, using the Laplace transform for initial and boundary conditions (1.3), we get 

{
Ψ𝛼(𝜗, 0) = Ψ1(𝑝),

𝜕F𝛼(𝜗, 0)

𝜕𝑡
= Ψ2(𝜗),

Ψ𝛼(0, 𝜑) = Ψ3(𝜑),
𝜕F𝛼(0, 𝜑)

𝜕𝑥
= Ψ4(𝜑),

                                                 (4.2) 

Thirdly, by substituting equation (4.2) in equation (4.1) and simplifying, we get 

Ψ𝛼(𝜗, 𝜑) =
1

(𝜗𝜚 −
𝑎1
𝜑𝜎 −

𝑎2
𝜑𝜍 − 𝑎3)

[𝜗𝜚−1Ψ3(𝜑) + 𝜗
𝜚−2Ψ4(𝜑) − 𝑎1

𝜑𝛼+1

𝜑𝜎
Ψ1(𝜗) − 𝑎1

𝜑𝛼+2

𝜑𝜎
Ψ2(𝜗)

− 𝑎2
𝜑𝛼+1

𝜑𝜍
Ψ1(𝜗) +ℋ𝛼(𝜗, 𝜑)].                                                                                                          (4.3) 

Finally, by taking the inverse Laplace-generalized Laplace transform (if it exists) to both sides of equation (4.3), we 

get the equivalent exact solution of equation (1.2) in the form 

𝜓(𝑥, 𝜏) = ℒ𝑥
−1G𝛼

−1

[
 
 
 1

(𝜗𝜚 −
𝑎1
𝜑𝜎 −

𝑎2
𝜑𝜍 − 𝑎3)

[𝜗𝜚−1Ψ3(𝜑) + 𝜗
𝜚−2Ψ4(𝜑) − 𝑎1

𝜑𝛼+1

𝜑𝜎
Ψ1(𝜗) − 𝑎1

𝜑𝛼+2

𝜑𝜎
Ψ2(𝜗)

− 𝑎2
𝜑𝛼+1

𝜑𝜍
Ψ1(𝜗) +ℋ𝛼(𝜗, 𝜑)]

]
 
 
 
.                                                           (4.4) 

4. Illustrative Examples 

To illustrate the usefulness of the earlier approach, we offer a few instances in this section.  

Example 5.1. First, we take into consideration the linear homogeneous telegraph equation given bellow [1, 2]. 

𝜕𝜚𝜓(𝑥, 𝜏)

𝜕𝑥𝜚
=
𝜕2𝜓(𝑥, 𝜏)

𝜕𝜏2
+
𝜕𝜓(𝑥, 𝜏)

𝜕𝜏
+ 𝜓(𝑥, 𝜏), 1 < 𝜚 ≤ 2, 𝑥, 𝜏 ≥ 0,                     (5.1) 

with initial and boundary conditions, 

{
𝜓(𝑥, 0) = −𝜓𝑡(𝑥, 0) = [𝐸𝜚(𝑥

𝜚) + 𝑥𝐸𝜚,2(𝑥
𝜚)],

𝜓(0, 𝜏) = 𝜓𝑥(0, 𝜏) = 𝑒
−𝜏.

                                                             (5.2) 

The Laplace transform and generalized Laplace transform of the initial and boundary conditions (5.2) are given as 
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{
 

 Ψ1(𝜗) = (
1

𝜗
+
1

𝜗2
)

𝜗𝜚

𝜗𝜚 − 1
, Ψ2(𝑝) = −(

1

𝜗
+
1

𝜗2
)

𝜗𝜚

𝜗𝜚 − 1
,

Ψ3(𝜑) = Ψ4(𝜑) =
𝜑𝛼+1

𝜑 + 1
.

                                (5.3) 

Considering equation (4.4), and using equation (5.3), we get 

𝜓(𝑥, 𝜏) = ℒ𝑥
−1G𝛼

−1

[
 
 
 
 

1

(𝜗𝜚 −
1
𝜑2

−
1
𝜑
− 1)

[𝜗𝜚−1
𝜑𝛼+1

𝜑 + 1
+ 𝜗𝜚−2

𝜑𝛼+1

𝜑 + 1
− 𝜑𝛼−1 (

1

𝜗
+
1

𝜗2
)

𝜗𝜚

𝜗𝜚 − 1
]

]
 
 
 
 

, (5.4) 

after some simplification, we have the solution to equation (5.1) 

𝜓(𝑥, 𝜏) = ℒ𝑥
−1G𝛼

−1 [[
𝜑𝛼+1

𝜑 + 1
(
𝜗𝜚−1

𝜗𝜚 − 1
+
𝜗𝜚−2

𝜗𝜚 − 1
)]],                                      (5.5) 

𝜓(𝑥, 𝜏) = 𝑒−𝜏[𝐸𝜚(𝑥
𝜚) + 𝑥𝐸𝜚,2(𝑥

𝜚)].                                                          (5.6) 

Specifically, for 𝜚 = 2, we get  𝜓(𝑥, 𝜏) = 𝑒𝑥−𝜏, which the exact solution to equation (5.1) and the outcome is 

identical to the result obtained by [1].  

Example 5.2. Finally, examine the linear non-homogeneous telegraph equation [2]: 

𝜓𝜚𝑓(𝑥, 𝜏)

𝜕𝑥𝜚
=
𝜕2𝜓(𝑥, 𝜏)

𝜕𝜏2
+
𝜕𝜓(𝑥, 𝜏)

𝜕𝜏
− 2𝜓(𝑥, 𝜏) + 𝑒−2𝜏[𝐸𝜚(𝑥

𝜚) + 𝑥𝐸𝜚,2(𝑥
𝜚)],                𝑥, 𝜏 ≥ 0,          (5.7) 

with initial and boundary conditions, 

{
𝜓(𝑥, 0) = 𝐸𝜚(𝑥

𝜚) + 𝑥𝐸𝜚,2(𝑥
𝜚), 𝜓𝑡(𝑥, 0) = −2[𝐸𝜚(𝑥

𝜚) + 𝑥𝐸𝜚,2(𝑥
𝜚)], 1 < 𝜚 ≤ 2,

𝜓(0, 𝑡) = 𝜓𝑥(0, 𝜏) = 𝑒
−2𝜏.

               (5.8) 

The Laplace transform and generalized Laplace transform of the initial and boundary conditions (5.8) are given as 

{
 

 Ψ1(𝜗) = (
1

𝜗
+
1

𝜗2
)

𝜗𝜚

𝜗𝜚 − 1
, Ψ2(𝑝) = −2(

1

𝜗
+
1

𝜗2
)

𝜗𝜚

𝜗𝜚 − 1
,

Ψ3(𝜑) = Ψ4(𝜑) =
𝜑𝛼+1

1 + 2𝜑
.

                                         (5.9) 

Considering equation (4.4), and using equation (5.9), we get 

𝜓(𝑥, 𝜏) = ℒ𝑥
−1G𝛼

−1

[
 
 
 
 

1

(𝜗𝜚 −
1
𝜑2

−
1
𝜑 + 2)

[𝜗𝜚−1
𝜑𝛼+1

1 + 2𝜑
+ 𝜗𝜚−2

𝜑𝛼+1

1 + 2𝜑
− 𝜑𝛼−1 (

1

𝜗
+
1

𝜗2
)

𝜗𝜚

𝜗𝜚 − 1

+ 𝜑𝛼 (
1

𝜗
+
1

𝜗2
)

𝜗𝜚

𝜗𝜚 − 1
+

𝜑𝛼+1

(1 + 2𝜑)
(
1

𝜗
+
1

𝑝2
)

𝜗𝜚

𝜗𝜚 − 1
]

]
 
 
 
 

,                                                                 (5.10) 

after some simplification, we have the solution to equation (5.7) 
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𝜓(𝑥, 𝜏) = ℒ𝑥
−1G𝛼

−1 [[
𝜑𝛼+1

1 + 2𝜑
(
𝜗𝜚−1

𝜗𝜚 − 1
+
𝜗𝜚−2

𝜗𝜚 − 1
)]],                                          (5.11) 

𝜓(𝑥, 𝜏) = 𝑒−2𝜏[𝐸𝜚(𝑥
𝜚) + 𝑥𝐸𝜚,2(𝑥

𝜚)].                                                           (5.12) 

Specifically, for 𝜚 = 2, we get  𝜓(𝑥, 𝜏) = 𝑒𝑥−2𝜏, which is the exact solution to equation (5.7). The outcome is 

identical to what was found by [2].  

5. Conclusion 

In this study, we have successfully utilized a double integral transform called the Laplace generalized 

Laplace transform to determine the exact solution of a linear telegraph problem with the Caputo fractional derivative. 

Moreover, the proposed method is more generic than the other methods. From the results, it is clear that the proposed 

method is a powerful tool and an efficient technique for obtaining the exact solution of a linear telegraph equation. 

In the future, we will utilize the coupling of the presented method with any of the iterative methods for solving non-

linear fractional partial differential equations. 
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