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Abstract:

Let S be a commutative semiring with unity. The non-comaximal graph of a semiring S, denoted by G(S ) is an
undirected graph where S is the set of vertices in G(S) and a,b € S remain adjacent if and only if aS + bS # S .
We look at the connectedness and the diameter of this graph. The concepts of independent set, clique and the girth
of G(S) are discussed.
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1-Introduction Section

Semirings remain helpful tools aimed at resolving issues in a variety of in aimed atmation sciences besides applied
mathematics fields, including automata, coding, graph, and optimization theories, besides computer program
analysis. This is because the structure of semirings offers an algebraic method aimed at analyzing and modeling the
important variables in these fields.

In the past several years, the study of algebraic structures with graph possessions has gained a lot of attention and
produced many intriguing findings in addition to intriguing questions. Assigning a graph to a ring is the subject of
multiple works, aimed at instance see, [1, 4, 7, 10, 11, 16, 17, 18, 19]. In addition, there remain several paperson
assigning a graph to semirings, aimed at instance [ 2, 3, 5, 8, 9, 13, 14].

The zero divisor graph of a commutative ring is a milestone of this trend which was introduced in 1988 by Beck
[11]. There remain more than five hundred papers on zero divisor graphs. Some other graphs remain introduced,
which make a bridge between algebraic structure and graph. Sharma and Bhatwadekar [17] introduced the comaximal
graph of a commutative ring with unity. Miamian in [19] was replaced the set of vertices by the set of all proper
ideals in a ring K. In [10] non-comaximal graphs remain defined where the set of proper ideals of K is the set of
vertices and N is adjacent to M if and only if N + M # K. Generalizing the definition of [10], In [16] consider a
graph G (K) where K is the set of vertices and d, f € K remain adjacent if and only if dK + fK # K. In this paper,
we generalize the non-comaximal graph of a commutative ring in [16] to the non-comaximal graph of a commutative
semiring under semiring theoretic settings.
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Throughout this paper S will be a commutative semiring with identity, U (= U(S)) be the set of all units of S,
and the intersection of all maximal ideals of S is called the Jacobson radical of S and is denoted by J(S). A semiring
is a set S equipped with binary operations + and - where (S, +) is a commutative mooned with identity element 0,
besides (S, -) is @ mooned with identity element 1. Too, operations + and - connected by distributive and 0
annihilates S. A semiring is commutative if xy = yx for all x, y € S. Throughout Section two of this paper presume
S is commutative semiring with unity. The simplest example of commutative semirings is {0, 1} the Boolean
semiring, in which 1 + 1 = 0 # 1. Besides, the set of nonnegative integers (or reals) with the standard operations in
addition and multiplication, is commutative semiring. A non-empty subset R in S is named an ideal in S if the next
two conditions hold: (i) I + L € R aimed atI,L € R (ii)SI € R aimed at v € S besides € R. An ideal Rin S is
named k-ideal (subtractive ideal) if u, u +V € R, thenV € R. {0} is k-ideal in S by page 66 of [15]. S is named a
subtractive semiring if every ideal in S is subtractive ideal. A semiring S is named semidomain whenever d,f € S
with df = 0 involves that either d = 0 or f = 0 [11]. A semifield is a semiring where a group under multiplication
is aimed atmed by non-zero members [8] besides ( [15], p. 52). A commutative semiring S is said to be a local
semiring if it has a unique maximal subtractive ideal and it is semilocal semiring if it has finitely many maximal
ideals. The Jacobson radical of a semiring S is the intersection of all maximal ideals is denoted by G (S). Moreover,
I'is a unit of S if and only if I lies outside of each maximal k-ideal of S [6]. We denote the characteristic, the set of
all maximal ideals of a semiring S by Max(S). For undefined terminology and concept of semiring theory, we refer
to Golan [15].

Let G be a simple undirected graph with vertex set V(G) besides edge set E(G). A path from I toward L is series
of adjacent vertices [— I; — I, — --- — I, — L. A graph G is connected if a path connects each of G's two unique
vertices; if not, it is disconnected. Aimed at I, L € P(G) with I # L, d(I, L) indicates the length of shortest path from
I into L, if such a path does not exist, one uses the convention d(I,L) = o. The diameter to G is defined as
diam(G) = sup{d(1,L)|I and L are vertices of G}. Aimed at any I € P(G), deg(I) symbolizes the number of
edges incident with I, named the degree to I. A cycle is a path that starts and ends at the same vertex, has no edges
that remain repeated, and has different vertices at every point except the starting and finishing vertices. The girth of
G, symbolized by gr(G), is the length of shortest cycle in G (gr(G) = oo if G contains no cycles). When a graph's
vertex set can be divided into two subsets, I and L, such that each edge hasone end in I plusone end in L, the graph
is named bipartite. Any bipartite graph with two partitions (I and L) in which any vertex in I is linked toward any
vertex in L is said to be complete. A bipartite graph with part sizes Llother than a aimed at a given positive integer a
is called a star graph. By a clique in a graph G, we mean a complete subgraph of G and the number of vertices in the
maximal clique of G, is named the clique number of G and is indicated by w(G). Aimed at a graph G, let x(G),
denotes the vertex chromatic number of G, i.e., the minimum number of colors which can be assigned to the vertices
of G such that every two adjacent vertices must different colors. A graph G is perfect, if aimed at every induced
subgraph N of G, y(N) = w(N). A graph is named weakly perfect, if its vertex chromatic number equals its clique
number. G is the complement graph of the graph G. Apart from the notion of graph theory, we resort to Bondy &
Marty [12] aimed at any ambiguouss terminology.

In section 2, in addition to studying non-comaximal graphs over commutative semirings, we generalize
conclusions from [16]. We examined the girth, diameter, and connectedness of G (S). We show that an element a €
S is an isolated vertex of G(S) if and only if a is a unit. Also, we proved that the graph G (S) is weakly perfect.

2- Non-comaximal graphs of semilocal semirings
Similar to [16] in this section we introduce the concept of non-comaximal graph G (S) of a commutative

semiring S.

Here we consider any semiring is a semilocal and u is set . We find the girth and the diameter of G(S).
We begin with the next definition.

Definition 2-1 Let S be a commutative semiring with identity. The non-comaximal graph of S, denoted by G (S)
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where S is the set of vertices in G(S) and a, b € S are adjacent if and only if aS + bS # S.

Remark 2-2 In this section we consider S is a semilocal semiring thereaimed ate S contains finitely many
ideals. As Sd is also an ideal it is contained in a maximal ideal in S. This implies that d is adjacent to e if
dS, fS remain contained in the same maximal ideal M in Sord, f € M.

Example 2-3 An inspection will shows that a set SP, = {0, 1, 2, b} equipped with operations + and -
defined as:

+10]1]2|b -10]1]2]Db
0|0[1]2|b 0/0]0]0]|0
1(1]2]1]2 1/0|1[2]|b
2 12[1|12]1 2/0]2]2]|0
B|b|2|1]0 b|O0|b[O]b

is a semiring (which is not a ring) with unity. Here, m; = {0,2} and m, = {0, b} remain two maximal
subtractive ideals of SP, ([12]). Then we must G (SP,) is not connected as in the next figure 1.

b
4 -]
0 2 1

Figure 1: G(SP,)

Example 2-4 Consider the set S = {0, 1}. On S we define the operations as follows: 0+0=1+1=0,1+
0=0+1=1and0.0=0.1=1.0=1.1=0. Then (S, +, -) forms a commutative semiring without unity thus
G(S) is connected graph.

Proposition 2-5 An element x € S is an isolated vertex of S if and only if x is a unit.

Proof: If x is a unit, then Sx = S and a is not adjacent to any other element of S. if x is not a unit then Sx
is an ideal in S contained in some maximal ideal M in S. Now xS + yS # S. aimed at every y € M and a
cannot be isolated. Then x € S is isolated if and only if x is a unit and the set of all units in S, U(S) is an
independent set in G(S). ©

Proposition 2-6 In a semilocal semiring S,
i. ifd € G(S) # 0, then deg(d) # 0.
ii.  Max{|M;|} is the clique number of G(S).

Proof: (i) Mean S is a semilocal semiring it has finitely many maximal ideals M; M, ..., M, (say). if a €
N M; = G(S), then a is adjacent to every other element of every M;. Hence deg(a) # O.

(ii) If G;(S) is the subgraph of G(S) generated by the elements of the maximal ideal M;, then it is complete
and any element in G;(S) is not adjacent to any element which is not in M;. Thus we must atleast
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K complete subgraphs of G(S). The G;(S) generated by the largest set of vertices is the clique of G (S) and
its order i.e Max{|M;|} is the clique number w(G(S)) of G(S). ©

Remark 2-7 If n = p,p,, then Z, has two ideals < p; > and < p, > where <p; > N<p, >=01.e,
G(S)=0. Now all the elements remain either unitsor they contained in <p; > or <p, >. if
pit.py? ...y ¥, then there remain K maximal ideals in Z,, and G(S) = n< p; >+ 0. Then every element
of G(S) is adjacent to every element of < p; > aimed at every i.

Proposition 2-8 Non-comaximal graph G (S) is not connected and G, (S) is connected if has more than two
maximal ideals and G (S) # 0. Here G;(S) is the subgraph of G generated by non-units of S.

Proof: Let S be a semilocal semiring with more than two maximal ideals. Aimed atd,f € S\Uand q €
J(S). if d and f remain contained in the same maximal ideal M;of S, then dS + qS # S and they remain
adjacent, otherwise if d € M; and f € M;, then dS +qS # S(d,q € M;) and fS +qS # S as f,c € M;.
Thus we must a path d — q — f. We conclude that the subgraph G, (S) generated by the elements of S\U(S)
is connected but the subgraph G, (S) generated by G(S) is a null graph. We may say G(S) is the union of a
connected graph and the complement of a complete graph. If |[U(S)| = n, then G,(S) is K,, and G(S) =
G,(S) UK,,. Since G(S) is not connected its subgraph G, (S) is connected. o

Proposition 2-9 The chromatic number x(G(S)) = max| M;|, thus G(S) is weakly perfect.

Proof: To color a G(S) graph we need max|M;| = n; colors. If J(S) # 0 such that [J(S)| = t, thenout of
these n; colors t colors remain assigned to the elementsof J(S). Now M; generates a complete subgraph
G;(S) such that the elementsof M;\ J(S) require n; -t colors. The elements of M;\ J(S) are not adjacent to
the elements of M;\ J(S) aimed at any [. This implies that n; — t colors remain sufficient to color the
elementsof M;\](S) aimed at all j. We must seen that w(G(S)) = max{|M;|}. Thereaimed ate x(G(S)) =
w(G(S)) and G(S) is weakly perfect. O

Proposition 2-10 For the semiring Z,,, n = p,p,, the diameter of G(Z,,) is infinite.

Proof: If n = p;p, , formerly there remain two maximal ideals M;,M, suchthat M; n M, = 0i.e, J(S) =
0. Now d, f € Z, remain adjacent if they belong to same M; and d(d, f) = 1. If they belong to different
M;s, then there is no path connecting then as in this cases dS + fS = S. Thereaimed ate d(d,f) = oo. This
implies that diam(G(Z,)) = . O

Now, we determine the diameter and girth of G,(S).
Proposition 2-11 The diam(G,(S)) = 1,2 or o and girth of G,(S), gr(G,(S)) < 4.

Proof: Let I, L € S\U(S) and let S be a semilocal semiring such that {M;},i = 1,2, ..., n remain maximal
idealsof S. Now I, L remain contained in a maximal ideals M;, M; in S. If I and L remain contained in same
maximal ideal M;, formerly d(I, L) = 1 as they remain adjacent ootherwise we find an element u € G(S)
to get a pathl —u — Land d(I,L) = 2. In both cases d(I,L) < 2, there aimed ate diam(G(S)) = 2. If
J(S) = 0 and I, L remain in different maximal ideals, then d(I, L) = oo.

If J(S) # 0 which has at least two elements d, f € J(S). Aimed at any vertices I, L of G,(S) such that

I, L remain in different maximal ideals, the cycle I — d — L — L — I is the shortest cycle of length 4. Hence
girth of G;(S) < 4.0
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Proposition 2-12 Let S be a semiring. Then G (S \U ) is complete if and only {f S is isomorphic to Z « or

it has a unique maximal ideal.
Proof: Suppose S is isomorphic to Z,,« or it has a unique maximal ideal. Aimed at a commutative semiring

S every ideal is contained in a maximal ideal. Now every d € S is either a unit or dS is contained in the
unique maximal ideal. Clearly aimed at any d,f € G(S\U), dS + fS # S and d is adjacent to .

Conversely, if G(S \U) is complete, formerly the sum of dS + fS # S aimed at any d, f € S\U implying
that all the ideals dS remain contained in a unique maximal ideal. As a result S is isomorphic to Z,« or it

has a unique maximal ideal. O

Proposition 2-13 For the semiring Zx, k > 5 the non-comaximal graph G (Z,«) is not planar.
Proof: It is sufficient to show that G(Z,«) has a complete subgraph K5 or a bipartite graph K3 3 as subgraphs in
G(Zyx). Now all the elementsof G(Zpk) which remain not units, remain contained in the maximal ideal < p >.

Thereaimed ate aimed at any two elements d, f in S\U, dS + fS # S hence they remain adjacent. meanwhile < p >
has more than 5 elements we may consider any 5 elements d,, d,, d3, d4, and ds such that they aimed atm a clique.
Thus G (S\U) has K5 as a subgraph and G(S\U) is not planar. O

3- Conclusion

In this work, we defined and study the non-comaximal graph of a commutative semiring S, G(S), an
undirected graph. Here, we consider S is a semi-local semiring. We study the connectivity, the chromatic
number and the clique number of G (S). We examined the girth, and diameter, of G (S). We observed that

an element x € S is an isolated vertex of S if and only if x is a unit.
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