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Abstract 

Finding the ideal number of superior features to optimize the learning algorithm's performance is the 

ultimate aim of feature selection. However, when a dataset's features count rises, this issue gets more 

difficult to solve. The Marine Predators Algorithm (MPA) is a novel metaheuristic that has proven effective 

in solving many optimization issues. In MPA, the fundamental exploratory and exploitative procedures are 

modified to choose the best and most significant features in order to get the most accurate categorization.  

The outcomes demonstrate the exceptional ability of the suggested MPA-SVM strategy to choose the most 

important and ideal attributes. Support vector machines (SVMs) are an essential method that are skillfully 

used to address classification problems. In this work the MPA is adjusted using the SVM as classifier. The 

present study proposes MPA- SVM as a solution to the issue of feature selection in high dimensional 

datasets. The suggested method's efficacy was confirmed using ten high-dimensional datasets acquired 

from Arizona State University (ASU) repository. The proposed method was compared with six state-of-

the-art feature selection algorithms, including ASO and EO, demonstrating superior performance. Standard 

deviation is a measure of the robustness and stability of optimization algorithms, it is used in MPA-SVM 

and achieved lowest values. Across all datasets, MPA-SVM produces the lowest average error rates, 

minimum classification standard deviation (STD) values , FS rates and runtime. 
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1 Introduction 

One important element that might impact how well a machine learning (ML) model performs in 

data mining activities is the dimensionality of the input. Upcoming sophisticated data collection tools have 

made massive amounts of data accessible for numerous uses in the near future[1] . However, working with 

these massive, high-dimensional datasets calls for computational resources. Furthermore, adding noisy 

data, such as unnecessary and redundant features, would significantly impair the ML model's performance. 

Since these noisy features have the potential to confuse the learning algorithms, they must be removed from 

the original dataset (Moorthy & Gandhi, 2021). To address the dimensionality problem, feature selection (FS) 

is suggested in this context. 

In order to convey the goal concepts as effectively as possible, FS selects a collection of features from a 

dataset that are the most representative. It is advantageous for the readability and interpretability of the 

model in addition to removing redundant and unnecessary information [3]. In general, there are two primary 

types of FS: wrapper and filter. Statistical characteristics, mutual information, and distance measurement 

are used by filter algorithms to determine the ranking of the features. During the selecting process, they 

take no learning models into account [4]. Wrapper approaches, on the one hand, produce the results by 

taking into account every detail of a particular learning model. 

The wrapper approaches are better at optimizing the learning algorithms' performance when compared to 

filter methods [5].  

It is believed that the FS process is an NP-hard combinatorial optimization issue. To determine the optimal 

subset for a dataset containing N features, a total of 2N feature subsets must be examined [6] . Therefore, 

for the high-dimensional dataset, it is not realistic to search through all of the potential subsets in pursuit 

of the ideal feature subset. 

In recent times, a variety of engineering and optimization techniques have effectively utilized 

metaheuristics. Many research scientists use metaheuristic algorithms as selection mechanisms in the FS 

process because of their exceptional performance. 

Differential evolution (DE) [7], Particle swarm optimization (PSO) [8], Genetic algorithms[9] , Ant colony 

optimization [10], Grasshopper Algorithm [11], Bat algorithms [12] and Salp algorithm [13] are a few 

instances of metaheuristic algorithms. 

Marine Predators Algorithm (MPA) is primarily inspired by the widely used foraging strategy, specifically 

Lévy and Brownian movements, in ocean predators as well as the ideal encounter rate policy in the 

biological relationship between predator and prey [14]. MPA showed results that were extremely 

competitive. It demonstrates effectiveness in solving optimization issues. Numerous benefits come with 

MPA, including precise calculation, straightforward setting, easy implementation, and fewer parameters 
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[15]. Accordingly, MPA is used in solving the ORPD problem[16], identifying parameters of Triple-

Diode[17], feature selection[15], forecasting COVID-19 cases[18], and wrapper-based feature 

selection[19].  

The primary objective of this study is to increase the MPA algorithm's effectiveness when handling high 

dimensional FS situations. Our proposal is to introduce a modified Marine Predators Algorithm (MPA) 

with SVM as classifier to enhance MPA's search power in a higher dimension dataset. The underlying 

machine learning model (ML) used to evaluate the quality of the chosen features is SVM. Arizona State 

University's (ASU) 10 high-dimensional datasets were used to assess the suggested methods. Additionally, 

seven cutting-edge techniques were employed in this paper to confirm the efficacy of the suggested 

methodologies. 

The following are some notable contributions made by this paper: 

- Presenting a distinctive MPA-based algorithm for solving high-dimensional FS problem that 

adheres to the confronting rate strategy and ideal feeding strategy of marine environments between 

predators and prey. 

- Contrasting the effectiveness of MPA with modified, well-known swarm intelligence algorithms as 

ASO [20], EO [21], EPO [22], MBO [23], SBO [24] and SCA [25] for FS applied on 10 high-

dimensional datasets. Additionally, a fair comparison is made in terms of error rates, average FS 

and the standard deviation of features chosen. 

- Support Vector Machines (SVM) [26] is used to realize the influence of the modified MPA-based 

classifier kind. 

There are five sections in this article. The details of the suggested method MPA-SVM and how it is applied 

to FS in high dimensional datasets are provided in Section 2.  The experimental findings are presented in 

Section 4. Section 5 concludes by summarizing and discussing the research findings. 

 

2 Methodology 

2.1 Marine Predator Algorithm (MPA) 

  MPA is proposed in 2020 by [14]. It is a novel algorithm that emulates the Lévy foraging strategy, 

Brownian movements in marine predators, and optimal encounters rate policy in predator-prey biological 

interactions. Furthermore, no algorithm exists that is able to learn the pattern of optimization outcomes by 

memory. The MPA method has an advantage compared to other algorithms in that it retains optimization 

outcomes. This is similar to how marine predators may remember important information, such as the site 

where they are effective foraging, thanks to their excellent memory. 

The MPA method solves the feature selection problem in high dimensional datasets with fewer iterations 

and all of these advantages. In a marine ecological system, MPA stimulates the foraging behavior of ocean 

predators as well as the frequency of encounters between predators and prey. In MPA, prey and predator 

pursue one another while simultaneously searching for food. The creatures that are the prey and the predator 

are viewed as exhaustive review boards. They adhere to the survival of the fittest theory, which raises the 

likelihood that predators will find prey. For defining the MPA optimization process, the Lévy strategy and 

the Brownian process work best together. 
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For the best chance of survival in natural settings, predators must choose the best tactic to increase the 

frequency of encounters with prey [27]. Numerous animals in the wild employ the efficient random walk 

technique in their foraging routines. Scientists refer to this as a stochastic or random process. The animal's 

current position and the likelihood that it will move to the next place can be used to mathematically model 

where it will end up next [28]. Predators have selected these best practices because they have evolved 

naturally in the wild. 

Lévy walks serve as the foundation for searching for patterns category of random walk techniques. The 

motions made by animals when foraging is referred to as the "Levy walk" [6]. A few benefits of the MPA 

algorithm include a low number of defined variables, straightforward process, minimal computational 

burden, significant convergence pace, near-global solution, freedom from the problem, and gradient-free 

style. 

The MPA mathematics model's two primary random walks—(a) Lévy motion and (b) Brownian Lévy 

motion—are explained below. 

(a) Lévy motion 

A stochastic process with independent, stationary increments is referred to as a Lévy process, for the 

mathematician Paul Lévy. The Lévy flight is a sort of random walk where the step sizes are represented by 

a probability function that is specified by the power of law tailed of the Lévy distribution, as stated in Eq. 

(2.1): 

𝐿(𝑎𝑗) ≈ |𝑎𝑗|
1−𝑐

                  (2.1) 

where 1 < 𝑐 ≤ 2 is the power-law exponent and 𝑎𝑗is the flight length.  

whereby d chooses the scale unit and c displays the distribution index and manages the scale parameters of 

the process. Equation (2.2) illustrates how to compute the integral form of the probability of density for the 

Levy stable process: 

𝑓𝐿(𝑎; 𝑐, 𝑑) =
1

𝜋
∫ exp(−𝑑𝑝𝑐) cos(𝑝𝑎) 𝑑𝑝
∞

0
             (2.2) 

whereby d chooses the scale unit and c displays the distribution index and manages the scale parameters of 

the process. A Gaussian distribution is displayed when c=2, while a Cauchy distribution is represented 

when c=1 [6]. Eq. (2.2) gives an analytical solution in a small number of instances. 

In Eq. (2.3), the series expansion method is typically used to solve the problem only in cases where a has 

a large value, as stated below: 

𝑓𝐿(𝑎; 𝑐, 𝑑) ≈
𝑑Γ(1+𝑐)sin(

𝜋𝑐

2
)

𝜋𝑎(1+𝑐)
 , 𝑎 → ∞       (2.3) 

Gamma function Γ, where Γ (1+c) = c! for integer c numbers. 

(b) BROWNIAN MOTION 

   The process known as Brownian motion is one wherein the variance (z2=1) and step length (b=1) are 

determined by the probability function of a Gaussian distribution when the mean is equal to zero. The 
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Probably Density Function (PDF) is defined in point an of this motion as follows in Eq. (2.4) [29]: (a; c, d 

). 

𝑓𝐵(𝑎; 𝑏, 𝑧) =
1

√2𝜋𝑧2
exp−(

(𝑎 − 𝑏)2

2𝑧2
) 

=
1

√2𝜋
𝑒𝑥𝑝 (−

𝑎2

2
)           (2.4) 

 

A novel and useful methodology has been proposed in a paper [30], which employs the Magneta method 

to obtain random numbers from the Lévy distribution. This is demonstrated in equation (2.5), where the 

random values of the index distribution (c) fall between 0.3 and 1.99 [31]. 

𝐿𝑒𝑣𝑦(𝑐) = 0.05 × 
𝑎

|𝑎′|
1
𝑐⁄
       (2.5) 

where the standard deviations of 𝑧𝑎 are defined as follows in Eqs. (2.6), (2.7) and (2.8), and where the 

normally distributed variables are 𝑎 and 𝑎′ : 

𝑎 = 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝑧𝑎
2)      (2.6) 

𝑎′ = 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝑧𝑎′
2 )      (2.7) 

𝑧𝑎 = [
Γ(1+𝑐)𝑠𝑖𝑛(

𝜋𝑐

2
)

Γ(
(1+𝑐)

2
)𝑐2

(𝑐−1)
2

]

1
𝑐⁄

𝑎𝑛𝑑𝑧𝑎′ = 1𝑎𝑛𝑑𝑐 = 1.5       (2.8) 

2.2 The MPA Optimization Mechanism 

  This mechanism is broken down into three primary optimization stages that are based on different 

velocity ratios and concurrently mimic the behavior of predators and prey in the wild. The following is 

a definition of these stages: 

• The first stage: occurs when the prey outpaces the predator in speed and there is a high-speed ratio. 

Moving is not the ideal approach for Predator when there is a high-speed ratio (s ≥ 10), according 

to the extracted standards. Exploration is crucial during this first optimization stage. This rule's 

mathematical model is used as shown in eq(2.9):  

While 𝐼𝑡𝑟 <
1

3
max_𝐼𝑡𝑟 

𝑝𝑎𝑐𝑒𝑠𝑖𝑧𝑒𝑥 = 𝐴𝐵⃗⃗⃗⃗  ⃗ ⊗ (𝐸𝑙𝑖𝑡𝑒𝑥 −𝐴𝐵⃗⃗⃗⃗  ⃗ ⊗ 𝑃𝑟𝑒𝑦𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑥 = 1, …𝑛 

𝑃𝑟𝑒𝑦𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑃𝑟𝑒𝑦𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝐵. 𝐴 ⊗ 𝑝𝑎𝑐𝑒𝑠𝑖𝑧𝑒𝑥                  (2.9) 

Arbitrary numbers make up the vector of 𝐴𝐵⃗⃗⃗⃗  ⃗in the Brownian motion normal distribution. The gait of the 

prey is mimicked by multiplying 𝐴𝐵⃗⃗⃗⃗  ⃗by Prey. A is a uniform randomness vector in [0,1], and B is a constant 

number equal to 0.5. This stage occurs every 1/3 of iterations, during which high rate of movement permits 

high levels of exploration (Itr being the current iteration, Max_Itr being the maximal one). 

• The second stage : occurs when the prey and predator are traveling at the same time. When 

exploration tries to be quickly transformed into exploitation, this is what happens. This stage 
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includes exploration and exploitation issues; predators are in charge of exploration, and prey is in 

charge of exploitation. 

Predator's optimal approach is Brownian if the unit velocity ratio (𝑠 ≈ 1) is met and moving in Lévy 

is the best course of action for Prey, according to the rule that was established. Equation (2.10) 

illustrates how this rule's mathematical model is used. 

While 1 3max _𝐼𝑡𝑟 ≺ 𝐼𝑡𝑟 ≺ 2 3max _𝐼𝑡𝑟⁄⁄  

𝑝𝑎𝑐𝑒𝑠𝑖𝑧𝑒𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝐴𝐿⊗ (𝐸𝑙𝑖𝑡𝑒𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝐴𝐿⊗𝑝𝑟𝑒𝑦𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑥 = 1,…𝑛 2⁄  

𝑝𝑟𝑒𝑦𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  𝑝𝑟𝑒𝑦𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝐵. 𝐴 ⊗ 𝑝𝑎𝑐𝑒𝑠𝑖𝑧𝑒𝑥        (2.10) 

 Based on the Lévy distribution, 𝐴𝑦  represents a vector of random numbers for the first part of the 

population. The exponential growth of 𝐴𝑦 mimics the Lévy-style motion of the prey. Pace size can be added 

to the prey place to better replicate the gait of the prey. 

In the Lévy distribution, the majority of pace sizes are tiny. According to this study, the remaining half of 

the population is represented by: 

𝑝𝑎𝑐𝑒𝑠𝑖𝑧𝑒𝑥 = 𝐴𝐺⃗⃗⃗⃗  ⃗ ⊗ (𝐴𝐺⊗𝐸𝑙𝑖𝑡𝑒𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑝𝑟𝑒𝑦𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)𝑥 = 𝑛 2⁄ ,…𝑛 

𝑝𝑟𝑒𝑦𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐸𝑙𝑖𝑡𝑒𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝐵. 𝐶𝐷 ⊗ 𝑝𝑎𝑐𝑒𝑠𝑖𝑧𝑒𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗          (2.11) 

 Where 𝐶𝐷 = (1 −
𝐼𝑡𝑟

𝑀𝑎𝑥_{𝐼𝑡𝑟}
)
2

𝐼𝑡𝑟

𝑀𝑎𝑥_{𝐼𝑡𝑟}
 

Whereas 𝐶𝐷  is an adapted parameter that regulates the size of the step taken by predators. The 

multiplication of 𝐴𝐺simulates the Brownian movement of the predator. Additionally, Elite replicates the 

mobility of Prey by adjusting its location in response to predators' Brownian motion. 

• The third stage: in which the predator has a low-speed ratio and is outpacing the prey. This stage 

is linked to strong exploitation ability and aids in it. 

When the speed-ratio is modest (s= 0.1), Lévy is the most effective Predator approach. In this stage, the 

multiplication of 𝐴𝐿 simulates the movement of the Predator in the Lévy strategy. Additionally, Elite is 

emulated by adding the pace size to the Elite location, whereas the Predator's mobility assists Prey in 

updating its current location. This is shown as: 

Where 𝐼𝑡𝑟 ≺ 2 3⁄ max _Itr 

𝑝𝑎𝑐𝑒𝑠𝑖𝑧𝑒𝑥 = 𝐴𝐿⃗⃗ ⃗⃗ ⊗ (𝐸𝑙𝑖𝑡𝑒𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑃𝑟𝑒𝑦𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )𝑥 = 1, … . 𝑛 

𝑃𝑟𝑒𝑦𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝐸𝑙𝑖𝑡𝑒𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝐵. 𝐶𝐷 ⊗ 𝑝𝑎𝑐𝑒𝑠𝑖𝑧𝑒𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                  (2.12) 

There is a set amount of iteration time designated for each stage. These stages are distinguished by 

the laws that regulate the movements of the predator and prey, which are mimicked in the actions of the 

predator and prey. These three stages mimic the size of a predator's step as it approaches its target. During 

a predator's lifelong, the guidelines presume that the ratio of Lévy and Brownian motion will not change. 

In the first stage, the Predator is motionless, and in the second, it moves in a Brownian manner. It employs 
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the Levy approach in the third stage. This situation also affects prey considering prey additionally has the 

capacity to be a predator. In particular, during the first stage Prey moves in a Brownian manner, while 

during the second stage it exhibits Lévy behavior [15]. 

Variations in surroundings can also influence how marine predators behave. The impacts of Fish 

Aggregating Devices (FADs), sometimes referred to as eddy generation, are one illustration of this.  

Whales spend over 80% of their daily lives in the vicinity of FADs; the remaining 20% of their day is likely 

spent making lengthy plunges in several dimensions in search for various prey habitats [32]. As regional 

optima, overall FADs have the effect of keeping these sites in the search space. These lengthier hops 

prevent holding up in local optima through the experiment. The following defines the mathematical model 

of the effect of FAD: 

𝑝𝑟𝑒𝑦𝑦̅̅ ̅̅ ̅̅ ̅̅ = {
𝑝𝑟𝑒𝑦𝑥̅̅ ̅̅ ̅̅ ̅̅ + 𝐶𝐷[𝐸𝑚𝑖𝑛 + 𝐴 ⊗ (�̅�𝑚𝑎𝑥 − �̅�𝑚𝑖𝑛)] ⊗ �⃗� 𝑖𝑓ℎ ≤ 𝐹𝐴𝐷𝑠

𝑝𝑟𝑒𝑦𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + [𝐹𝐴𝐷𝑠(1 − ℎ) + ℎ](𝑝𝑟𝑒𝑦𝑟1̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑝𝑟𝑒𝑦𝑟2̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑖𝑓ℎ > 𝐹𝐴𝐷𝑠
        (2.13) 

2.3 MPA exploitation and exploration phases 

In the first phase, the Prey moves in a Brownian motion, according to the optimization phases that 

were previously discussed. At the beginning of the search, the prey is dispersed uniformly across the search 

field. Due of the comparatively vast distance between the predator and the prey, Brownian motion is used 

to attain meaningful range exploration. Prey is able to independently explore the surroundings as a result.  

Then, if the current position is more advantageous than the one it substituted, every Prey is assessed for 

fitness. The prey's locations can be regarded as important food regions, and the prey's capacity to recall 

important areas of food is comparable to the saving process. When the Prey becomes more adept at finding 

foods on its own, it can be classified as a Predator.  

This implies that the Prey replaces the leading Predator if its fitness value is greater than that of the latter. 

The second phase of the optimization begins when the Predator goes foraging. The optimization moves 

from exploration to exploitation within this phase. In this phase, the two species of Predator and the Prey 

need to look for foods in order to succeed in exploitation as well as exploration. In this period, fifty percent 

of the population is responsible for exploration and the remaining half for exploitation. The Brownian 

method is one that predators employ to find their prey. Simultaneously, Prey begins to explore its 

immediate vicinity. If it is unable to locate any food in the vicinity, it employs the Levy technique, which 

involves a lengthy leap. During the long steps in the Lévy strategy and the increasing proximity of the 

predator and prey sites compared to the preceding phase, the impact of FADs aids in improving MPA 

efficiency and preventing stagnation of local optima. 

In the last phase of the optimization process, the MPA algorithm demands a high level of exploitation 

capability. 

During this phase, the Predator begins to employ the Lévy approach instead of the Brownian technique in 

order to seek certain areas more effectively. In a given neighborhood, predators assist in limiting the search 

areas for exploitation by utilizing the adaptively set convergence factor (CF). By utilizing the extended 

pace sizes of the Lévy approach for the domain's non-promising places CF additionally avoids wasteful 

searching effort. The MPA pseudo-code is displayed in Algorithm 1. 

Algorithm 1: The MPA pseudo-code(Faramarzi, Heidarinejad, Mirjalili, et al., 2020) 
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Establish the initial population of agents of searching (Prey) with x = 1, 2,...,n. 

while the halt condition is not satisfied do 

   Determine the starting fitness function and create the Elite matrix. 

  If Itr < Max_Itr/3 then 

     Refresh the prey using Equation (3.9) 

     If Itr < Max_Itr/3 < Itr < 2*Max_Itr/3 then 

       Regarding the initial portion of the population (x=1,...,n/2) 

       Refresh the prey using  Equation (3.10) 

       Regarding the second portion of the population (x=1,...,n/2) 

        Refresh the prey using  Equation (3.11) 

       If Itr > 2 * Max_Itr/3 then 

         Refresh the prey using  Equation (3.12) 

       End if 

    End if 

  End if 

  Finish the Elite upgrade and memory saver 

  Applying the FADs effect and updating with Equation (3.13) 

End while 

 

2.4 SVM outline 

SVM was invented by Vapnik [33], who included into account density estimating, regression, and 

classification in its whole. Let + and - be two different categories of things that are present in two different 

dimensional planes. Our goal is to create a barrier between these two regions. It needs to be able to shift in 

both dimension and orientation. Furthermore, we often identify the widest border that maintains object 

separation. The hyperplane was shown as follows: 

𝑧𝑇𝑎 + 𝑐 = 0 

𝑧𝑇𝑎 found the plane direction in which c regulates the origin's migration. Two hyperplanes can be used for 

describing the margin. By adjusting the default vector's angle, we can rotate the edge. Margin modified by 

adjusting the c values. . The margin size is equivalent to 
2

‖𝑧‖
 these incomes that the width is inverse relative 

to the distance of regular vector. Now for the points 𝑎𝑚, 𝑎𝑛  with 𝑏𝑚, 𝑏𝑦𝑛  labels, where:          𝑎𝑚 =

[−1,1]𝑇, 𝑏𝑚 = +1 ,                 𝑎𝑛 = [1,−1]
𝑇, 𝑏𝑛 = −1 

The goal of this optimization task is to increase the margin's size: 

 

𝑚𝑎𝑥
2

‖𝑧‖
    

→ min

‖𝑧‖

2
→ 𝑚𝑖𝑛

1

2
‖𝑧‖2 

The limitations are: 

𝑧𝑇𝑎𝑚 + 𝑐 ≥ 1𝑠𝑖𝑛𝑐𝑒 + 𝑐𝑙𝑎𝑠𝑠𝑖𝑠𝑜𝑣𝑒𝑟𝑡ℎ𝑒𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 

𝑧𝑇𝑎𝑛 + 𝑐 ≤ −1𝑠𝑖𝑛𝑐𝑒 − 𝑐𝑙𝑎𝑠𝑠𝑖𝑠𝑢𝑛𝑑𝑒𝑟𝑡ℎ𝑒𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 
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𝑏𝑚(𝑧
𝑇𝑎𝑚 + 𝑐) ≥ 1  𝑎𝑛𝑑𝑏𝑛(𝑧

𝑇𝑎𝑛 + 𝑐) ≥ 1   were the result of multiplying each limitation by the 

labels. 

Ultimately, we must optimize: 𝑚𝑖𝑛
1

2
‖𝑧‖2𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜:𝑏𝑖(𝑧

𝑇𝑎𝑚 + 𝑐) ≥ 0 

We used Lagrange multipliers to multiply the inequalities in order to solve it. Lagrange multipliers are 

inserted with 𝛼𝑖:. 

𝐺𝑒𝑓 =
1

2
‖𝑧‖2 −∑ 𝛼𝑖[𝑏𝑖(𝑧

𝑇𝑎𝑖 + 𝑐)−1](2.14)
𝑁

𝑖=1
 

Several partial derivations were discovered by using the Karush-Kuhn-Tucker criteria[34], as follows: 
𝜇𝐺𝑒𝑓

𝜇𝑧
= 0 , 

𝑑𝐺𝑒𝑓

𝑑𝑐
= 0 , 𝛼𝑖 ≥ 0 

𝛼𝑖[𝑏𝑖(𝑧
𝑇𝑎𝑖 + 𝑐)−1] = 0(2.15) 

Where  
𝜇𝐺𝑒𝑓

𝜇𝑧
= 0


→    𝑧 = ∑ 𝛼𝑖

𝑁
𝑖=1 𝑏𝑖𝑎𝑖  ,   

𝑑𝐺𝑒𝑓

𝑑𝑐
= 0


→     ∑ 𝛼𝑖

𝑁
𝑖=1 𝑏𝑖 = 0   

Employing Karush-Kuhn-Tucker on the primal-dual, we obtained: 

𝐺𝑑 = −
1

2
∑∑𝛼𝑖𝛼𝑗

𝑁

𝑗=1

𝑏𝑖𝑏𝑗

𝑁

𝑖=1

𝑎𝑖
𝑇𝑎𝑗 +∑𝛼𝑖

𝑁

𝑖=1

(2.16) 

By using knowns in place of: 𝑏𝑚 = 1, 𝑏𝑛 = −1, 𝑎𝑚=[−1, 1]
𝑇
, 𝑎𝑛 = [1,−1]

𝑇
 

𝐺𝑑 = −𝛼𝑚
2 −𝛼𝑛

2 − 2𝛼𝑚𝛼𝑛 + 𝛼𝑚 + 𝛼𝑛(2.17) 

𝜇𝐺𝑑
𝜇𝛼

= 0

→    𝛼𝑚 + 𝛼𝑛 =

1
2⁄  

∑ 𝛼𝑖𝑏𝑖 = 0

→    𝛼𝑚 = 𝛼𝑛

𝑁
𝑖=1  , 𝑤ℎ𝑒𝑟𝑒 𝛼𝑚 + 𝛼𝑛 =

1
2⁄ 


→     𝛼𝑚 = 𝛼𝑛 =

1
4⁄   

The normal vector z can be found by: 

𝑧 =∑𝛼𝑖𝑏𝑖𝑎𝑖 = [
−1

2⁄ , 1 2⁄ ]
𝑇
(2.18)

𝑁

𝑖=1

 

To determine bias, bs: 

  𝛼𝑖[𝑏𝑖(𝑧
𝑇𝑎𝑖 + 𝑏𝑠)−1] = 0, 𝑏𝑠 =

1
𝑏𝑖
⁄ − 𝑧𝑇𝑎𝑖∀𝑖𝑆. 𝑇.𝛼 ≠ 0, 𝑏𝑠 = 0∀𝑖  

3 The proposed MPA-SVM system 

The ability of the MPA technique to recall patterns of optimization findings using the sites for effective 

foraging by marine predators and their partners is one of its numerous advantages. Furthermore, MPAs 

need a lot less iterations. Its many benefits include being gradient-free, having a straightforward process, 
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requiring less computing power, accelerating convergence, and being insulated from the problem. These 

essential benefits are all very helpful in resolving high dimensionality issues. The steps to build MPA-SVM 

system are listed below: 

3.1 Features normalization 

First of all , we need to  normalize the inputted features using a vector of real values. Based on 

Min-Max normalization [35]features are randomly mapped onto the interval [0,1] using eq. 

(3.1). The variable is scaled to a percentage of the whole range of the original dataset by this 

division. The adjusted value thus lies between 0 and 1. As a result, if the component value is 

higher or equal to 0.5, it will be replaced by 1 and the feature is selected; if not, the value is 

calculated to be 0 and the feature is not selected. 

𝑋𝑛𝑜𝑟𝑚 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
    (3.1) 

3.2 Fitness function 

      The feature subset with the lowest classification error rate and the fewest features chosen is the 

optimal one. The next equation illustrates how the fitness function is utilized in MPA-SVM to 

assess individual searching agents: 

𝐹𝑖𝑡𝑚𝑖𝑛 = 𝑎𝑐𝐿(𝐷𝑆) + 𝑏
|𝐿|

|𝑂|
      (3.2) 

Where 𝑎𝑐𝐿(𝐷𝑆) is the error rate which related to the decision on selection DS. The chosen features subset's 

length is denoted by L, where O is the overall count of datasets' features. The variables a and b are 

equivalent to the classification quality significance and chosen subset's feature length regarding that 

𝑎𝜖[0, 1]𝑎𝑛𝑑𝑏 = 1 − 𝑎 as approved in [36]. 

3.3 System architecture 

The MPA-SVM architecture is shortened in Fig. 1, which reveals the relatives amongst the 

key portions of the system. As seen, MPA-SVM begins by collecting datasets and then, as 

previously mentioned, applies normalization to such datasets.  Subsequently, the optimized 

features undergo model validation (cross validation) through the application of training and 

testing procedures. In order to generate the specified subset feature, the features in this case 

need to be marked with 1s and deployed to the entire dataset (training and testing sets). The 

MAP pseducode is shown before in subsection 2.3.  The fitness evaluation is then used 

following the computation of the error rate. Until the maximal iteration is reached and the 

termination condition is met, the process is carried out repeatedly. 
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Fig .1  Proposed MPA-SVM architecture 

 

4 Experiments results & discussions 

  In order to verify and assess the efficacy of the suggested MPA-SVM algorithm, MPA-SVM was 

juxtaposed with six well-known and contemporary optimization algorithms, such as ASO [20], EO [21], 

EPO [22], MBO [23], SBO [24] and SCA [25]. Every experiment was run using 10 high dimensional 

benchmark datasets that were taken from Arizona State University (ASU) repository [37].The following 

stages present the used datasets and complete experiment details: 

 

Training dataset on new chosen 

subset of features 

Collect dataset 

Data 

normalization 

80% Dataset 

(Training) 

20% Dataset 

Chose new subset of 

features 

Testing dataset on new 

chosen subset of features 

Construct a model 

classifier 

SVM-model 

Calculate error rate 

Testing set classification 

error rate  

Is max-

iteration 

reached?  

True  

False 

Optimized chosen FS 

subset 

Carry out MPA 

optimization  
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4.1 Datasets specifications 

Ten high dimensional benchmark datasets from the ASU repository were employed in this study. These 

datasets' specifics are shown in TABLE 1. . Every test was done with the setting listed in TABLE 2. .  

TABLE 1.  Employed ASU datasets.(Datasets | Feature Selection @ ASU, n.d.) 

No. Dataset No. of features 

(attributes) 

No. of instances 

1 CLL-SUB-111  111 11340 

2 20newsgroups  171 5748 

3 GLA-BRA-180  180 49151 

4 GLI-85  85 22283 

5 orlraws10P  100 10304 

6 pixraw10P  100 10000 

7 SMK-CAN-187 187 19993 

8 TOX-171  171 5748 

9 AR10P  130 2400 

10 PIE10P  210 2420 

 

4.2 The parameter setting for algorithms and experiments 

The suggested algorithm's fit performance was verified in each experiment using an SVM 

classifier based on the wrapper technique. TABLE 2. and  TABLE 3.  also display the used PC 

descriptions and  the parameter settings for the additional baseline optimization methods, which 

are ASO, EO, EPO, MBO, MPA, SBO, and SCA, respectively. Furthermore, the population 

size for each method was set to 10, and the highest number of iterations permitted was 100. 

TABLE 2.  PC descriptions 

Name  Descriptions  

CPU Intel(R) Core(TM) i7-5500U 

RAM 2.40 GHz, 8 GB RAM 

OS Windows 10 

APPLICATION MATLAB R2015a 

 

TABLE 3. Optimization algorithms' parameter set in use. 

Algorithm name  Parameters setting 

ASO[20] 
α= 50 

β=0.4 

EO[21] 

a1=3 (constant 1) 

a2=2 (constant 2) 

GP=0.7 (Generation probability) 

EPO[22], [23] M  = 4 ( movement parameter) 

MBO[23] 

Per = 1.2 ( migration period) 

p = 5/12 ( ratio) 

Smax= 1 ( maximum step) 

BAR= 5/12 ( butterfly adjusting 

rate) 
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N1= 4 ( number of butterflies in 

land1) 

MPA[14] P= 0.6 (constant) 

 FADs= 0.4 (fish aggregating 

devices effect) 

SBO[24] 

α= 0.95 (constant) 

z= 0.01 (constant) 

MR = 0.04 (mutation rate) 

 

SCA[25] α= 2 (constant) 

 

4.3 Evaluation metrics 

All algorithm's ultimate accuracy in classification is assessed using the well-known Support 

Vector Machine (SVM) classifier[38], together with wrapper-based feature selection. A four of 

evaluation metrics is employed here to evaluate various facets of performance: 

a. Classification error rate:  to calculate a classifier's error rate using test data is to divide the 

number of erroneously categorized objects the by total number of items [39]. 

b.  Standard Deviation (STD): the variable "std" represents the variance of the best results that 

were achieved after a random optimizer was executed for a number of runs. Std is used to 

measure the resilience and stability of optimization; lesser values of Std indicate that the 

algorithm always ends to the same solution, whereas bigger values of Std indicate significantly 

more irregular performance [40]. 

c. Average selected features percentage: the secondary goal of the fitness function that is being 

employed is average selected features percentage, which is the average ratio of the features that 

have been chosen to the entire number of features multiplied by 100. 

d.  Algorithms runtimes:   runtime allows us to measure how long an algorithm takes to execute 

in relation to the size of the input. It gives us a methodical and unambiguous approach to 

evaluating and contrasting algorithmic efficiency.  

 

4.4 Experiments discussion 

       Here, we provide an overview and the findings from each experiment. The MPA-SVM technique was 

customized to handle the feature selection problem in high dimensional datasets through three key 

experiments, as mentioned in last subsection. The suggested adaptive algorithm, or MPA-SVM, was put 

into practice on a PC, and its specifications are given in TABLE 2. The algorithms tested on ten publicly 

available high dimensional datasets included Atom Search Optimization (ASO), Equilibrium Optimizer 

(EO), Emperor Penguin Optimizer (EPO), Monarch Butterfly Optimization (MBO), Satin Bowerbird 

Optimizer (SBO), and Sine Cosine Algorithm (SCA).  

TABLE 3 lists the parameters that are set in each algorithm. The experiments repeated for 100-iteration 

and ten search agents in all employed algorithms. Based on the rate of classification error, Table 4. 

compares the performance of all methodologies.  The results in Table 4. show that the proposed MPA-

SVM has the best (less) classification error rate in 80% of all datasets and lowest average error rate (4.521). 

MPA showed results that were extremely competitive. It demonstrates effectiveness in optimization issues. 

Numerous benefits come with MPA, including precise calculation, straightforward setting, easy 

implementation, and fewer parameters.  In the last stage of the optimization process, the MPA algorithm 
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demands a high level of exploitation ability. During this phase, the Predator begins to employ the Lévy 

approach instead of the Brownian technique in order to seek a specific neighborhood more effectively. 

Accordingly, MPA couldn't conduct the lowest classification error rates in 20% of datasets. 

 Table 4. is visualized in Fig. 2 .  

 

TABLE 4. Comparing the suggested methods depending on the rate of classification error 

Datasets  ASO EO EPO MBO MPA SBO SCA 

CLL-SUB-111 

(111*11340) 
22.728 18.182 13.637 22.728 13.637 31.819 9.091 

20newsgroups 

(171*5748) 
8.824 8.824 14.706 11.765 2.942 17.648 8.824 

GLA-BRA-180 

(180*49151 ) 
13.889 16.667 13.889 30.556 5.556 19.445 25.000 

GLI-85 

(85*22283) 
0.000 0.000 0.000 0.000 0.000 17.648 5.883 

orlraws10P 

(100*10304) 
10.000 0.000 0.000 5.000 0.000 10.000 0.000 

pixraw10P 

(100*10000) 
5.000 0.000 0.000 0.000 0.000 5.000 0.000 

SMK-CAN-

187(187*19993) 
10.811 18.919 13.514 21.622 2.703 16.217 21.622 

TOX-171 

(171*5748) 
11.765 2.942 14.706 11.765 11.765 17.648 5.883 

AR10P 

(130*2400) 
42.308 30.770 19.231 42.308 3.847 30.770 11.539 

PIE10P 

(210*2420) 
4.762 7.143 2.381 2.381 4.762 9.524 0.000 

Average error rate 13.009 10.345 9.206 14.813 4.521 17.572 8.784 
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Fig .2 Comparing the suggested methods depending on the rate of classification error 
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TABLE 5. Comparing the suggested methods depending on the STD 

Datasets  ASO EO EPO MBO 
MPA-

SVM 
SBO SCA 

CLL-SUB-111 (111*11340) 0.028 0.037 0.044 0.013 0.003 0.011 0.073 

20newsgroups (171*5748) 0.019 0.061 0.009 0.028 0.005 0.010 0.037 

GLA-BRA-180 (180*49151 ) 0.006 0.025 0.080 0.008 0.033 0.002 0.038 

GLI-85 (85*22283) 0.033 0.033 0.016 0.011 0.001 0.730 0.013 

orlraws10P (100*10304) 0.000 0.001 0.007 0.080 0.000 0.047 0.036 

pixraw10P (100*10000) 0.450 0.015 0.006 0.770 0.000 0.077 0.023 

SMK-CAN-187(187*19993) 0.020 0.042 0.034 0.003 0.045 0.009 0.015 

TOX-171 (171*5748) 0.026 0.030 0.018 0.021 0.002 0.024 0.028 

AR10P (130*2400) 0.044 0.024 0.061 0.011 0.000 0.011 0.047 

PIE10P (210*2420) 0.000 0.015 0.060 0.002 0.003 0.000 0.014 

Average STD rate 0.063 0.028 0.034 0.095 0.009 0.092 0.032 

   According to the second metric, the standard deviation (STD), MPA-SVM achieved the lowest STD in 

70% of all datasets and less STD rate, as listed in TABLE 5. and visualized in Fig. 3 . These outcomes 

show that the suggested method can manage high-dimensional data collections. Furthermore, for the 

majority of the data sets, MPA-SVM displays decreased Std values, confirming the algorithm's robustness. 
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Fig. 3 Comparing the suggested methods depending on the STD 
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Finally,  by employing the third metric, average selected features percentage, we found that MPA-SVM 

achieved the lowest FS percentage over 80% all 10 datasets in comparison with the other six state of art 

algorithms in addition to achieving 0.97% as average FS. The results of current metric are listed in TABLE 

6. and visualized in Fig. 4 . Table 6 displays the number of selected features that each approach obtained 

through evaluation. The MPA-SVM approach yields a minimum number of meaningful selected features 

for all datasets, indicating its high efficiency and suitability for the FS process especially for high 

dimensional datasets. 

TABLE 6. Comparing the suggested methods depending on the average selected features 

percentage 

Datasets  ASO EO EPO MBO 
MPA-

SVM 
SBO SCA 

CLL-SUB-111 (111*11340) 48.40% 11.00% 0.50% 43.30% 0.29% 48.30% 2.00% 

20newsgroups (171*5748) 48.00% 14.30% 1.30% 44.20% 0.90% 47.90% 6.00% 

GLA-BRA-180 (180*49151 ) 48.70% 2.70% 1.80% 43.30% 1.90% 48.70% 2.10% 

GLI-85 (85*22283) 49.70% 5.10% 2.00% 43.40% 1.50% 48.30% 1.70% 

orlraws10P (100*10304) 46.80% 0.20% 5.00% 39.30% 0.10% 46.70% 0.50% 

pixraw10P (100*10000) 46.00% 0.08% 3.00% 39.10% 0.30% 47.20% 0.20% 

SMK-CAN-187(187*19993) 49.90% 5.60% 0.20% 44.00% 0.80% 44.00% 2.70% 

TOX-171 (171*5748) 48.20% 17.30% 1.30% 43.90% 1.00% 48.20% 4.40% 

AR10P (130*2400) 45.70% 6.70% 2.20% 37.70% 1.70% 46.90% 4.80% 

PIE10P (210*2420) 44.10% 3.10% 6.00% 37.20% 1.20% 44.70% 1.70% 

Average FS percentage 47.55% 6.61% 2.33% 41.54% 0.97% 47.53% 2.61% 
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Fig. 4 Comparing the suggested methods depending on the average selected features 

percentage 
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According to the fourth criteria, the runtime for each algorithm,  proposed MPA-SVM achieved the lowest 

runtime over the ten datasets. The MPA algorithm is superior to other algorithms. 

because it retains optimization results in memory, referencing 

that marine predator has the benefit of having a strong memory 

in keeping their colleagues and the location of prosperous 

gathering [15]. Consequently, MPA algorithm needs less iterations which is the main cause of its high 

speed.  Table 7 lists the runtimes of MPA-SVM with other six algorithms. Obviously, MPA-SVM approved 

its supremacy by conducting the lowest runtimes over all datasets. Such achievement is visualized in Fig. 

5. 

TABLE 7. Comparing the proposed MPA-SVM based on algorithms runtimes  

Datasets ASO EO EPO MBO 
MPA-

SVM 
SBO SCA 

CLL-SUB-111 

(111*11340) 
29.100 24.711 13.427 89.453 6.624 91.720 91.720 

 

20newsgroups 

(171*5748 ) 
26.184 34.040 13.678 59.655 10.322 58.781 58.781 

 

 

GLA-BRA-180 

(180*49151 ) 
200.833 91.683 29.388 505.659 12.607 506.153 506.153 

  

 

GLI-85 

(85*22283) 
44.538 28.294 17.968 162.993 12.199 165.975 165.975 

  

 

orlraws10P 

(100*10304) 
24.615 18.261 14.112 80.503 4.155 80.098 80.098 

 

 

pixraw10P 

(100*10000) 
25.523 18.134 13.655 77.521 6.442 74.041 74.041 

 

 

SMK-CAN-

187(187*19993) 
76.004 52.889 18.427 204.081 7.883 191.024 191.024 

  

 

TOX-171 

(171*5748) 
22.982 24.351 13.631 62.247 11.373 58.511 58.511 

 

 

warpAR10P 

(130*2400) 
14.507 15.921 12.406 30.704 5.706 26.950 26.950 

 

 

warpPIE10P 

(210*2420) 
12.761 17.955 12.679 32.525 10.614 34.295 34.295 

  

 

Average 47.705 32.624 15.937 130.534 8.793 128.755 128.755  
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Fig. 5 Comparing the proposed MPA-SVM based on algorithms runtimes 

 

5 Conclusions 

The purpose of this work was to suggest a modified method of feature selection in high 

dimensional datasets depending on the Marine Predators Algorithm (MPA). Four evaluation 

criteria are evaluated to examine various aspects of the performance of comparison algorithms, 

and the experiments are done on ten high dimensional benchmark datasets from ASU datasets 

to investigate the performance of the suggested MPA-SVM technique. The experimental 

findings demonstrated that the suggested MPA-SVM technique outperformed the six well-

known meta-heuristic algorithms ASO, EO, EPO, MBO, MPA, SBO from current literature in 

terms of results. The findings demonstrated that the MPA produced the lowest error rate with 

the less classification STD and minimum number of important features chosen for the majority 

of datasets when used with SVM as the classifiers. The MPA-SVM proved to be much more 

advantageous for comparatively large datasets, such achievement comes from that MPA needs 

less iterations. Compared to other algorithms, MPA has the advantage of memorizing 

optimization outcomes, which is related to the fact that marine predators have an excellent 

memory for remembering where successful foraging is.  We get to the conclusion that the 

suggested MPA-SVM technique reduced the number of important features chosen while 

achieving excellent performance in comparison to the other tested methods. Solving other 

optimization problems in different disciplines is recommended for more evaluation of MPA. 

Since MPA is a velocity-based algorithm developing a binary and multi-objective version of 

MPA would be a valuable contribution. 
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