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Abstract 

 In this study, we introduced a novel scheme to attain approximate and closed-form solutions of fractional 

telegraph equations, which belong to the most consequential amplitude equations in physics.  The Yang 

transforms (YT) and the Adomian decomposition method (ADM) is combined in the proposed method. We 

call it the Yang Adomian decomposition method (YDM). Some examples are given to illustrate the 

accuracy of the numerical results by YDM. As a result, YDM demonstrates that it is a useful and simple 

mathematical tool for getting approximate and exact analytical solutions to linear-nonlinear fractional 

telegraph equations (FTEs) of the given kind. The convergence and absolute error analysis of the series 

solutions is also offered. 

Keywords: Yang transform; Adomian decomposition method; Telegraph equation; Caputo fractional 

operator. 
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1-Introduction 

        Fractional calculus, a fast-developing branch of mathematics, is the study of the integrals and 

derivatives of functions of any order. It has been gaining popularity among scientists working on a range 

of issues due to the excellent results gained when different tools from this calculus were utilized to simulate 

specific real-world situations. What makes this calculus interesting to learn is the diversity of fractional 

operators. The range of fractional operators makes it easy to choose the one that will produce the best 

results [1]. 

       During recent decades, researchers have been interested in studying fractional calculus and its 

applications, not only in mathematics but also in many other sciences, such as physics, thermodynamics, 

engineering, economics, etc. Fractional calculus has many applications in the field of electrical, 

electrochemistry, statistics, and probability. In addition, fractional differential equations can describe many 

cosmological phenomena that traditional differential equations cannot describe [2,3]. Various 

approximation and methodologies, like the fractional Adomian decomposition method (FADM), fractional 

homotopy method (FHPM), fractional function decomposition method, fractional variational iteration 

method (FVIM), fractional reduce differential transform method (FRDTM), fractional differential 

transform method, fractional Laplace variational iteration method, fractional Laplace homotopy 

perturbation method (FLHPM), fractional Laplace decomposition method (FLDM), fractional Sumudu 

homotopy analysis method, fractional Sumudu variational iteration method (FVIM), fractional Sumudu 

decomposition method (FSDM), fractional natural decomposition method (FNDM) [4-60]. In this paper, 

we apply the Yang decomposition technique to find solution of fractional differential equations with the 

fractional operator Caputo. The order of the paper is as follows: The basic definitions for calculus and 

fractional integration are presented in section 2, the method used is analyzed in section 3, many examples 

are given that explain the effectiveness of the method proposed in section 4, and finally, the conclusion is 

provided in  section 5. 

Preliminaries  

This section [61-66] goes through some FC definitions and notation that will be used during this period of 

work. 

 

Definition 2.1. The fractional integral operator of order 𝛼 ≥ 0 Riemann Liouville, of 𝜑(𝜇) ∈ 𝐶𝜗 , 𝜗 ≥ −1  

is  
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        𝐼𝛼𝑢(𝑡) = {

1

Γ(𝑖𝛼)
∫ (𝑖𝑡 − 𝜏)𝛼−1𝑢(𝑡)𝑑𝜏, 𝛼 > 0, 𝑡 > 0.

𝑡

0

𝑢(𝑡),                                          𝛼 = 0               

                                                               

Properties of operator  𝐼𝛼: 

1. 𝐼𝛼𝐼𝜎𝑢(𝑡) = 𝐼𝛼+𝜎𝑢(𝑡). 

2. 𝐼𝛼𝐼𝜎𝑢(𝑡) = 𝐼𝜎𝐼𝛼𝑢(𝑡). 

3. 𝐼𝛼𝑡𝑚 =
Γ(𝑖𝑚+1)

Γ(𝛼+𝑚𝑖+1𝑖)
𝑡𝛼+𝑚. 

 

 

Definition 2.2.   The Caputo fractional derivative of order 𝛼 of 𝑢(𝑡) is  

          𝐷𝛼𝑢(𝑡) = 𝐼𝑚−𝛼𝐷𝑚𝑢(𝑡) 

    =
1

Γ(𝑚 − 𝛼)
∫ (𝑡

𝑡

0

− 𝜏)𝑚−𝛼−1𝑢(𝑚)(𝜏)𝑑𝜏                                                                                                                      

For 𝑚 − 1 < 𝛼 < 𝑚 , 𝑚 ∈ 𝑁 , 𝑡 > 0 and 𝑢 ∈ 𝐶−1
𝑚 . 

 

The properties 𝐷𝛼 are:  

1. 𝐷𝛼𝑘 = 0 ,  where k is a constant. 

2. 𝐷𝛼𝑡𝜎 =
Γ(𝜎+1)

Γ(𝜎−𝛼+1)
 𝑡𝜎−𝛼, 

3. 𝐷𝛼𝐷𝜎𝑢(𝑡) = 𝐷𝛼+𝜎𝑢(𝑡) 

4. 𝐼𝛼𝐷𝛼𝑢(𝑡) = 𝑢(𝑡) − ∑ 𝑢(𝑘)(0)𝑚−1
𝑘=0

𝑡𝑘

𝑘!
. 

 

Definition 2.3. The MLF with 𝛼 > 0 is  

     𝐸𝛼(𝑧) = ∑
𝑧𝛼

Γ(𝑚𝛼 + 1)
 

∞

𝑚=0

                                                                                                                      

 

3. Yang transform 

Definition 2.4. The Yang transform of the function is 
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𝑌{𝑢(𝑡)} = ∫ 𝑒−
𝑡
𝑣

 𝑢(𝑡)𝑑𝑡 ,   𝑡 > 0,

∞

0

 

with 𝑣 representing the transform variable. 

 

Few properties of YT is stated as. 

   

  

𝑇ℎ𝑒 𝑌𝑇    𝑌[𝑓(𝑡)] 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑝𝑢𝑡𝑜 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑎𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦    

 

1. 𝑌 [ 𝐷𝑥
𝛼

0
𝑐 𝑓(𝑡)] = 𝑌 [

𝑓(𝑡)

𝑣𝛼
] − ∑

𝑈(𝑘)(0+)

𝑣(𝛼−𝑘−1)

𝑛−1
𝑘=0      

Where    n − 1 < 𝛼 < 𝑛  

 

 

2.𝑓(𝑣) = 𝑎   →   𝑌[𝑓(𝑣)] = 𝑎𝑣         , 𝑎  𝑖𝑠 𝑎𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

3. 𝑓(𝑣) = 𝑣𝛼  →   𝑌[𝑓(𝑣)] = 𝑣𝛼+1  Г(𝛼 + 1) 

 

4.If 𝑓(𝑣) = 𝑣𝛼  𝑡ℎ𝑒𝑛 𝑌−1[𝑓(𝑣)] =
𝑣𝛼−1

Г(𝛼−1)
  

 

 

3. Formulation of Yang decomposition method for fractional Telegraph Equation 

 

We now consider the following and hence illustrate the basic 

𝐷 𝑈(𝑥, 𝑡) = 𝐴(𝑥, 𝑡)𝜕𝑡
2𝑈(𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝜕𝑡𝑈(𝑥, 𝑡) + 𝐶(𝑥, 𝑡)𝑈(𝑥, 𝑡) + 𝑈𝑟(𝑥, 𝑡) + 𝑔(𝑥, 𝑡),         (1)𝑥

𝛼
0
𝑐  
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with the initial condition 𝑈(0, 𝑡) 𝑎𝑛𝑑 𝑈𝑥(𝑜, 𝑡), 0 < 𝑥 < 𝑎 ,    0 < 𝛼 ≤ 2      𝑎𝑛𝑑   𝐴(𝑥, 𝑡),

𝐵(𝑥, 𝑡), 𝐶(𝑥, 𝑡) 

are continues functions and  𝑈𝑟(𝑥, 𝑡) is nonlinear function. 

Applying  the YT to both sides of (1), we have  

𝑌 [
𝑈(𝑥, 𝑡)

𝑣𝛼
] −  ∑

𝑈(𝑘)(0+)

𝑣(𝛼−𝑘−1)

𝑛−1

𝑘=0

= 𝑌 [
𝐴(𝑥, 𝑡)𝜕𝑡

2𝑈(𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝜕𝑡𝑈(𝑥, 𝑡)

+𝐶(𝑥, 𝑡)𝑈(𝑥, 𝑡) + 𝑈𝑟(𝑥, 𝑡) + 𝑔(𝑥, 𝑡)
],           (2) 

   Or 

𝑌[𝑈(𝑥, 𝑡)] =  𝑣𝛼 ∑
𝑈(𝑘)(0+)

𝑣(𝛼−𝑘−1)

𝑛−1

𝑘=0

+ 𝑣𝛼  𝑌[𝑔(𝑥, 𝑡)]

+ 𝑣𝛼 𝑌[𝐴(𝑥, 𝑡)𝜕𝑡
2𝑈(𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝜕𝑡𝑈(𝑥, 𝑡) + 𝐶(𝑥, 𝑡)𝑈(𝑥, 𝑡)

+ 𝑈𝑟(𝑥, 𝑡)].                                                                                       (3) 

Hence, applying  the inverse YT to the both sides of (3) , we conclude that. 

𝑌−1[𝑈(𝑥, 𝑡)]

=  𝑌−1 [𝑣𝛼 ∑
𝑈(𝑘)(0+)

𝑣(𝛼−𝑘−1)

𝑛−1

𝑘=0

+ 𝑣𝛼 𝑌[𝑔(𝑥, 𝑡)]

+ 𝑣𝛼 𝑌[𝐴(𝑥, 𝑡)𝜕𝑡
2𝑈(𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝜕𝑡𝑈(𝑥, 𝑡) + 𝐶(𝑥, 𝑡)𝑈(𝑥, 𝑡)

+ 𝑈𝑟(𝑥, 𝑡)]].                                                                                                          (4) 
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𝑈(𝑥, 𝑡) =  𝑌−1 [𝑣𝛼 ∑
𝑈(𝑘)(0+)

𝑣(𝛼−𝑘−1)

𝑛−1

𝑘=0

+ 𝑣𝛼  𝑌[𝑔(𝑥, 𝑡)]

+ 𝑣𝛼 𝑌[𝐴(𝑥, 𝑡)𝜕𝑡
2𝑈(𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝜕𝑡𝑈(𝑥, 𝑡) + 𝐶(𝑥, 𝑡)𝑈(𝑥, 𝑡)

+ 𝑈𝑟(𝑥, 𝑡)]].                                                                                                          (5) 

 

So that  

𝑈(𝑥, 𝑡) =  𝜇(𝑥, 𝑡) + 𝑌−1[𝑣𝛼 𝑌[𝐴(𝑥, 𝑡)𝜕𝑡
2𝑈(𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝜕𝑡𝑈(𝑥, 𝑡) + 𝐶(𝑥, 𝑡)𝑈(𝑥, 𝑡) +

𝑈𝑟(𝑥, 𝑡)]],   (5)                                 

where 

𝜇(𝑥, 𝑡) = 𝑌−1 [𝑣𝛼 ∑
𝑈(𝑘)(0+)

𝑣(𝛼−𝑘−1)

𝑛−1

𝑘=0

+ 𝑣𝛼 𝑌[𝑔(𝑥, 𝑡)]].                                                   (6) 

  

Now, suppose that  

𝑈(𝑥, 𝑡) =  ∑ 𝑈𝑛

∞

𝑛=0

(𝑥, 𝑡),                                                                                                              (7) 

𝑈𝑟(𝑥, 𝑡) =  ∑ 𝐴𝑛

∞

𝑛=0

(𝑥, 𝑡).          

Substituting series (7) in (5), we have 
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∑ 𝑈𝑛

∞

𝑛=0

(𝑥, 𝑡) =  𝜇(𝑥, 𝑡)

+ 𝑌−1[𝑣𝛼 𝑌[𝐴(𝑥, 𝑡)𝜕𝑡
2𝑈𝑛(𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝜕𝑡𝑈𝑛(𝑥, 𝑡) + 𝐶(𝑥, 𝑡)𝑈𝑛(𝑥, 𝑡)

+ 𝐴𝑛(𝑥, 𝑡)]].                                                                                                              (8) 

  

For the recursive iteration system, by the computing of both side of (8) , we get the 

components of the approximation as the of the following respectively .  

𝑈0(𝑥, 𝑡) =  𝜇(𝑥, 𝑡).  

𝑈1(𝑥, 𝑡) = [𝑌−1[𝑣𝛼 𝑌[𝐴(𝑥, 𝑡)𝜕𝑡
2𝑈0(𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝜕𝑡𝑈0(𝑥, 𝑡) + 𝐶(𝑥, 𝑡)𝑈0(𝑥, 𝑡) +

𝐴0(𝑥, 𝑡)]]]                                                                                                                      (9)       

  

   𝑈2(𝑥, 𝑡) =

[𝑌−1 [𝑣𝛼 𝑌 [
𝐴(𝑥, 𝑡)𝜕𝑡

2𝑈1(𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝜕𝑡𝑈1(𝑥, 𝑡) +

𝐶(𝑥, 𝑡)𝑈1(𝑥, 𝑡) + 𝐴1(𝑥, 𝑡)
]]]                           (10)                       

 

𝑈3(𝑥, 𝑡)

=  [𝑌−1[𝑣𝛼 𝑌[𝐴(𝑥, 𝑡)𝜕𝑡
2𝑈2(𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝜕𝑡𝑈2(𝑥, 𝑡) + 𝐶(𝑥, 𝑡)𝑈2(𝑥, 𝑡)

+ 𝐴2(𝑥, 𝑡)]]].                                                                                                                                   (11) 

 

𝑈𝑛+1(𝑥, 𝑡) = [𝑌−1[𝑣𝛼  𝑌[𝐴(𝑥, 𝑡)𝜕𝑡
2𝑈𝑛(𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝜕𝑡𝑈𝑛(𝑥, 𝑡) + 𝐶(𝑥, 𝑡)𝑈𝑛(𝑥, 𝑡)

+ 𝐴𝑛(𝑥, 𝑡)]]].                                                                                           (12)  
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5. Illustrative Examples 

Example 5.1. Consider the one-dimensional space FTE 

𝐷 𝑈(𝑥, 𝑡) = 𝐷𝑡
2𝑈(𝑥, 𝑡) + 4𝐷𝑡𝑈(𝑥, 𝑡) + 4𝑈(𝑥, 𝑡),   0 < 𝑥 < 1,    0 <  𝛼 ≤ 2,                              (13)𝑥

𝛼
0
𝑐  

with the initial and boundary conditions 

𝑈(0, 𝑡) = 1 +  𝑒−2𝑡 ,                                          

𝑈𝑥(0, 𝑡) =  2,                                         

𝑈(𝑥, 0) = 1 + 𝑒2𝑡                                              

𝑈𝑡(𝑥, 0) = −2 .                                           

Applying  the YT on the both side of (13), we have  

𝑌[ 𝐷 𝑈(𝑥, 𝑡)] − 𝑌[𝐷𝑡
2𝑈(𝑥, 𝑡) + 4𝐷𝑡𝑈(𝑥, 𝑡) + 4𝑈(𝑥, 𝑡)] = 0                                                  (14) 𝑥

𝛼
0
𝑐  

or 

𝑌[𝑈(𝑥, 𝑡)]

𝑣𝛼
 −  ∑

𝑈(𝑘)

𝑣𝛼−𝑘−1

𝑚−1

𝑘=0

= 𝑌[𝐷𝑡
2𝑈(𝑥, 𝑡) + 4𝐷𝑡𝑈(𝑥, 𝑡) + 4𝑈(𝑥, 𝑡)]                                    (15) 

𝑌[𝑈(𝑥,𝑡)]

𝑣𝛼
− 

𝑈(0)
(0)

𝑣𝛼−0−1
− 

𝑈0
(1)

𝑣𝛼−1−1
= 𝑌[𝐷𝑡

2𝑈(𝑥, 𝑡) + 4𝐷𝑡𝑈(𝑥, 𝑡) + 4𝑈(𝑥, 𝑡)]   

𝑌[𝑈(𝑥, 𝑡)] = 𝑣𝛼 [
1_𝑒−2𝑡

𝑣𝛼−1
+ 

2

𝑣𝛼−2
] + 𝑣𝛼𝑌[𝐷𝑡

2𝑈(𝑥, 𝑡) + 4𝐷𝑡𝑈(𝑥, 𝑡) + 4𝑈(𝑥, 𝑡)]  

𝑌[𝑈(𝑥, 𝑡)] = 𝑣 + 𝑣𝑒−2𝑡 + 2𝑣𝛼

+ 𝑣𝛼𝑌[𝐷𝑡
2𝑈(𝑥, 𝑡) + 4𝐷𝑡𝑈(𝑥, 𝑡) + 4𝑈(𝑥, 𝑡)].                                  (16) 

Applying the invers YT to the both side of (16), we get 
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𝑈(𝑥, 𝑡) = 𝑌−1[𝑣 + 𝑣𝑒−2𝑡 + 2𝑣𝛼] + 𝑌−1[[𝑣𝛼𝑌[𝐷𝑡
2𝑈(𝑥, 𝑡) + 4𝐷𝑡𝑈(𝑥, 𝑡) +

4𝑈(𝑥, 𝑡)]]           (17).  

𝑈(𝑥, 𝑡) = 𝑒−2𝑡 + 2𝑥 + 1 + 𝑌−1[[𝑣𝛼𝑌[𝐷𝑡
2𝑈(𝑥, 𝑡) + 4𝐷𝑡𝑈(𝑥, 𝑡) + 4𝑈(𝑥, 𝑡)]]  

Then, we have 

𝑈0(𝑥, 𝑡) = 𝑒−2𝑡 + 2𝑥 + 1                                                                                       (18)  

Next , when we use 𝑈0(𝑥, 𝑡)  to  calculate  𝑈1(𝑥, 𝑡)       

  𝑈1(𝑥, 𝑡) = 𝑌−1[𝑣𝛼𝑌[𝐷𝑡
2𝑈0(𝑥, 𝑡) + 4𝐷𝑡𝑈0(𝑥, 𝑡) + 4𝑈0(𝑥, 𝑡)]]                 (19)              

  𝑈1(𝑥, 𝑡) = 𝑌−1[𝑣𝛼𝑌 [
𝐷𝑡

2[𝑒−2𝑡 + 2𝑥 + 1 ] +

4𝐷𝑡[𝑒−2𝑡 + 2𝑥 + 1] + 4[𝑒−2𝑡 + 2𝑥 + 1
]]              (20)  

  𝑈1(𝑥, 𝑡)  = 𝑌−1[𝑣𝛼𝑌[8𝑥 + 4]]                                                                           (21)  

  𝑈1(𝑥, 𝑡)  = 4𝑌−1[2𝑣2𝛼+1 + 𝑣2𝛼]]                                                                    (22)  

𝑈1(𝑥, 𝑡) = 4 [
𝑥𝛼

𝛤(𝛼+1)
+

2𝑥𝛼+1

𝛤(𝛼+2)
]                                                                          (23)        

     

 

After that using   𝑈1(𝑥, 𝑡), we get  

  𝑈2(𝑥, 𝑡) = 𝑌−1[𝑣𝛼𝑌[𝐷𝑡
2𝑈1(𝑥, 𝑡) + 4𝐷𝑡𝑈1(𝑥, 𝑡) + 4𝑈1(𝑥, 𝑡)]]                 (24)  

 𝑈2(𝑥, 𝑡) = 𝑌−1 (𝑣𝛼𝑌 [
𝐷𝑡

2(4[
𝑥𝛼

𝛤(𝛼+1)
+

2𝑥𝛼+1

𝛤(𝛼+2)
]) +

4𝐷𝑡(4[
𝑥𝛼

𝛤(𝛼+1)
+

2𝑥𝛼+1

𝛤(𝛼+2)
)]] + 4(4[

𝑥𝛼

𝛤(𝛼+1)
])

])  

 𝑈2(𝑥, 𝑡) = 16 [
𝑥2𝛼

𝛤(2𝛼+1)
+

2𝑥2𝛼+1

𝛤(2𝛼+2)
]                                             

  Now Use  𝑈2(𝑥, 𝑡) colculus  𝑈3(𝑥, 𝑡) 
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  𝑈3(𝑥, 𝑡) =  𝑌−1[𝑣𝛼𝑌 [
𝐷𝑡

2(𝑈2(𝑥, 𝑡))

+4𝐷𝑡(𝑈2(𝑥, 𝑡))]] + 4[𝑈2(𝑥, 𝑡)]
]]                     (25)     

        𝑈3(𝑥, 𝑡) =  𝑌−1[𝑣𝛼𝑌 [
16[

𝑥2𝛼

𝛤(2𝛼+1)
+

2𝑥2𝛼+1

𝛤(2𝛼+2)
]] − 4[16[

𝑥2𝛼

𝛤(2𝛼+1)
+

2𝑥2𝛼+1

𝛤(2𝛼+2)
]]]

+4[16[
𝑥2𝛼

𝛤(2𝛼+1)
+

2𝑥2𝛼+1

𝛤(2𝛼+2)
]]

]    

  

         𝑈3(𝑥, 𝑡)  = 64[
𝑥3𝛼

𝛤(3𝛼+1)
+

2𝑥3𝛼+1

𝛤(3𝛼+2)
]  

       

  When  𝛼 = 2, 𝑎𝑛𝑑 𝑛 = 0,1,2,3, … …     we have the solution 

𝑈(𝑥, 𝑡) = 𝑒2𝑥

+ [1 + 2x +
(2𝑥)2

2!
+

(2𝑥)3

3!
+

(2𝑥)4

4!
+

(2𝑥)5

5!

+ ⋯ . +
(2𝑥)𝑛

𝑛!
]                                 (26) 

 

𝑈(𝑥, 𝑡) = 𝑒2𝑥 + 𝑒−2𝑡                                              (27) . 

 

Example 5.2. Consider the following space-fractional nonlinear telegraph equation. 

𝜕2𝛼𝑢

𝜕𝑥2𝛼
=

𝜕2𝑢

𝜕𝑡2
+ 2

𝜕𝑢

𝜕𝑡
+ 𝑢2(𝑥, 𝑡) − 𝑒2𝑥−4𝑡 + 𝑒𝑥−2𝑡 ,                    (28) 

𝑡 > 0,             0 < 𝑥 < 1     ,         0 < 𝛼 ≤ 1 , 

with the initial conditions 

𝑢(0, 𝑡) = 0 ,    𝑢𝑥(0, 𝑡) = 𝑒𝑥,  
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𝑢(𝑥, 0) = 0      ,    ,    𝑢𝑡(𝑥, 0) = −2𝑒𝑥.    

By applying Yang transform for (17), we have  

Y [
𝜕2𝛼𝑢

𝜕𝑥2𝛼
] = Y [

𝜕2𝑢

𝜕𝑡2
+ 2

𝜕𝑢

𝜕𝑡
+ 𝑢2(𝑥, 𝑡) − 𝑒2𝑥−4𝑡 + 𝑒𝑥−2𝑡]                                        (29 ) 

𝑌[𝑢(𝑥, 𝑡)]

𝑣2𝛼
−

𝑢(0, 𝑡)

𝑣2𝛼−1
−

𝑢𝑥(0, 𝑡)

𝑣2𝛼−2

= Y [
𝜕2𝑢

𝜕𝑡2
+ 2

𝜕𝑢

𝜕𝑡
+ 𝑢2(𝑥, 𝑡) − 𝑒2𝑥−4𝑡 + 𝑒𝑥−2𝑡]                               (30) 

Arrangement and substitute the initial condition, we get 

𝑌[𝑢(𝑥, 𝑡)] = 𝑣2𝛼 [
0

𝑣2𝛼−1
] + 𝑣2𝛼 [

𝑒𝑥

𝑣2𝛼−2
] + 𝑣2𝛼Y[−𝑒2𝑥−4𝑡 + 𝑒𝑥−2𝑡]

+ 𝑣2𝛼Y [
𝜕2𝑢

𝜕𝑡2
+ 2

𝜕𝑢

𝜕𝑡
+ 𝑢2(𝑥, 𝑡)]                                              (31)             

𝑌[𝑢(𝑥, 𝑡)] = 𝑣2𝛼𝑒𝑥 + 𝑣2𝛼Y[−𝑒2𝑥−4𝑡 + 𝑒𝑥−2𝑡]

+ 𝑣2𝛼Y [
𝜕2𝑢

𝜕𝑡2
+ 2

𝜕𝑢

𝜕𝑡
+ 𝑢2(𝑥, 𝑡)]                                      (32) 

Applying  the invers Yang transform to both sides of equation (21) we gey  

𝑢(𝑥, 𝑡) =  𝑌−1[𝑣2𝛼𝑒𝑥 + 𝑣2𝛼Y[−𝑒2𝑥−4𝑡 + 𝑒𝑥−2𝑡]] + 𝑌−1 [𝑣2𝛼Y [
𝜕2𝑢

𝜕𝑡2
+ 2

𝜕𝑢

𝜕𝑡
+

 𝑢2(𝑥, 𝑡)]]                                                                                                                  (33)  

Can be write relation (22) in series as follow.  

∑ 𝑢𝑛+1(𝑥, 𝑡) = 𝑌−1[𝑣2𝛼𝑒𝑥 + 𝑣2𝛼Y[−𝑒2𝑥−4𝑡 + 𝑒𝑥−2𝑡]] +∞
𝑛=0

𝑌−1 [𝑣2𝛼Y[𝜕2𝑡 ∑  ∞
𝑛=0 𝑢𝑛(𝑥, 𝑡) + 2𝜕𝑡 ∑  ∞

𝑛=0 𝑢𝑛(𝑥, 𝑡) +

∑ 𝐴𝑛(𝑥, 𝑡) ∞
𝑛=0  ]]                                                           (34)  
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Where𝐴𝑛(𝑥, 𝑡)     in(34) is nonlinear term with can calculated by adomian polynomial 

  𝐴𝑛(𝑥, 𝑡) =
1

𝑛!
 

𝜕

𝜕𝜇𝑛
[ (∑ 𝜇𝑈𝑘(𝑥, 𝑡)]𝜇=0 𝑛

𝑘=0                          (35)  

Hence  𝑢0(𝑥, 𝑡) = 𝑒𝑥       

Using  𝑢0(𝑥, 𝑡)  to get 𝑢1(𝑥, 𝑡) and other respectively , so that   

𝑢1(𝑥, 𝑡) = (
−2𝑒𝑥𝑡𝛼

√𝛼 + 1
),                                     (36) 

𝑢2(𝑥, 𝑡) = (
(−2)2𝑒𝑥𝑡2𝛼

√2𝛼 + 1
),                               (37)   

𝑢3(𝑥, 𝑡) = ((
(−2)3𝑒𝑥𝑡3𝛼

√3𝛼 + 1
))                                (38) 

𝑢4(𝑥, 𝑡) = ((
(−2)4𝑒𝑥𝑡4𝛼

√4𝛼 + 1
))                                     (39) 

 

Therefore, the approximate is 

𝑈(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + 𝑢3(𝑥, 𝑡) + ⋯                  (40)                     

Then  

𝑈(𝑥, 𝑡) = 𝑒𝑥 + (
−2𝑒𝑥𝑡𝛼

√𝛼 + 1
) + (

(−2)2𝑒𝑥𝑡2𝛼

√2𝛼 + 1
) + (

(−2)3𝑒𝑥𝑡3𝛼

√3𝛼 + 1
) + (

(−2)4𝑒𝑥𝑡4𝛼

√4𝛼 + 1
)

+ ⋯                                                                                          (41) 

substituting  α = 1, We obtain the exact solution of standard Telegraph Equation in(41)  the 

following from  

𝑈(𝑥, 𝑡) = 𝑒𝑥−2𝑡                                                                                     (42).     
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6. Conclusions 

In conclusion, this article investigates the use of YDM to obtain approximate analytical 

solutions of telegraph equations. Through a careful comparative analysis between these 

approximate solutions and exact solutions, supported by 2D and 3D graphs generated using 

the Maple platform, the analysis sheds light on the accuracy and confidence of the YDM in 

solving fractional differential equations. 
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