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Abstract 

The agricultural sector's importance is highlighted by the upcoming global population 

growth predicted by the food and agriculture organization. This growth will lead to 

increased food demand. However, traditional farming methods require a lot of time and 

effort and result in diminishing returns. Recent technological advancements, especially in 

the Internet of Things (IoT), are changing this landscape by introducing smart agriculture. 

Smart agriculture aims to improve decision-making and crop management using IoT's 

connectivity and data analysis capabilities. Artificial intelligence (AI) is becoming crucial 

in this context, offering speed, accuracy, and cost-effectiveness. Machine learning, a type 

of AI, is beneficial in detecting yields and forecasting weather. This survey highlights the 

evolving field of intelligent agriculture, covering topics like crop monitoring, and anomaly 

detection, and explains the main challenges in farming practices. 

1. Introduction 

The agriculture sector attracts significant attention, mainly due to the expected increase in 

the global population. According to the food and Agriculture Organization report, the 

http://jceps.utq.edu.iq/
mailto:jceps@eps.utq.edu.iq
https://doi.org/10.32792/jeps.v14i3.541
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Journal of Education for Pure Science- University of Thi-Qar 
Vol.14, No.3 (Sept., 2024) 

Website: jceps.utq.edu.iq                                                                       Email: jceps@eps.utq.edu.iq 

  2 

global population is estimated to increase by 2 billion by  2050 [1]. Consequently, there is 

a rising demand for food. Additionally, agriculture represented approximately 58 percent 

of the source of income for most countries [2]. However, reliance on traditional farming 

methods consumes farmers' time and effort and decreases productivity. 

In recent years, significant advancements in technology and communication have led to 

the emergence of the (IoT). It refers to how intelligent and self-adaptive objects are 

connected to the internet to communicate and interact with each other [3]. This innovation 

has several applications in various domains, such as healthcare, transportation, and the 

development of smart cities [4]. IoT represented an opportunity to transition from 

traditional farming practices to smart agriculture in the agricultural sector. By utilizing 

cameras and sensors, continuous monitoring of crops becomes feasible. As a result, this 

enables streamlining automated decision-making processes [5]. 

 

Smart agriculture can be defined as using modern information technologies to acquire, 

process, and analyze multi-source data characterized by high spatial and temporal 

resolution, all to enhance operational decision-making and crop production management, 

as shown in Figure 1. The main objectives are to increase productivity, soil degradation, 

efficient water use, and decrease the use of chemicals for cultivation. Furthermore, it 

improves crop quality and quantity and reduces production costs [6]. 

 

 

Figure 1: Smart Agriculture Overview [7]. 
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AI is a vital software development research solution. Al in agriculture helps with speed of 

performance, high accuracy, flexibility, and reduced costs. AI helps farmers take 

advantage of their agricultural talents. In addition, it also leads to increased returns and 

improved quality at the lowest costs [8]. AI has emerged in three essential categories in 

agriculture: predictive analytics, crop and soil monitoring, and agricultural robotics. Smart 

agriculture combines traditional and artificial intelligence methods to improve the 

economy by monitoring crop growth. AI technologies, particularly machine learning 

algorithms, are instrumental in transforming traditional farming practices into innovative 

agriculture solutions [9].  

Machine learning applications in smart agriculture encompass various tasks, including 

yield detection, disease identification, weed management, irrigation optimization, soil 

analysis, crop quality assessment, and weather prediction. By using the power of AI and 

machine learning, farmers can leverage data collected from agricultural IoT platforms to 

make informed decisions, optimize resource allocation, and enhance productivity [10].  

 

Several surveys and literature reviews have been published related to smart agriculture. 

Talavera et al. [11] performed a systematic literature review of IoT applications in 

environmental and agricultural industrial fields from 2006 to 2016. The applications were 

divided into four groups: logistics, control, prediction, and monitoring. Moreover, Rettore 

et al. [12] review state-of-the-art smart agriculture security, focusing on open-field 

agriculture and describing its architecture and security concerns, presenting the primary 

challenges and future approaches. They emphasize the significance of security in building 

robust and effective systems and the availability and accuracy of data in future solutions to 

assist farmers. In addition, Fatima and Mahmood [13] conducted a systematic review and 

meta-analysis of semi-supervised learning models for smart agriculture. They determine a 

structure for various semi-supervised learning models, define the search strategy, and 

extract performance metrics, drawbacks, and benefits.  

Idoje et al. [14] presented a review of innovative technologies in agriculture, such as AI, 

machine learning, cloud computing, and the IoT, as well as how they were used in smart 

farming.  
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Yang et al.  [15] provided a review of research studies and current works to explore best 

practices for raising yield and caliber in smart agriculture. This study focused on 

methodologies including big data analytics, autonomous vehicle monitoring, surveillance 

and monitoring, and practical and precise methods for smart agriculture. In addition, 

researchers have identified the opportunities and challenges associated with integrating 

IoT devices in agriculture and suggest how these technologies can enhance food 

production and manage the growing human populace. It highlighted the challenges in 

obtaining the advantages of intelligent and connected IoT devices in agriculture, but it 

made no recommendations or offered any specific solutions to these challenges. Chamara 

et al. [16] introduced a review to create and construct Agriculture-IoT systems for crop, 

soil, and microclimate monitoring, the researchers reviewed a technical guide. The review 

determined the kinds of sensors and actuators used, primary control boards, farming 

practices, crops observed, communication technologies and protocols, power supply, and 

energy storage used in Ag-IoT systems by analyzing publications between 2011 and 2021.  

This study aims to replace labor-intensive, experience-based agricultural production 

decision-making with an automated, data-driven method by utilizing Ag-IoT technologies 

to access real-time field data. Due to their inflexibility in customized developments, 

commercial platforms are limited in Ag-IoT system development adoption. The findings' 

relevance to indoor farming situations may be limited by the Ag-IoT system 

development's emphasis on outdoor surroundings rather than interior conditions. 

                                    

2. Related Works 

Several studies have been published related to crop management in smart agriculture. 

They are divided into various application areas as shown in Table 1. 

Li et al.  [17] suggested a semi-supervised learning method for identifying an early-

warning vegetable pest flea beetle. The model combines the unsupervised learning 

technique iterative self-organizing data analysis techniques algorithm (ISODATA) with 

labeled historical data. The algorithm extracts association rules as supervised information 

from labeled historical data. The accuracy of the semi-supervised learning approach is 

assessed using the Guangdong vegetable pest flea beetle experiment findings. Compared 

to RBF neural networks, support vector machines, and k-mean clustering, the semi-

supervised learning approach provides a higher accuracy rate for early warning and 
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prediction. Although the semi-supervised learning algorithm works effectively, expert 

knowledge of plant protection is not included in the semi-supervised learning system. 

Zhang et al. [18], suggested a locally linear embedding (SLLE) approach that is semi-

supervised and uses leaf images to classify plant leaves. The K-Nearest Neighbor (K-NN) 

Classifier is used because of its simple structure and quick training time. The algorithm 

performs dimension reduction to speed up the classification and comprehension of plant 

leaf features. The experiment's outcomes demonstrate how effectively the suggested 

method works with data from leaf images with a manifold structure. Combining the 

proposed approach with simple classifiers produces promising recognition results. 

Wang et al.  [19], the researchers developed a hybrid wireless sensor and actuator network 

(HWSAN) prototype for precise soil property measurement and precision irrigation. 

Wireless sensor nodes, irrigation control nodes, a gateway, a central node, and a cellular 

modem were all part of the HWSAN system. The system automatically sampled soil 

characteristics. The system collected and transmitted field data, with a data accuracy rate 

of more than 97% and a data packet transmission rate of 84.76%. The data included 

measurements of the near-surface temperature, electrical conductivity, and soil moisture at 

various depths. Sensor nodes could be added or removed quickly and without requiring 

reconfigurations because of the HWSAN system's high flexibility and robustness in the 

data-collecting layer. The system used a power management approach to preserve energy 

and prolong the battery life of the sensor nodes. 

 H. Lee et al.  [20] utilized convolutional neural networks (CNN) to learn unsupervised 

feature representations for 44 plant species. To visualize the learned features and 

understand their significance for plant identification, it also uses deconvolution networks 

(DN). Utilizes leaf images to identify plants and learn their features. The MalayaKew 

(MK) Leaf Dataset, which includes 44 classes of plant species gathered at the Royal 

Botanic Gardens, Kew, England, is used for the experiments. The CNN model using the 

learned features achieves a 99.5% classification accuracy for the plant species. The CNN-

based method performs better than traditional approaches that depend on manually created 

features. In comparison to the state-of-the-art method, it yields consistent and better 

results. Specific leaf patches are misclassified due to environmental factors like insect 

damage and wrinkled surfaces that influence the leaves' health. 
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Pérez-Ortiz et al. [21] provided a system for mapping weeds using unmanned aerial 

vehicle (UAV) imagery. Partitioning the image and combining crop row identification 

with spectral information is used to distinguish weeds from crops. The system uses 

classification techniques to distinguish crop, soil, and weed pixels. Various machine 

learning paradigms are compared to identify the best-performing approaches, including 

supervised, semi-supervised, and unsupervised methods. The performance of support 

vector Machin (SVM) and k-Nearest Neighbors (k-NN), two well-known classification 

techniques, is tested. According to the results, the system achieves excellent performance 

with very little labeled data combined with unlabeled data. This encourages the 

development of site-specific weed control tactics through weed maps. UAV imagery is an 

efficient alternative for early weed mapping since it provides ultra-high spatial resolution. 

The technique makes distinguishing between weeds and crops easier using crop row 

detection. A discussion of the potential limitations or challenges of employing UAV 

images for weed mapping, such as how the weather may affect the quality of the photos or 

the requirement for specialized equipment and knowledge to operate UAVs, would have 

been helpful. 

F. Li et al.  [22] proposed a greenhouse monitoring system based on the (IoT) to 

effectively control a complex, changeable greenhouse system using a fuzzy neural 

network. The system utilizes ZigBee protocol for mobile communication networks, alarm 

messaging data transmission, and wireless communication. Environmental information is 

collected through many greenhouse sensors, including humidity and temperature. The 

system is suitable for complex greenhouse control because its simple structure, flexible 

networks, easy expansion, and low cost characterize it. Does not address the system's 

scalability or adaptability to other greenhouse sizes or configurations, not offer a 

comparative analysis or evaluation of the suggested system versus current greenhouse 

monitoring systems or control strategies. 

(Onal et al.  [23] proposed an extended IoT framework that combines big data analytics, 

machine learning, and semantics to analyze weather data and detect sensor anomalies. 

Phases like data collection, extract-transform-load (ETL), semantic processing, and 

learning are all included in the framework. For weather clustering and sensor anomaly 

identification, the authors use the k-means clustering algorithm. The dataset contains 

United States of America (USA) weather data from 8000 distinct weather stations across 
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North America. It includes information on various meteorological parameters, including 

air temperature, humidity, wind speed, and pressure. The data analysis outcomes show that 

the suggested framework may successfully extract meaningful information from the 

complex weather dataset. High similarities between the clustering findings and various 

feature combinations indicate that the framework accurately recognizes geographical 

regions based on meteorological data. The suggested system has the advantages of 

managing large data sets, identifying sensor anomalies, and extracting hidden features. 

The study notes it can be more challenging to analyze results when there are missing data, 

such as pressure data. 

Durai et al.  [1] presented a proposal to include an expert system that integrates sensor 

networks with Artificial Intelligence systems, such as Neural Networks and Multilayer 

Perceptron (MLP), for assessing agriculture land suitability. The system gathers data from 

various sensor devices to train the model for evaluating land suitability. With four hidden 

layers, the multiclass classification accuracy of the MLP model was 92.6%. The suggested 

method offers decision classifications of more appropriate, suitable, somewhat suitable, 

and unsuitable, which help farmers assess whether the land is suitable. AI and sensor 

network technologies make agricultural automation and decision-making possible. 

Torres et al.  [24] presented the Hydra framework, which represented a multilevel data 

integration structure that works to make decisions and improve the accuracy of sensors in 

smart agriculture. Two applications have been developed to facilitate smart water 

management. The first application aims at soil moisture levels to see if irrigation is 

necessary, and the second aims at crop output and evaporation to ensure irrigation happens 

at the right time. The most effective technique for locating and eliminating impacted 

values combines the Extreme Studentized Deviate (ESD) approach with the weighted 

outlier-robust Kalman filter (WRKF filter). Furthermore, a quadratic SVM (Support 

Machine Vector) model was developed for evapotranspiration, resulting in values close to 

the evapotranspiration reference model (Penman-Monteith). Hydra improves sensor 

precision in smart agriculture, identifies application target events, and produces more 

accurate decisions. This approach also offers an inexpensive (IoT) alternative. 

Maya Gopal et al. [25] proposed a hybrid  Artificial Neural Network and Multiple Linear 

Regression (MLR-ANN) model for crop yield prediction, where MLR intercept and 

coefficients are used to initialize the ANN's input layer weights and bias. The hybrid 
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model uses a Feed Forward Artificial Neural Network with a Back Propagation training 

algorithm. Using performance metrics, the hybrid model's prediction accuracy is compared 

to other models, including ANN, MLR, Support Vector Regression (SVR), k-Nearest 

Neighbor (K-NN), and Random Forest (RF). The study's data were gathered from various 

sources and preprocessed before being fed into feature selection algorithms. The hybrid 

MLR-ANN model was trained with the features chosen from the feature selection 

techniques to predict yield. The findings demonstrate that the suggested hybrid MLR-

ANN model provides better accuracy compared to traditional models. Lack of knowledge 

regarding the possible effects of various parameter settings, including the number of 

hidden layers, number of hidden neurons, and learning rate, on the hybrid MLR-ANN 

model's accuracy. 

Shadrin et al. [26] provided a low-power embedded sensing device with a graphics 

processing unit (GPU) provides an embedded system with Artificial intelligence (AI) 

capabilities for in-situ plant leaf growth dynamics prediction and continuous analysis. The 

Long-Short Term Memory Network (LSTM), a Recurrent Neural Network (RNN), serves 

as the primary AI model for the system. It discussed how to gather and handle a dataset on 

tomato growth. There were 400 and 200 elements in each of the training and test sets of 

the dataset that were used to train and test the LSTM model, respectively. Using Root 

Mean Square Error (RMSE) to evaluate the accuracy of the predictions for different 

periods, ranging from 30 minutes to 5 hours. The findings indicate a decent match to the 

ground truth, with RMSEs for the various solutions for the 5-hour prediction horizon 

ranging from 9 to 14. Using a typical Li-ion battery, the suggested embedded system with 

AI allows for 180 days of independent operation. It also makes intelligent monitoring 

applications possible in the field of agriculture. 

Anand et al.  [27] suggested an IoT and machine learning system to detect soil moisture 

and atmospheric components. It gathers information from temperature, rain, and moisture 

sensors using a Node MCU ESP8266 microcontroller. On the Thing Speak Cloud server, 

the information is stored. Machine learning algorithms were then utilized to predict the 

appropriate crop type based on the collected data. The farmer obtained pertinent 

information to help with decision-making on crop production. The suggested approach can 

help with crop production decision-making, boost productivity and efficiency, and 

improve agricultural activities. 
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Mahmoudzadeh et al. [28] employed machine learning techniques to digitally map soil 

organic carbon (SOC) in western Iran. There were five machine learning methods used: 

Support Vector Machines (SVM), k-nearest Neighbor (k-NN), Random Forests (RF), 

Cubist (CU), and Extreme Gradient Boosting (XGBoost). Predicted the spatial distribution 

of SOC in the western Iranian region of Kurdistan using 865 soil samples and 101 

auxiliary variables. The dataset included temperature readings from ten weather stations in 

Kurdistan and soil samples from the plow layer (0–30 cm). With an R2 of 0.60 and an 

RMSE of 0.35%, the RF algorithm had the best performance in predicting the spatial 

distribution of SOC. Machine learning techniques such as RF offer an unbiased and 

reliable approach for predicting soil properties, particularly for smaller datasets. 

Demonstrates how ML algorithms may be effectively applied to the large-scale mapping 

of SOC and their uncertainty in western Iran, an area characterized by a wide diversity of 

climate, land use, and topography features. 

Zhao et al.  [29] presented a proposal for an IoT-assisted Smart Farming Framework (IoT-

SFF) that utilizes geospatial analysis and big data analytics for smart irrigation and crop 

monitoring on an IoT platform. It also incorporates unmanned aerial vehicles (UAVs) for 

precision agriculture and field management. Discusses wireless sensors in IoT devices for 

various agricultural applications, including crop status, soil preparation, insect and pest 

detection, and irrigation scheduling. The simulation findings show that the proposed IoT-

SFF model improves the crop yield ratio by 92.4%, prediction ratio by 97.7%, accuracy 

ratio by 94.5%, average error by 38.3%, and low-cost rate by 34.4%. Using geospatial 

analysis and big data analytics in the IoT-SFF model allows for precise decision-making, 

reduced production costs, improved crop quality, and optimal resource utilization in smart 

agriculture. 

Pudumalar et al.  [30] proposed a recommendation system for precision agriculture using 

an ensemble model with majority voting technique, incorporating Random tree, Chi-

squared Automatic Interaction Detection (CHAID), K-Nearest Neighbor (K-NN), and 

Naive Bayes (NB) as learners. The method makes crop recommendations based on site-

specific criteria by utilizing research data on soil characteristics, soil types, and crop yield. 

Based on the farmers' soil needs, the recommendation system aims to offer farmers the 

best crop based on their soil requirements with a high degree of accuracy and efficiency. 

Precision agriculture has advantages like lower crop selection errors and higher yield. 
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Potential challenges, however, can include the requirement for reliable and up-to-data and 

the initial investment necessary to implement precision agriculture methods. The 

suggested model exhibits encouraging outcomes in precision and high-accuracy weed 

detection in crops. It might boost crop productivity and help with weed control in 

agriculture. 

Moso et al.  [31] suggested an ensemble anomaly detection method called Enhanced 

Locally Selective Combination in Parallel Outlier Ensembles (ELSCP). For analyzing 

temporal, spatial, and time-series data streams in smart agriculture. The process is applied 

to two case studies' harvest data including combine-harvester GPS traces and crop data. 

The methodology performs well with an Area Under the Curve of Precision-Recall score 

of 0.972, which is 58.7% better than the second-best method. Furthermore, there is a direct 

correlation between crop damage and 30% of the anomalies in the crop dataset. Finding 

the test instances nearest neighbors takes a lot of time, and performance in a 

multidimensional space can be improved, mainly if there are a lot of irrelevant attributes 

or features. 

Adkisson et al.[32], presented a proposal to include an unsupervised Autoencoder machine 

learning model for anomaly detection in smart farming. Data is encoded and decoded by 

the Autoencoder model, which ignores outliers and identifies anomalous data based on 

high reconstruction loss values. Data from a planned greenhouse test bed with several 

sensors in a smart farming setting was used to train and evaluate the model. The suggested 

Autoencoder model found anomalies in the smart farming data with a 98.98% accuracy 

rate. The propo9sed model has the advantage of having a high accuracy in anomaly 

detection and the ability to identify data discrepancies. However, the model takes a long 

time to train—262 seconds—while it takes a short time to detect—0.0585 seconds. 

Junaid et al. [33] proposed an intelligent cloud-based system for monitoring agriculture 

farms using IoT, where specialists and farmers evaluate stored and real-time data. 

Accurate data classification is achieved by applying AI-based machine learning models, 

including SVM. The system collects many data types in significant volumes from multiple 

sources, including text, images, video, audio, and digital maps. With competing smart 

farming baselines, the approach works well and achieves performance efficiency in 

execution time by 14%, throughput time by 5%, overhead time by 9%, and energy 

efficiency by 13.2%. By utilizing IoTs for remote farm monitoring, the suggested system 
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helps farmers improve their farming skills and have access to pre-disaster recovery 

information. The system offers specific and general information on international markets 

related to crops. 

Catalano et al. [34] introduced an Anomaly Detection System for smart agriculture using a 

multi-layered architecture that combines a multivariate linear regression (MLR) algorithm 

and a long-term memory neural network algorithm (LSTM). This helps the farmer make 

decisions that will optimize results in quantity and quality, prevent waste, and increase 

profits. The anomaly detection systems are applied to a real dataset from a smart 

agriculture system in the Apulia region of Italy. While the LSTM algorithm may identify 

anomalies on individual sensors, the MLR algorithm evaluates data correlations more 

effectively and with fewer computational resources. The combination of MLR and LSTM 

improves anomaly detection accuracy in the innovative agriculture system. Because it is 

more computationally intensive, the LSTM algorithm cannot correlate measurements from 

various sensors within the smart agricultural system. 

Cheng et al. [35] proposed a new anomaly detection model based on generative 

adversarial networks (GAN) with an attention mechanism for smart agricultural IoT time 

series data. The model captures temporal dependence and correlations between features by 

using a deep learning approach to learn the distribution patterns of standard data. An 

encoder-decoder structure enhances the model's performance in learning average data. A 

new reconstruction error calculation method is developed to assess point-wise difference 

and curve similarity errors. Three datasets related to smart agriculture, SWMRU, Home C, 

and KDDCUP99, are used to evaluate the proposed model. The proposed model achieves 

accurate anomaly detection with precision, recall, and F1 score higher than counterpart 

models, reaching 0.9351, 0.9625, and 0.9482, respectively. 

Murugamani et al. [8] introduced a machine learning technique for precision agriculture 

applications in the 5G-based Internet of Things. It uses image processing-based machine 

learning techniques, RF, SVM, and NB for detecting and classifying cotton leaf diseases. 

The suggested system also comprises soil sensing, a smartphone application, and a remote 

monitoring system to inform farmers. Makes use of data on cotton leaf diseases, soil 

condition, and plant development parameters. The SVM algorithm exhibits its 

effectiveness in detecting and controlling cotton leaf diseases, yielding the highest 

accuracy, 98.34, in recognizing a range of diseases. The proposed method makes accurate 
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disease detection, remote surveillance, and parameter control over agriculture possible. It 

lessens agricultural risks, promotes intelligent farming, and enhances farmer productivity. 

Bakthavatchalam et al.  [6] suggested an IoT framework for measurement and precision 

agriculture, using machine learning algorithms to predict crop recommendations, 

Multilayer perceptron rules-based classifier JRip, and decision table classifiers are the 

chosen classifiers for the classification. The classifiers' performance is evaluated, with a 

maximum model building time of 8.05s and an accuracy of 98.22%. The Kaggle database 

provided the dataset for the analysis, which included 2200 instances for 22 different crops. 

The dataset contains seven parameters: temperature, humidity, precipitation, pH, 

potassium, phosphorus, and nitrogen. Data gathering from large and remote farm areas is 

made possible by the proposed framework, which combines trending technology and 

agriculture measurements. Applying machine learning algorithms makes precision 

agriculture and accurate crop prediction possible. 

Kethineni et al. [36] proposed an IoT-based privacy-preserving anomaly detection model 

for smart agriculture, uses an enhanced deep learning framework based on privacy 

encoding, including an attention-based gated recurrent unit neural network model for 

intrusion detection and a sparse capsule-auto encoder for data encoding. The proposed 

model is compared with existing deep learning models using two public datasets. The 

performance of the proposed model is evaluated on the ToN-IoT dataset. The proposed 

model achieves an accuracy of 99.9%, recall of 99.7%, precision of 99.9%, and F1-score 

of 99.8%. The proposed model has advantages over other traditional deep learning models 

in terms of classification results, and it can ensure data privacy in Internet of Things-based 

agriculture. However, the model's operation and training necessitate significant 

computational resources, which can be costly and time-consuming. 

 

Sangeeta et al. [37] proposed a machine-learning approach to predict the crop with the 

highest yield in a given area by analyzing weather data such as temperature, humidity, 

rainfall, soil factors like PH and type, and historical crop-growing data. Based on the 

gathered dataset, the system creates a prediction model using a variety of machine-

learning approaches, including Random Forest, Polynomial Regression, and Decision 

Trees. Predicted accuracy is used to assess the models' correctness. The Polynomial 

Regression and Decision Tree models reach 88% and 74% testing accuracy, respectively,  
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 Table 1: Compersion of the Related Works 

Purpose Source of 

Dataset 

Accuracy Method Paper  

Early warning vegetable pest flea beetle. Camera 76.42% Semi-supervised 

learning 

(ISODATA) 

[17] 

Classify plant leaves disease Camera - KNN [18] 

Soil property monitoring and management 

drip irrigation 

Sensors 97% HWSAN [19] 

Distinguish weeds from crops Camera 99.5% CNN   &   (DN) [20] 

Introduce an un manned aerial vehicle 

(UAV)-based weed mapping system 

Camera 75% SVM & K-NN [21] 

Anomaly Detection: Identify the general 

data pattern, sensor anomalies, and sensor 

faults 

Sensors - k-means [23] 

Assessing agriculture land suitability Sensors 99% MLP [1] 

Smart water management Sensor 98.7% ESD method, 

WRKF filter, 

SVM 

[24] 

Finding accurate yield prediction Camera 98.9% hybrid MLR-

ANN 

[25] 

Provide a plant leaf growth dynamics in-

situ prediction and continuous 

Camera - (LSTM) & 

(RNN) 

[26] 

Predicate crop type based on soil moisture 

and atmospheric elements 

Sensors - Multiple Linear -

regression& K-

Means clustering 

[27] 

Soil Organic Carbon Prediction Sensors 99.7% Cubist, K-NN, 

Extreme Boost, 

SVM, RF 

[28] 

Smart irrigation and crop monitoring on an 

Internet of Things platform 

Benchmark 94.5% 

 

IoT-SFF with 

GIS analysis 

[29] 
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whereas the random forest model achieves training and testing accuracy of 97% and 85%,  

Increases crop productivity and decreases 

crop wrong choice 

Sensors 88%. Random tree, 

CHAID, K-NN, 

Naive Bayes 

[30] 

identification of anomalies that impact 

harvest efficiency 

Satellite 97.2% ELSCP [31] 

Anomaly detection due to device 

malfunction, accidental disruption, or  

intentional attacks 

Sensors 98.98% 

 

Unsupervised 

Autoencoder 

[32] 

Monitoring of agriculture farms Multi-

source 

87% SVM [33] 

Anomaly Detection in smart farming 

systems and reducing potential damage. 

Sensors - MLR & LSTM [34] 

Anomaly detection for brilliant agriculture 

time series data 

Sensors 93% Deep learning [35] 

Detecting and monitoring diseases 

affecting cotton leaves 

Sensors, 

Camera 

98.34% 

 

RF, SVM, NB [8]  

Control and detect cotton leaf diseases 

 

Sensors 98.22% 

 

MLP, JRIP, 

Decision table 

[6] 

Anomaly detection for  privacy-preserving Sensors 99.9% Deep learning [36] 

Analyzing a variety of climatic elements to 

predict the best crop in a given area 

Sensors 97% 

88%, 

68% 

Random forest 

Polynomial 

regression 

Decision Tree 

[37] 

Crop analysis and preiction Sensors 99.59% Bayes Net, 

Naive Bayes 

Classifier, 

Hoeffding Tree, 

RF, Multilayer 

Neural Network 

[38] 

Weed identification Camera 92.89% K-means, CNN [39] 
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respectively. Farmers may be able to increase their production by using the suggested 

system to predict crop yields more accurately. The overfitting problem of decision trees is 

overcome by ensemble models such as random forests, leading to promising results. 

 

Elbasi et al. [38] proposed applying various machine learning algorithms with different 

features for crop analysis. The Bayes Net, Naive Bayes Classifier, Hoeffding Tree, 

Random Forest, and Multilayer Neural Network algorithms were among the carefully 

selected due to their characteristics and capabilities. Several features, including the ratio of 

nitrogen content (N), temperature, soil pH, rainfall, humidity, the ratio of phosphorus 

content (K), and the ratio of potassium content (P), are included in the dataset, which was 

gathered from the crop recommendation database. The Bayes Net algorithm achieved a 

classification accuracy of 99.59%, followed by the Naïve Bayes Classifier and Hoeffding 

Tree algorithms with 99.46% accuracy. Increasing crop yields, decreasing waste, 

optimizing crop production, and minimizing farm costs are all possible by integrating 

machine learning algorithms in agriculture. Farmers may make better decisions about the 

factors influencing crop growth by analyzing a wide range of data gathered from farms 

and integrating online IOT sensor data. 

 

Tang et al. [39] proposed a weed identification model that combines K-means feature 

learning with a Convolutional Neural Network (CNN). The random initialization of CNN 

weights is replaced by a pre-training process called K-means unsupervised feature 

learning, which enables more reasonable parameter values before optimization. Soybean 

seedlings and the weeds that grow beside them are the main objects of the study. 92.89% 

accuracy was attained by the suggested strategy, higher than CNN with random 

initialization by 1.82% and a two-layer network without fine-tuning by 6.01%. The 

technique improves the accuracy of weed identification by overcoming unstable 

identification and weak generalization in feature extraction. 

 

3. Datasets in smart agriculture 

A critical aspect of smart agriculture is using datasets to train machine learning models for 

weed detection, crop yield prediction, and disease diagnosis. These datasets can be 

collected from various sources, such as IoT sensors, satellite imagery, and manual data 
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collection as shown in Table 2. Machine learning models can then be trained on these 

datasets to make predictions and provide insights to farmers. Using datasets in smart 

agriculture is crucial for improving crop management and increasing efficiency in the 

agricultural industry [40].   For example, a GPS dataset. These datasets provide valuable 

logistics data that aid farmers in making informed decisions and enhancing the efficiency 

of their operations. For instance, GPS data from a farm in Colorado, USA, was collected 

using an Android application during the wheat harvesting seasons of 2014, 2016, 2017, 

2018, and 2019. The dataset comprises raw GPS data organized into two zip packages, 

along with some post-processing results. By automatically extracting current, high-level 

knowledge from GPS recordings, this method enables farmers to make superior logistical 

decisions. 

 The Janatahack Machine Learning in Agriculture dataset is a set of data to apply 

machine learning algorithms to improve agriculture's effectiveness and efficiency. 

Information on different crops, soil types, and weather conditions are all included in the 

dataset. The portals Kaggle and Analytics Vishay offer the dataset. This dataset is a part of 

the broader "smart farming" movement, which aims to incr 

+ease agriculture's effectiveness and efficiency by applying high-precision algorithms. 

The dataset includes the following: Unique ID, estimated number of insects per square 

meter, crop and soil categories (0,1), type of pesticides used, number of doses per week, 

number of weeks used, number of weeks not used, season category (1,2,3), and crop  

damage category. 

Crop Recommendation dataset, a dataset that, based on several parameters, would 

enable users to build a predictive model that recommends suitable crops to grow on a 

specific farm. The rainfall, temperature, and fertilizer data sets currently available for 

India were supplemented to create this dataset. The crop recommendation includes 

parameters necessary for crop prediction, such as temperature, humidity, average rainfall, 

soil pH, nitrogen need ratio, potassium requirement ratio, and phosphorous requirement 

ratio. The V2 plant seedlings dataset contains 5,539 images of crop and weed seedlings. 

The images are divided into 12 classes. In Danish agriculture, these classes represent 

common plant species. RGP photos of plants at various stages of growth are included in 

each Class. The images are in PNG format and come in different sizes. Pest datasets: 

Images of diverse insects taken at various locations are included in this dataset. In many 
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cases, insects blend in with the crop, making it hard to tell them apart. Hence, identifying 

pests or even other use cases requiring pest detection can be accomplished using this 

information. There are insects and crops in this dataset.300 training and 50 testing photos 

are included in the dataset. 

 

Data from Quality-Controlled Research Weather Data, USDA-ARS Bushland, 

Texas, Data on 15-minute me a weather from the USDA-ARS Conservation and 

Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU)  

research weather station in Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, 

elevation 1170 m above MSL) for every day in 2016 is included in the dataset. These data  

come from sensors deployed at standard heights over grass irrigated and mowed during the 

growing season to reference evapotranspiration standards. Sensors are replicated at every 

height. Using appropriate regression relationships, data from a duplicate sensor can fill in 

gaps in the primary sensor's data. Sensors deployed at one of the four sizable weighing 

lysimeters immediately west of the weather station can also fill in gaps. The weather data 

includes precipitation, wind speed (m/s), sun irradiance (W m-2), air temperature (C), and 

relative humidity (%). The 15-minute precipitation data for each lysimeter are derived 

from changes in mass because the large (3 m by 3 m surface area) weighing lysimeters are 

better rain gages than tipping bucket gages. The land slope is <1% and flat. Winds are 

usually from the South and Southwest, and the 20-year pan evaporation record indicates 

about 2,600 mm of Class A pan evaporation annually. The mean annual precipitation is 

approximately 470 mm. The region has a semi-arid climate with May through September, 

around 70% (350 mm) of the yearly precipitation and an average of ~1520 mm of pan 

evaporation. 

Soil Sensor Readings 

TON_IoT datasets: The TON_IoT datasets are the new generations of (IoT) and 

Industrial IoT (IIoT) datasets designed to assess the accuracy and efficacy of various AI-

based cybersecurity applications. Because the datasets contain heterogeneous data, they 

have been called ToN_IoT. Gathered from a large-scale, realistic network created at the 

Australian Defense Force Academy (ADFA), the School of Engineering and Information 

Technology (SEIT), UNSW Canberra, and the IoT Lab. This dataset comprises a range of 

recent attack cases found in IoT environments, such as Ransomware, Backdoors, Man-in-
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the-Middle (MITM), Distributed Denial of Service (DDoS), Denial of Service (DoS), 

injection, passwords, scanning, Cross-Site Scripting (XSS), and injection. This dataset 

consists of 43 labeled features, an average vector, and nine different types of attacks. 

These characteristics are employed in the smart agriculture attack detection process. 

BoT-IoT dataset: In UNSW Canberra's Cyber Range Lab, a realistic network environment 

was designed to create the BoT-IoT dataset. Both regular and botnet traffic were present in 

the network environment. The source files for the dataset are available in different 

formats, including CSV files, generated Argus files, and original Packet Capture (Pcap) 

files. The files were divided into subcategories and attack categories to aid in the labeling 

procedure. The 69.3 GB collected Pcap files include almost 72.000.000 records. The 

extracted flow traffic has a size of 16.7 GB in CSV format. DDoS, DoS, Operating System 

(OS), Service Scan, Keylogging, and Data exfiltration attacks are all included in the 

dataset. The DDoS and DoS attacks are further organized according to the protocol. 

Eighty-eight tagged features, four alternative attack types and a standard vector are all 

included in this dataset. This dataset has fifty thousand data points for testing and forty 

thousand data points for training. 
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Table 2: Details of the Agricultural Datasets 

 

 

 

 

 

Dataset name Link Records Public Features 

GPS dataset PURR - Publications: Combine Kart Truck GPS Data 

Archive (purdue.edu) 

- No 7 

The Janatahack https://datahack.analyticsvidhya.com/contest/janataha

ck-machine-learning-in-agriculture/#DiscussTab 

- No 10 

Crop 

recommendation 

Crop Recommendation Dataset (kaggle.com) 2200  Yes 7 

V2 plant seedlings V2 Plant Seedlings Dataset (kaggle.com) 4823 Yes 9 

Pest datasets https://www.kaggle.com/simranvolunesia/pest-

dataset 

3150 Yes 9 

Weather Data https://catalog.data.gov/%20dataset/data-from-

quality-controlled-research-weather-data-usda-ars-

bushland-texas 

35139 Yes 13 

TON_IoT datasets ToN_IoT datasets | IEEE DataPort (ie-dataport.org) 378,782 Yes 34 

BoT-IoT dataset The Bot-IoT Dataset | UNSW Research 50000 Yes 46 

Plant Village dataset https://www.kaggle.com/datasets/emmarex/plantdise

ase 

54,305 

images 

Yes - 

Soil Sensor 

Readings 

 

https://data.melbourne.vic.gov.au/explore/dataset/soil

-sensor-readings-historical-data/information/ 

2,060,917 Yes 24 
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4. Challenges of AI applications in smart agriculture 

The integration of Artificial Intelligence (AI) in smart agriculture has shown significant 

promise in enhancing crop yields, optimizing resource utilization, and improving overall 

agricultural efficiency. However, several challenges persist in the widespread adoption 

and effective implementation of AI in this domain. Here are some of the key challenges 

[41]. 

 

• Data Quality and availability: Effective AI systems require vast amounts of 

high-quality data. In agriculture, obtaining such data can be difficult due to the 

variability in environmental conditions, crop types, and farming practices. 

Inconsistent or incomplete data can hinder the accuracy and reliability of AI 

models [42]. The availability of data is another significant challenge. Agricultural 

data is often scattered across various sources, and integrating these sources can be 

complex and time-consuming. 

• Cost and accessibility: The implementation of AI technologies can be expensive, 

involving the cost of advanced equipment, software, and training. Small and 

medium-sized farms may find it challenging to afford these initial investments. 

Ensuring the accessibility of affordable AI tools and technologies to farmers of all 

scales is crucial to avoid creating a technological divide in agriculture [43]. 

• Lack of Technical Expertise: The deployment and maintenance of AI systems 

require specialized knowledge and skills. Many farmers may lack the technical 

expertise needed to operate these systems effectively. This gap necessitates 

comprehensive training and support services, which can be resource-intensive[44]. 

• Scalability Issues: AI solutions developed for one type of crop or farming practice 

may not easily scale to others due to the specific requirements and conditions of 

different agricultural sectors. Customizing AI applications for various contexts can 

be time-consuming and expensive [45]. 

• Environmental Variability: Agricultural environments are highly dynamic and 

influenced by numerous factors such as weather, soil conditions, and pest 

populations. AI systems must be robust enough to handle this variability and 

provide reliable recommendations under changing conditions [45]. 
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5. Challenges in IoT-Based Agricultural Systems 
 

• Concerns on Cost: The price of implementing IoT in agriculture can be broken 

down into development and maintenance costs and hardware and software costs, 

including the cost of purchasing devices and sensors. Reducing system costs and 

development and maintenance expenses are critical since farmers need help 

implementing IoT technology due to the high cost of hardware and software. 

Energy management is also crucial to making IoT-based innovative agriculture 

applications more sustainable; exploring energy harvesting solutions, including 

solar, wind, and biomass, can help [46]. 

 

• Concerns on the system: Agriculture systems must adapt to various 

environmental conditions, but hardware problems and environmental changes 

might compromise real-time data accuracy. To lessen the impact of climatic 

fluctuations in agricultural systems, sophisticated cloud detection and atmospheric 

correction techniques are essential. In agriculture systems, hierarchical architecture 

is more efficient for large-scale deployment than flat network architecture, and 

platforms and solutions should be more accessible to farmers. To prevent post-

deployment losses, real-time analysis is essential before system deployment [46]. 

• Concerns on Data: Since incorrect readings can significantly reduce system 

reliability, reliability is a crucial problem for IoT devices regarding data 

transmission. System failures, battery issues, and other interventions are challenges 

to data integrity. Another issue is data storage because sensors produce data 

continuously and need a lot of resources for analysis. The need for more storage 

leads to the development of sophisticated software platforms and facilities for the 

scalable management of significant data sources. An Internet of Things (IoT)-

based agriculture system may cause various faults, making fault tolerance crucial 

for wireless sensor networks [46]. 

• Concerns on devices: Device standardization is critical for widespread technology 

use, yet more standard formats for data processing need to be developed, resulting 

in different outputs and interoperability issues. The development of 5G networks 

enables faster connectivity between devices and servers, making it perfect for 

sending information from remote sensors and meeting users' requirements for 
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secure and rapid data transfer. Lack of interoperability in smart agriculture inhibits 

the adoption of new technology and reduces crop productivity, emphasizing the 

significance of integrating diverse machine communication standards and 

maintaining equipment availability in various environments [46]. 

 

6. Challenges related to the usage of ML in agriculture  

 

• Interpretability: It can be challenging to analyze the outcomes of machine 

learning models, especially when those models employ complicated deep learning 

approaches. Farmers may need help understanding the elements in predicting a 

particular crop or recommendation [47]. 

• Accessibility: Accessing the hardware and software infrastructure needed for 

creating and implementing ML models in situations with restricted resources may 

be challenging [47]. 

• Privacy and security: These worries are related to gathering, storing, and utilizing 

sensitive agriculture data. Maintaining security and privacy while permitting 

access to the data for machine learning research can be difficult [47]. 

• Human factors: Farmers and other interested parties could require more time to 

be ready to adopt new methods and technological advancements like machine 

learning-based systems. Technology must be made accessible, easy to use, and 

capable of offering significant advantages to be employed more extensively [47]. 

 

7. Conclusion 

In summary, the survey emphasizes how new technologies, like smart agriculture, are 

changing farming to meet the growing demand for food as the global population increases. 

Traditional farming methods are being replaced by smart agriculture, which uses advanced 

technologies such as the IoT and AI to make farming more efficient and effective. AI 

helps farmers make better decisions and accurately manage crops, especially machine 

learning. The survey discusses how smart agriculture is being used to monitor crops, 

detect problems, and improve farm security. While these advancements offer great 

promise, challenges still need to be addressed for smart agriculture to reach its full 
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potential. Overall, the survey sheds light on the exciting changes in agriculture and the 

opportunities and obstacles that come with them. 
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