DOI: https://doi.org/10.32792/jeps.v14i3.544

Some New Results on Partial Fuzzy Metric Spaces

Amenah Kareem Yousif^{2*}, Mohammed Jassim Mohammed¹

1 Department of Mathematics, College of Sciences, University of Basrah, Iraq

2 Department of mathematics, College of Education for pure Sciences, University of Thi-Qar, Iraq

*Corresponding email: amenahkareem9@gmail.com

Received 02 /06/2024, Accepted 09/07/2024, Published 01/09/2024

This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract

In this work, we introduce a different interpretation of the notion of a partial fuzzy metric, which we refer to as a partial fuzzy co-metric. We define a partial fuzzy co-metric from a t-conorm and compare it with partial fuzzy metric, in contrast to the conventional approach to the theory of partial fuzzy metric spaces, which is based on the use of a t-norm. Here, we limit the scope of our analysis to Sedghi's definition of partial fuzzy metrics. Additionally, we proposed and compared the ideas of strong partial fuzzy co-metric spaces and strong partial fuzzy metric spaces. We also presented a few examples of these novel ideas.

Keywords: Partial fuzzy co-metric spaces, strong partial fuzzy metric spaces, strong Partial fuzzy co-metric space, t-conorm.

1. Introduction

The idea of fuzzy sets was initiated by Zadeh [1] in 1965, and topological researchers have been studying multiple versions of fuzzy metric spaces. This metric were introduced by Kramosi and Michalek specifically in 1975 [2]. A more robust concept than fuzzy metric was presented by George and Veeramani [3]. In 1994, Matthews [4] presented the concept of a partial metric, a generalized metric that has not always

zero self-distance. Numerous writers have contributed to the study of partial metric space from a mathematical perspective since the definition of this notion (see, for example [5]-[7]). Furthermore, technical applications like color image filtering (see [8]) and perceptual color difference (see [9] and [10]) have effectively employed fuzzy metrics. The concept of partial fuzzy metric spaces was introduced in recent years by Yue and Gu [11], Sedghi et al. [12], and Gregori et al. [13] in several interpretations to combine the two aforementioned generalizations of classical metric, partial metric and fuzzy one into a single idea. In order to make the distance more closely align with the concept of a metric.

In 2012, Noori F. AL-Mayhi and I. H. Radhi [14] introduced the fuzzy metric that is built on t-conorm depending the fuzzy metric that is built upon t-norm. Olga G. et al., in 2020, defined a fuzzy metric in [15] so that the distance better corresponded to the concept of a metric. This update makes use of a t-conorm rather than a t-norm.

In this work, we evaluate the idea of partial fuzzy co-metric space by employing the t-conorm instead of the t-norm in the sense of Sedghi's definition of partial fuzzy metric space. In addition, we defined the terms strong partial fuzzy and strong partial fuzzy co-metric. Furthermore, we provided some examples of these new concepts.

2. Preliminaries

In this section, we define the previous and basic definitions and properties. We will consider that [0,1]=K throughout this paper.

Definition 2.1 [4] Let $\hbar: \Theta \times \Theta \to R^+$ be a mapping on a nonempty set Θ , the pair (Θ, \hbar) is said to be partial metric space if \hbar satisfies the following conditions for all $\kappa, \varpi, \alpha \in \Theta$,

- 1. $\hbar(\kappa, \kappa) \leq \hbar(\kappa, \varpi)$,
- 2. $\hbar(\kappa,\kappa) = \hbar(\kappa,\varpi) = \hbar(\varpi,\varpi)$ if and only if $\kappa = \varpi$,
- **3.** $\hbar(\kappa, \varpi) = \hbar(\varpi, \kappa)$,
- **4.** $\hbar(\kappa, \alpha) \leq \hbar(\kappa, \varpi) + \hbar(\varpi, \alpha) \hbar(\varpi, \varpi)$.

Remark 2.2 [4] In partial metric space if $\hbar(\kappa, \varpi) = 0$, then $\kappa = \varpi$ for all $\kappa, \varpi \in \Theta$, but the converse is not true. If $\hbar(\kappa, \kappa) = 0$, then the partial metric \hbar is an ordinary metric on Θ .

Example 2.3 [4] Let $\hbar: R^+ \times R^+ \to R^+$ be a mapping defined as $\hbar(\kappa, \varpi) = max \{\kappa, \varpi\}$ for each $\kappa, \varpi \in R^+$, then (R^+, \hbar) is an partial metric space.

Definition 2.4 [16]: Let $\circ: K \times K \to K$ be a binary operation, we say that \circ is a continuous t-norm if it satisfies the axioms:

- **1.** $\xi \circ \eta = \eta \circ \xi$, $\forall \xi, \eta \in K$,
- **2.** $(\xi \circ \eta) \circ \rho = \xi \circ (\eta \circ \rho), \ \forall \xi, \eta, \rho \in K$,
- 3. is continuous,
- **4.** $\xi \circ 1 = \xi \ \forall \xi \in K$,
- **5.** $\xi \circ \eta \leq v \circ \rho$ whenever $\xi \leq v$ and $\eta \leq \rho$, $\forall \xi, \eta, v, \rho \in K$.

Examples 2.5 [16]:

 $\xi \circ \eta = \xi \cdot \eta$, $\xi \circ \eta = min\{\xi, \eta\}$ are continuous t-norms.

Definition 2.6 [16]: Let $\bigcirc: K \times K \to K$ be a binary operation, we say that \bigcirc is a continuous t-conorm if it is satisfies the axioms:

- **1.** $\xi \odot \eta = \eta \odot \xi$, $\forall \xi, \eta \in K$,
- **2.** $(\xi \odot \eta) \odot \rho = \xi \odot (\eta \odot \rho), \forall \xi, \eta, \rho \in K$
- **3.** ⊙ is continuous,
- **4.** $\xi \odot 0 = \xi \quad \forall \xi \in K$,
- **5.** $\xi \odot \eta \le v \odot \rho$ whenever $\xi \le v$ and $\eta \le \rho$, for all $\xi, \eta, v, \rho \in K$.

Examples 2.7 [16]:

 $\xi \odot \eta = \xi + \eta - \xi \eta$, $\xi \odot \eta = max \{\xi, \eta\}$ and $\xi \odot \eta = \xi + \eta$ are examples of continuous t-conorms.

Definition 2.8 [16]: Let \circ is t-norm and \odot is t-conorm. \circ and \odot are said to be dual if satisfying the following axioms:

- 1. $\xi \circ \eta = 1 ((1 \xi) \odot (1 \eta))$ for all $\xi, \eta \in K$.
- **2.** $\xi \odot \eta = 1 ((1 \xi) \circ (1 \eta))$ for all $\xi, \eta \in K$.

Definition 2.9 [3] A fuzzy metric space (F.M.S for simply) is a triple (θ, L, \circ) , if θ is a nonempty set, \circ is continuous t-norm and $L: \theta^2 \times (0, \infty) \to K$ is a F.S. satisfying the conditions, $\forall \kappa, \varpi, \alpha \in \theta$ and s, t > 0,

- 1. $L(\kappa, \varpi, t) > 0$
- 2. $L(\kappa, \varpi, t) = 1 \iff \kappa = \varpi$,
- 3. $L(\kappa, \overline{\omega}, t) = L(\overline{\omega}, \kappa, t)$

- **4.** $L(\kappa, \alpha, t + s) \ge L(\kappa, \varpi, t) \circ L(\varpi, \alpha, s)$,
- **5.** The map $L(\kappa, \varpi, t): (0, \infty) \to K$ is continuous.

Definition 2.10 [4]: Let $\theta \neq \emptyset$, \circ is a continuous t-norm and $R_{\hbar}: \theta \times \theta \times (0, \infty) \to K$ be a mapping. The triple $(\theta, R_{\hbar}, \circ)$ is said to be fuzzy partial metric space (P.F.M.S for simply) if R_{\hbar} satisfy the following conditions for all $\kappa, \varpi, \alpha \in \theta$ and t, s > 0:

- **1.** $R_{\hbar}(\kappa, \varpi, t) = R_{\hbar}(\kappa, \kappa, t) = R_{\hbar}(\varpi, \varpi, t)$ if and only if $\kappa = \varpi$,
- 2. $R_{\hbar}(\kappa, \kappa, t) \ge R_{\hbar}(\kappa, \varpi, t) > 0$,
- 3. $R_{\hbar}(\kappa, \varpi, t) = R_{\hbar}(\varpi, \kappa, t)$,
- **4.** $R_{\hbar}(\kappa, \varpi, max\{t, s\}) \circ R_{\hbar}(\alpha, \alpha, max\{t, s\}) \ge R_{\hbar}(\kappa, \alpha, t) \circ R_{\hbar}(\alpha, \varpi, s),$
- **5.** $R_{\hbar}(\kappa, \varpi, .)$ is continuous on $(0, \infty)$.

3. Main results

In this section, we defined some new definition of strong P.F.M.S, P.F.co-metric, strong P.F.co-metric and introduced some examples for these definitions.

Definition 3.1: Let (Θ, R_h, \circ) be a P.F.M.S, if R_h satisfies the additional condition for the definition **2.10**.

(6) $R_{\hbar}(\kappa, \alpha, t) \circ R_{\hbar}(\varpi, \varpi, t) \ge R_{\hbar}(\kappa, \varpi, t) \circ R_{\hbar}(\varpi, \alpha, t)$, then $(\Theta, R_{\hbar}, \circ)$ is said to be strong P.F.M.S.

Example 3.2: Let $\theta = R^+$, $\xi \circ \eta = \xi \cdot \eta$ for all $\xi, \eta \in K$ and $R_h : \theta \times \theta \times (0, \infty) \to K$ defined by

 $R_{\hbar}(\kappa, \varpi, t) = \frac{\{\kappa, \varpi\} + t}{\{\kappa, \varpi\} + t}$, for all $\kappa, \varpi \in X$, t > 0, then (X, R_{\hbar}, \circ) is strong P.F.M.S.

Solution:

1) If
$$\kappa = \varpi$$
, then $\{\kappa, \varpi\} = \{\kappa, \varpi\}$, $\frac{\{\kappa, \varpi\} + t}{\{\kappa, \varpi\} + t} = 1$

Therefore,

$$R_{\hbar}(\kappa, \kappa, t) = R_{\hbar}(\kappa, \varpi, t) = R_{\hbar}(\varpi, \varpi, t) = 1.$$

If
$$R_{\hbar}(\kappa, \kappa, t) = R_{\hbar}(\kappa, \omega, t) = R_{\hbar}(\omega, \omega, t)$$

Since
$$R_{\hbar}(\kappa, \kappa, t) = R_{\hbar}(\varpi, \varpi, t) = 1$$
, then $R_{\hbar}(\kappa, \varpi, t) = 1$

$$\Rightarrow \{\kappa, \varpi\} = \{\kappa, \varpi\}$$
, that is $\kappa = \varpi$

2) Since $R_{\hbar}(\kappa, \kappa, t) = 1$, and $R_{\hbar}(\kappa, \varpi, t) \le 1$ for all $\kappa, \varpi \in X$,

 $R_{\hbar}(\kappa, \omega, t) \leq R_{\hbar}(\kappa, \kappa, t)$

- **3**) Clearly $R_{\hbar}(\kappa, \varpi, t) = R_{\hbar}(\varpi, \kappa, t)$.
- **4)** To prove the condition (4), for all $\kappa, \varpi, \alpha \in \Theta = \mathbb{R}^+$, t, s > 0, we have 6 cases:

case1: If $\kappa < \varpi$, $\kappa < \alpha$ and $\varpi > \alpha$,

$$R_{\hbar}(\kappa, \varpi, \max\{t, s\}) \circ R_{\hbar}(\alpha, \alpha, \{t, s\}) = \frac{\kappa + \{t, s\}}{\varpi + \{t, s\}} \cdot 1 > \frac{\kappa + t}{\alpha + t} \cdot \frac{\alpha + s}{\varpi + s} = R_{\hbar}(\kappa, \alpha, t) \circ R_{\hbar}(\alpha, \varpi, s).$$

case 2: If $\kappa < \omega$, $\kappa < \alpha$ and $\omega < \alpha$,

$$R_{\hbar}(\kappa, \varpi, \max\{t, s\}) \circ R_{\hbar}(\alpha, \alpha, \{t, s\}) = \frac{\kappa + \{t, s\}}{\varpi + \{t, s\}} \cdot 1 > \frac{\kappa + t}{\alpha + t} \cdot \frac{\varpi + s}{\alpha + s} = R_{\hbar}(\kappa, \alpha, t) \circ R_{\hbar}(\alpha, \varpi, s).$$

case 3: If $\kappa < \varpi$, $\kappa > \alpha$ and $\varpi > \alpha$,

$$R_{\hbar}(\kappa, \varpi, \max\{t, s\}) \circ R_{\hbar}(\alpha, \alpha, \{t, s\}) = \frac{\kappa + \{t, s\}}{\varpi + \{t, s\}} \cdot 1 > \frac{\alpha + t}{\kappa + t} \cdot \frac{\alpha + s}{\varpi + s} = R_{\hbar}(\kappa, \alpha, t) \circ R_{\hbar}(\alpha, \varpi, s).$$

case 4: If $\kappa > \varpi$, $\kappa < \alpha$ and $\varpi < \alpha$,

$$R_{\hbar}(\kappa, \varpi, \max\{t, s\}) \circ R_{\hbar}(\alpha, \alpha, \{t, s\}) = \frac{\varpi + \{t, s\}}{\kappa + \{t, s\}} \cdot 1 > \frac{\kappa + t}{\alpha + t} \cdot \frac{\varpi + s}{\alpha + s} = R_{\hbar}(\kappa, \alpha, t) \circ R_{\hbar}(\alpha, \varpi, s\}).$$

case 5: If $\kappa > \varpi$, $\kappa > \alpha$ and $\varpi > \alpha$,

$$R_{\hbar}(\kappa, \varpi, \max\{t, s\}) \circ R_{\hbar}(\alpha, \alpha, \{t, s\}) = \frac{\varpi + \{t, s\}}{\kappa + \{t, s\}} \cdot 1 > \frac{\alpha + t}{\kappa + t} \cdot \frac{\alpha + s}{\varpi + s} = R_{\hbar}(\kappa, \alpha, t) \circ R_{\hbar}(\alpha, \varpi, s).$$

case 6: If $\kappa > \omega$, $\kappa > \alpha$ and $\omega < \alpha$,

$$R_{\hbar}(\kappa,\varpi,\max\{t,s\})\circ R_{\hbar}(\alpha,\alpha,\{t,s\}) = \frac{\varpi+\{t,s\}}{\kappa+\{t,s\}}. \\ 1 = \frac{\alpha+t}{\kappa+t}.\frac{\varpi+s}{\alpha+s} = R_{\hbar}(\kappa,\alpha,t)\circ R_{\hbar}(\alpha,\varpi,s).$$

Therefore, for all cases, we deduce that the condition (4).

- 5) $R_{\hbar}(\kappa, \varpi, .): (0, \infty) \to K$ is continuous.
- **6)** By the same way of proof of condition (4).

Therefore, $(\Theta, R_{\hbar}, \circ)$ is strong P.F.M.S.

Theorem 3.3: Let $\Theta \neq \emptyset$, , \circ be a continuous t-norm such that $\xi \circ \eta \geq \xi \circ v$ whenever $\eta \geq v$ for all $\xi, \eta, v \in K$, then $R_{\hbar}: \Theta^2 \times (0, \infty) \to K$ is strong P.F.M function iff it is satisfy the conditions for all $\kappa, \varpi, \alpha \in \Theta, t > 0$,

- 1) $R_{\hbar}(\kappa, \varpi, t) = R_{\hbar}(\kappa, \kappa, t) = R_{\hbar}(\varpi, \varpi, t)$ if and only if $\kappa = \varpi$,
- 2) $R_{\hbar}(\kappa, \kappa, t) \geq R_{\hbar}(\kappa, \omega, t)$,
- 3) $R_{\hbar}(\kappa, \varpi, t) \circ R_{\hbar}(\alpha, \alpha, t) \ge R_{\hbar}(\kappa, \alpha, t) \circ R_{\hbar}(\varpi, \alpha, t)$,
- 4) $R_{\hbar}(\kappa, \varpi, ...)$ is continuous on $(0, \infty)$.

Proof: The first direction from the definition.

To prove the second direction, we consider the conditions hold.

The conditions of strong P.F.M 1,2 and 5 satisfy from 1, 2 and 4, the condition 3,

$$R_{\hbar}(\kappa, \varpi, t) = R_{\hbar}(\kappa, \varpi, t) \circ 1 \ge R_{\hbar}(\kappa, \varpi, t) \circ R_{\hbar}(\kappa, \kappa, t) \ge R_{\hbar}(\kappa, \kappa, t) \circ R_{\hbar}(\varpi, \kappa, t)$$

$$\Rightarrow R_{\hbar}(\kappa, \varpi, t) \ge R_{\hbar}(\varpi, \kappa, t) \dots (1)$$

Also,
$$R_{\hbar}(\varpi, \kappa, t) \ge R_{\hbar}(\varpi, \kappa, t) \circ R_{\hbar}(\varpi, \varpi, t) \ge R_{\hbar}(\varpi, \varpi, t) \circ R_{\hbar}(\kappa, \varpi, t)$$

$$\Rightarrow R_{\hbar}(\varpi, \kappa, t) \ge R_{\hbar}(\kappa, \varpi, t) \dots (2)$$

From (1) and (2), we have $R_{\hbar}(\kappa, \omega, t) = R_{\hbar}(\omega, \kappa, t)$

Now, from (3)
$$R_{\hbar}(\kappa, \varpi, t) \circ R_{\hbar}(\alpha, \alpha, t) \ge R_{\hbar}(\kappa, \alpha, t) \circ R_{\hbar}(\varpi, \alpha, t)$$

$$\geq R_{\hbar}(\kappa,\alpha,t) \circ R_{\hbar}(\alpha,\varpi,t)$$

To prove the condition (4), let s, t > 0, from (3)

 $R_{\hbar}(\kappa, \varpi, \max\{t, s\}) \circ R_{\hbar}(\alpha, \alpha, \{t, s\}) \ge R_{\hbar}(\kappa, \alpha, \max\{t, s\}) \circ R_{\hbar}(\varpi, \alpha, \max\{t, s\}) \ge R_{\hbar}(\kappa, \alpha, t) \circ R_{\hbar}(\alpha, \varpi, s).$

Therefore, R_h is strong P.F.M.

Definition 3.4: Let $\theta \neq \emptyset$, \odot be a continuous t-conorm. A mapping $CR_{\hbar}: \theta^2 \times (0, \infty) \to K$ is called a partial fuzzy co-metric (P.F.co-M) on θ if CR_{\hbar} satisfy the axioms, for all $\kappa, \varpi, \alpha \in \theta$ and t, s > 0,

- 1) $CR_{\hbar}(\kappa, \varpi, t) = CR_{\hbar}(\kappa, \kappa, t) = CR_{\hbar}(\varpi, \varpi, t)$ if and only if $\kappa = \varpi$,
- 2) $CR_{\hbar}(\kappa, \kappa, t) \leq CR_{\hbar}(\kappa, \omega, t)$,
- 3) $CR_{\hbar}(\kappa, \varpi, t) = CR_{\hbar}(\varpi, \kappa, t)$.
- 4) $CR_{\hbar}(\kappa, \varpi, \max\{t, s\}) \odot CR_{\hbar}(\alpha, \alpha, \max\{t, s\}) \leq CR_{\hbar}(\kappa, \alpha, t) \odot CR_{\hbar}(\alpha, \varpi, s)$,
- 5) $CR_{\hbar}(\kappa, \varpi, .): (0, \infty) \to K$ is continuous.

Lemma 3.5: $CR_{\hbar}(\kappa, \varpi, .)$ is non-increasing with respect to t for all $\kappa, \varpi \in \Theta, t > 0$, if the continuous t-conorm \odot satisfy the condition, for all $\xi, \eta, v \in K, \xi \odot \eta \leq \xi \odot v \Longrightarrow \eta \leq v$.

Proof:

From (4) of definition 3.4 for all κ , ω , $\alpha \in \Theta$ and s, t > 0, we have

$$CR_{\hbar}(\kappa, \varpi, max \{t, s\}) \odot CR_{\hbar}(\alpha, \alpha, max \{t, s\}) \leq CR_{\hbar}(\kappa, \alpha, t) \odot CR_{\hbar}(\alpha, \varpi, s)$$

Let t < s, then taking $\alpha = \omega$,

$$CR_{\hbar}(\kappa, \varpi, s) \odot CR_{\hbar}(\varpi, \varpi, s) \leq CR_{\hbar}(\kappa, \varpi, t) \odot CR_{\hbar}(\varpi, \varpi, s)$$

$$\Rightarrow CR_{\hbar}(\kappa, \varpi, s) \leq CR_{\hbar}(\kappa, \varpi, t)$$
 by condition.

Then $CR_{\hbar}(\kappa, \varpi, ...)$ is non-increasing.

Example 3.6: Let (Θ, \hbar) be a P.M.S. Denote $\xi \odot \eta = \xi + \eta$ for all $\xi, \eta \in K$ and let $CR_{\hbar} = \frac{\hbar(\kappa, \varpi)}{\hbar(\kappa, \varpi) + t}$, then $(\Theta, CR_{\hbar}, \odot)$ is a P.F.co-M.S and we call that P.F. co-M induced by P.M \hbar as the standard P.F. co-M. **proof**:

- 1) $\kappa = \varpi \Leftrightarrow \hbar(\kappa, \kappa) = \hbar(\kappa, \varpi) = \hbar(\varpi, \varpi)$ $\Leftrightarrow \frac{\hbar(\kappa, \kappa)}{\hbar(\kappa, \kappa) + t} = \frac{\hbar(\kappa, \varpi)}{\hbar(\kappa, \varpi) + t} = \frac{\hbar(\varpi, \varpi)}{\hbar(\varpi, \varpi) + t}$ $\Leftrightarrow CR_{\hbar}(\kappa, \kappa, t) = CR_{\hbar}(\kappa, \varpi, t) = CR_{\hbar}(\varpi, \varpi, t)$
- 2) Since $\hbar(\kappa, \kappa) \le \hbar(\kappa, \varpi)$

$$\Rightarrow \frac{\hbar(\kappa,\kappa)}{\hbar(\kappa,\kappa)+t} \leq \frac{\hbar(\kappa,\varpi)}{\hbar(\kappa,\varpi)+t} \Rightarrow CR_{\hbar}(\kappa,\kappa,t) \leq CR_{\hbar}(\kappa,\varpi,t)$$

- 3) clearly $CR_{\hbar}(\kappa, \varpi, t) = CR_{\hbar}(\varpi, \kappa, t)$
- **4**) Since $\hbar(\kappa, \varpi) + \hbar(\alpha, \alpha) \le \hbar(\kappa, \alpha) + \hbar(\alpha, \varpi)$

$$\Longrightarrow \frac{\hbar(\kappa,\varpi)}{\hbar(\kappa,\varpi) + \{t,s\}} + \frac{\hbar(\alpha,\alpha)}{\hbar(\alpha,\alpha) + \{t,s\}} \le \frac{\hbar(\kappa,\alpha)}{\hbar(\kappa,\alpha) + t} + \frac{\hbar(\alpha,\varpi)}{\hbar(\alpha,\varpi) + t}$$

$$\Rightarrow CR_{\hbar}(\kappa, \varpi, \max\{t, s\}) \odot CR_{\hbar}(\alpha, \alpha, \max\{t, s\}) \leq CR_{\hbar}(\kappa, \alpha, t) \odot CR_{\hbar}(\alpha, \varpi, t)$$

- 5) $CR_{\hbar}(\kappa, \varpi, .): (0, \infty) \to K$ is continuous.
- So, $(\Theta, CR_{\hbar}, \odot)$ is P.F. co-M.S.

Theorem 3.7: Let $(\mathcal{O}, R_{\hbar}, \circ)$ be a P.F.M.S. Let $N = 1 - R_{\hbar}$, then (\mathcal{O}, N, \odot) is P.F.co-M.S.

Proof:

1)
$$\kappa = \varpi \iff R_{\hbar}(\kappa, \kappa, t) = R_{\hbar}(\kappa, \varpi, t) = R_{\hbar}(\varpi, \varpi, t)$$

 $\iff 1 - R_{\hbar}(\kappa, \kappa, t) = 1 - R_{\hbar}(\kappa, \varpi, t) = 1 - R_{\hbar}(\varpi, \varpi, t)$
 $\iff N(\kappa, \kappa, t) = N(\kappa, \varpi, t) = N(\varpi, \varpi, t).$

2) $R_{\hbar}(\kappa, \kappa, t) \geq R_{\hbar}(\kappa, \varpi, t)$

Website: jceps.utq.edu.iq

Email: iceps@eps.utg.edu.ig

$$\Rightarrow 1 - R_{\hbar}(\kappa, \kappa, t) \le 1 - R_{\hbar}(\kappa, \varpi, t)$$
$$\Rightarrow N(\kappa, \kappa, t) \le N(\kappa, \varpi, t).$$

- 3) $N(\kappa, \omega, t) = 1 CR_{\hbar}(\kappa, \omega, t) = 1 R_{\hbar}(\omega, \kappa, t) = N(\omega, \kappa, t)$
- 4) $N(\kappa, \varpi, \{t, s\}) \odot N(\alpha, \alpha, \{t, s\})$ $= [1 - R_{\hbar}(\kappa, \varpi, \{t, s\})] \odot [1 - R_{\hbar}(\alpha, \alpha, \{t, s\})]$ $= 1 - [R_{\hbar}(\kappa, \varpi, \{t, s\}) \circ (R_{\hbar}(\kappa, \varpi, \{t, s\})]$ $\leq 1 - [R_{\hbar}(\kappa, \alpha, t) \circ R_{\hbar}(\alpha, \varpi, t)]$ $= (1 - R_{\hbar}(\kappa, \alpha, t)) \odot (1 - R_{\hbar}(\alpha, \varpi, t)) = N(\kappa, \alpha, t) \odot N(\alpha, \varpi, t)$
- 5) $N(\kappa, \varpi, .): (0, \infty) \to K$ is continuous. Then, (Θ, N, Θ) is P.F.co-M.S.

Definition 3.8: Let (Θ, CR_h, \odot) is P.F.co-M.S and $\{\kappa_n\}$ be a sequence in Θ , we call that $\{\kappa_n\}$ is:

- 1) Fuzzy converge to a point $\kappa \in \Theta$ if $CR_{\hbar}(\kappa_n, \kappa, t) = CR_{\hbar}(\kappa, \kappa, t)$ for all t > 0.
- 2) Fuzzy Cauchy sequence in Θ if $CR_{\hbar}(\kappa_n, \kappa_m, t)$ exists (fuzzy 0-Cauchy if $CR_{\hbar}(\kappa_n, \kappa_m, t) = 0$).

Definition 3.9: A P.F.co-M.S is called complete (0-complete) if every F. Cauchy (F. 0-Cuachy) sequence belong to θ is F. converges in it.

Theorem 3.10: Let $(\Theta, CR_{\hbar}, \odot)$ is P.F.co-M.S, then every sequence in Θ has a unique fuzzy convergence if \odot satisfy the condition $\xi \odot \eta \leq \xi \odot v \rightarrow \eta \leq v$ for all $\xi, \eta, v \in K$ and $CR_{\hbar}(\kappa_n, \kappa_n, t) = CR_{\hbar}(\kappa, \kappa, t) = CR_{\hbar}(\varpi, \varpi, t)$.

Proof: Suppose that $\{\kappa_n\}$ be a fuzzy converge sequence in Θ to two distinct points κ and ϖ , that is

$$CR_{\hbar}(\kappa_n, \kappa, t) = CR_{\hbar}(\kappa, \kappa, t)$$
 and $CR_{\hbar}(\kappa_n, \kappa, t) = CR_{\hbar}(\varpi, \varpi, t)$

$$CR_{\hbar}(\kappa, \varpi, t) \odot CR_{\hbar}(\kappa_n, \kappa_n, t) \leq CR_{\hbar}(\kappa, \kappa_n, t) \odot CR_{\hbar}(\kappa_n, \varpi, t)$$

By taking the limit as $n \to \infty$,

$$\Rightarrow CR_{\hbar}(\kappa, \varpi, t) \odot CR_{\hbar}(\kappa, \kappa, t) \leq CR_{\hbar}(\kappa, \kappa, t) \odot CR_{\hbar}(\varpi, \varpi, t)$$

$$\Rightarrow CR_{\hbar}(\kappa, \varpi, t) \leq CR_{\hbar}(\varpi, \varpi, t)$$
 and since $CR_{\hbar}(\kappa, \varpi, t) \geq CR_{\hbar}(\varpi, \varpi, t)$.

$$\Rightarrow CR_{\hbar}(\kappa, \varpi, t) = CR_{\hbar}(\varpi, \varpi, t) = CR_{\hbar}(\kappa, \kappa, t)$$
, and so $\kappa = \varpi$.

Definition 3.11: Let $(\Theta, CR_{\hbar}, \odot)$ is P.F.co-M.S. We call that CR_{\hbar} is strong P.F.co-M.S if it is satisfy the additional condition:

6) $CR_{\hbar}(\kappa, \varpi, t) \odot CR_{\hbar}(\alpha, \alpha, t) \le CR_{\hbar}(\kappa, \alpha, t) \odot CR_{\hbar}(\alpha, \varpi, t)$ for all $\kappa, \varpi, \alpha \in \Theta$ and t > 0.

Example 3.12: Let $\theta = R^+$, $\xi \odot \eta = \xi + \eta$, such that $\eta \le v$ whenever $\xi \odot \eta \le \xi \odot v$ for all $\xi, \eta, v \in K$, and $CR_{\hbar}: \theta^2 \times (0, \infty) \to K$ defined by

 $CR_{\hbar}(\kappa, \varpi, t) = 1 - \frac{\{\kappa, \varpi\} + t}{\{\kappa, \varpi\} + t}$, for all $\kappa, \varpi \in \Theta, t > 0$, then $(\Theta, CR_{\hbar}, \odot)$ is strong P.F.co-M.S.

Proof:

1) If
$$\kappa = \varpi \Rightarrow 1 - \frac{\{\kappa, \varpi\} + t}{\{\kappa, \varpi\} + t} = 0$$

$$\Rightarrow CR_{\hbar}(\kappa, \kappa, t) = CR_{\hbar}(\kappa, \varpi, t) = CR_{\hbar}(\varpi, \varpi, t)$$
If $CR_{\hbar}(\kappa, \kappa, t) = CR_{\hbar}(\kappa, \varpi, t) = CR_{\hbar}(\varpi, \varpi, t)$
Since $CR_{\hbar}(\kappa, \kappa, t) = CR_{\hbar}(\varpi, \varpi, t) = 0 \Rightarrow CR_{\hbar}(\kappa, \varpi, t) = 0$

$$\Rightarrow 1 - \frac{\{\kappa, \varpi\} + t}{\{\kappa, \varpi\} + t} = 0 \Rightarrow \frac{\{\kappa, \varpi\} + t}{\{\kappa, \varpi\} + t} = 1 \Rightarrow \kappa = \varpi$$

- 2) $CR_{\hbar}(\kappa, \varpi, t) \ge CR_{\hbar}(\kappa, \kappa, t) = 0.$
- 3) $CR_{\hbar}(\kappa, \omega, t) = CR_{\hbar}(\omega, \kappa, t)$
- **6**) As in example (3.2) there are 6 cases to comparable among κ , ϖ and α and from these cases we deduce that

$$CR_{\hbar}(\kappa, \varpi, t) \odot CR_{\hbar}(\alpha, \alpha, t) \le CR_{\hbar}(\kappa, \alpha, t) \odot CR_{\hbar}(\alpha, \varpi, t)$$

4) From (6) for t, s > 0, and the condition of \odot

$$CR_{\hbar}(\kappa, \varpi, max \{t, s\}) \odot CR_{\hbar}(\alpha, \alpha, \{t, s\}) \leq CR_{\hbar}(\kappa, \alpha, \{t, s\}) \odot CR_{\hbar}(\alpha, \varpi, \{t, s\}) \leq CR_{\hbar}(\kappa, \alpha, t\}) \odot CR_{\hbar}(\alpha, \varpi, s\})$$

5) $CR_{\hbar}(\kappa, \varpi, .)$ is continuous.

Theorem 3.13: Let $\Theta \neq \emptyset$, \odot be a continuous t-conorm such that $\xi \odot \eta \leq \xi \odot v$ whenever $\eta \leq v$, then $CR_{\hbar}: \Theta^2 \times (0, \infty) \to K$ is strong P.F.co-M function iff it is satisfy the conditions for all $\kappa, \varpi, \alpha \in \Theta, t > 0$,

- 1) $CR_{\hbar}(\kappa, \kappa, t) = CR_{\hbar}(\kappa, \omega, t) = CR_{\hbar}(\omega, \omega, t)$ if and only if $\kappa = \omega$,
- 2) $CR_{\hbar}(\kappa, \kappa, t) \leq CR_{\hbar}(\kappa, \omega, t)$,
- 3) $CR_{\hbar}(\kappa, \varpi, t) \odot CR_{\hbar}(\alpha, \alpha, t) \leq CR_{\hbar}(\kappa, \alpha, t) \odot CR_{\hbar}(\varpi, \alpha, t)$,
- 4) $CR_{\hbar}(\kappa, \varpi, .): (0, \infty) \to K$ is continuous.

Proof: If M is strong P.F.co-M, then by its definition the conditions hold.

On the other hand, if the conditions valid, we prove that CR_{\hbar} is strong P.F.co-M, the conditions 1,2 and 5 satisfy from the conditions 1,2 and 4.

Website: <u>iceps.utg.edu.ig</u>

Email: jceps@eps.utq.edu.iq

To prove the condition 3 of definition strong P.F.co-M, from the third condition and the condition of ⊙,

$$CR_{\hbar}(\kappa, \varpi, t) \odot CR_{\hbar}(\kappa, \kappa, t) \le CR_{\hbar}(\kappa, \kappa, t) \odot CR_{\hbar}(\varpi, \kappa, t)$$
 (1)

$$\Rightarrow CR_{\hbar}(\kappa, \varpi, t) \leq CR_{\hbar}(\varpi, \kappa, t)$$

Also,
$$CR_{\hbar}(\varpi, \kappa, t) \odot CR_{\hbar}(\varpi, \varpi, t) \leq CR_{\hbar}(\varpi, \varpi, t) \odot CR_{\hbar}(\kappa, \varpi, t)$$

$$\Rightarrow CR_{\hbar}(\varpi, \kappa, t) \le CR_{\hbar}(\kappa, \varpi, t) \tag{2}$$

From (1) and (2), we have $CR_{\hbar}(\kappa, \varpi, t) = CR_{\hbar}(\varpi, \kappa, t)$

Now, from (3) $CR_{\hbar}(\kappa, \varpi, t) \odot CR_{\hbar}(\alpha, \alpha, t) \le CR_{\hbar}(\kappa, \alpha, t) \odot CR_{\hbar}(\varpi, \alpha, t)$

$$= CR_{\hbar}(\kappa, \alpha, t) \odot CR_{\hbar}(\alpha, \omega, t)$$

To prove the condition (4), let s, t > 0, from (3)

$$CR_{\hbar}(\kappa, \varpi, \{t, s\}) \odot CR_{\hbar}(\alpha, \alpha, \{t, s\})$$

$$\leq CR_{\hbar}(\kappa, \alpha, \max\{t, s\}) \odot CR_{\hbar}(\varpi, \alpha, \max\{t, s\}) \leq CR_{\hbar}(\kappa, \alpha, t) \odot CR_{\hbar}(\alpha, \varpi, s).$$

Therefore, CR_{\hbar} is strong P.F.co-M.

Theorem 3.14: Let $\{\kappa_n\}$ and $\{\varpi_n\}$ be two sequences in strong P.F.co-M.S $(\Theta, CR_{\hbar}, \odot)$ such that $\eta \leq v$

whenever
$$\xi \odot \eta \leq \xi \odot \upsilon$$
 for all $\xi, \eta, \upsilon \in K$, $CR_{\hbar}(\kappa_n, \kappa, t) = \lim_{n \to \infty} CR_{\hbar}(\kappa_n, \kappa_n, t) = CR_{\hbar}(\kappa, \kappa, t)$ and

$$CR_{\hbar}(\varpi_n, \varpi, t) = \lim_{n \to \infty} CR_{\hbar}(\varpi_n, \varpi_n, t) = CR_{\hbar}(\varpi, \varpi, t)$$
, then

$$\lim_{n\to\infty} CR_{\hbar}(\kappa_n, \varpi_n, t) = CR_{\hbar}(\kappa, \varpi, t).$$

Proof: As $CR_{\hbar}(\kappa_n, \varpi_n, t) \odot CR_{\hbar}(\kappa, \kappa, t) \leq CR_{\hbar}(\kappa_n, \kappa, t) \odot CR_{\hbar}(\kappa, \varpi_n, t)$

$$\Rightarrow CR_{\hbar}(\kappa_n, \varpi_n, t) \odot CR_{\hbar}(\kappa, \kappa, t) \odot CR_{\hbar}(\varpi, \varpi, t)$$

$$\leq CR_{\hbar}(\kappa_n,\kappa,t)\odot CR_{\hbar}(\kappa,\varpi_n,t)\odot CR_{\hbar}(\varpi,\varpi,t)$$

$$\leq CR_{\hbar}(\kappa_n, \kappa, t) \odot CR_{\hbar}(\kappa, \varpi, t) \odot CR_{\hbar}(\varpi, \varpi_n, t)$$

$$\Rightarrow \lim_{n\to\infty} CR_{\hbar}(\kappa_n,\varpi_n,t) \odot CR_{\hbar}(\kappa,\kappa,t) \odot CR_{\hbar}(\varpi,\varpi,t)$$

$$\leq \lim_{n\to\infty} CR_{\hbar}(\kappa_n,\kappa,t) \odot CR_{\hbar}(\kappa,\varpi,t) \odot \lim_{n\to\infty} CR_{\hbar}(\varpi,\varpi_n,t)$$

$$= CR_{\hbar}(\kappa, \kappa, t) \odot CR_{\hbar}(\kappa, \varpi, t) \odot CR_{\hbar}(\varpi, \varpi, t)$$

$$\Rightarrow \lim_{n\to\infty} CR_{\hbar}(\kappa_n, \varpi_n, t) \le CR_{\hbar}(\kappa, \varpi, t) \dots (1)$$

Also, as $CR_{\hbar}(\kappa, \varpi, t) \odot CR_{\hbar}(\kappa_n, \kappa_n, t) \leq CR_{\hbar}(\kappa, \kappa_n, t) \odot CR_{\hbar}(\kappa_n, \varpi, t)$

$$\Rightarrow CR_{\hbar}(\kappa, \varpi, t) \odot CR_{\hbar}(\kappa_n, \kappa_n, t) \odot CR_{\hbar}(\varpi_n, \varpi_n, t)$$

$$\leq CR_{\hbar}(\kappa,\kappa_n,t)\odot CR_{\hbar}(\kappa_n,\varpi,t)\odot CR_{\hbar}(\varpi_n,\varpi_n,t)$$

$$\leq CR_{\hbar}(\kappa,\kappa_n,t)\odot CR_{\hbar}(\kappa_n,\varpi_n,t)\odot CR_{\hbar}(\varpi,\varpi_n,t)$$

$$\Rightarrow CR_{\hbar}(\kappa, \varpi, t) \odot \lim_{n \to \infty} CR_{\hbar}(\kappa_n, \kappa_n, t) \odot \lim_{n \to \infty} CR_{\hbar}(\varpi_n, \varpi_n, t)$$

$$\leq \lim_{n\to\infty} CR_{\hbar}(\kappa,\kappa_n,t) \odot \lim_{n\to\infty} CR_{\hbar}(\kappa_n,\varpi_n,t) \odot \lim_{n\to\infty} CR_{\hbar}(\varpi,\varpi_n,t)$$

 $\Rightarrow CR_{\hbar}(\kappa, \varpi, t) \odot CR_{\hbar}(\kappa, \kappa, t) \odot CR_{\hbar}(\varpi, \varpi, t)$

$$\leq CR_{\hbar}(\kappa,\kappa,t) \odot \lim_{n\to\infty} CR_{\hbar}(\kappa_n,\varpi_n,t) \odot CR_{\hbar}(\varpi,\varpi,t)$$

$$\Rightarrow CR_{\hbar}(\kappa, \varpi, t) \leq \lim_{n \to \infty} CR_{\hbar}(\kappa_n, \varpi_n, t) \dots (2)$$

From (1) and (2), we deduce that $\lim_{n\to\infty} CR_{\hbar}(\kappa_n, \varpi_n, t) = CR_{\hbar}(\kappa, \varpi, t)$.

Theorem 3.15: Let $(\mathcal{O}, CR_{\hbar}, \circ)$ is strong P.F.M.S. If define $B = 1 - CR_{\hbar}$, then (\mathcal{O}, B, \odot) is strong P.F.co-M.S.

The proof is similar to Theorem (3.7).

4. Conclusion

In this article, we revise the notion of a P.F.M by using t-conorms rather than t-norms, naming it a P.F. co-metric, which is analogous to revising the concept of a F.M.by using t-conorms instead of t-norms. This notion was expressed by Noori et al. in 2012 and Alexander Šostak in 2018. We also discussed the concepts of strong P.F.M. and strong P.F. co-metric, as well as some problems and examples that relate to them.

References

- [1] Zadeh L. A.," Fuzzy sets," Inform. Control, 8), 338–353, 1965.
- [2] Kramoosil I., and Michalek J.," Fuzzy metric and statistical metric spaces," Kybernetika 11 336-344, 1975.
- [3] George A., and Veeramani P.," On some results in fuzzy metric spaces," Fuzzy Sets and Systems 64 (3) 395-399, 1994.
- [4] Matthews S.G.," Partial Metric Topology," Annals of the New York Academy of Sciences 728 183-197, 1994.
- [5] Amal M. Hashim, "Fixed Point of Generalized Weakly Contractive Maps in Partial Metric Spaces,", Jnanabha, Vol. 46, 155-166, 2016.
- [6] Amal M. Hashim, Athraa F. Abd Ali, "A Suzuki Type Fixed Point Theorems for a Generalized Hybrid maps on a Partial Hausdorff Metric Spaces," Basrah Journal of Science (A), Vol. 35 (1), 51-60, 2017.
- [7] Amal M. Hashim, Haneen A. Bakry," Fixed points theorems for ciric' mappings in partial b-metric space," Basrah Journal of Science, Vol.37(1), 16-24, 2019.

- [8] Camarena J.G., Gregori V., Morillas S., and Sapena A.," Two-step fuzzy logic-based method for impulse noise detection in colour images," Pattern Recognition Letters 31 (13) 1842-1849, 2010.
- [9] Grecova S., and Morillas S.," Perceptual similarity between color images using fuzzy metrics," Journal of Visual Communication and Image Representation 34 230-235, 2016.
- [10] Gregori V., Minana J.J., and Morillas S., "Some questions in fuzzy metric spaces," Fuzzy Sets and Systems 204 71-85, 2012.
- [11] Yue, Y., Gu, M.," Fuzzy partial (pseudo-) metric space," J. Intell. Fuzzy Syst. 27(3), 1153–1159, 2014.
- [12] Sedghi S., Shobkolaei N., and Altun I., "Partial fuzzy metric space and some fixed point results," Communications in Mathematics, 23, 131-142, 2015.
- [13] Gregori, V., Minana, J.J., Miravet, D., "Fuzzy partial metric spaces," Int. J. Gen. Syst. 48(3), 260–279, 2019.
- [14] Noori F. AL-Mayhi and I. H. Radhi, "Some problems related to fuzzy metric space," University of ALQadissiya, 2012.
- [15] Olga G., Juan J. Minana, A. Sostak and Oscar Valero, "On t-Conorm based fuzzy (pseudo) metrics," Axioms, 9(3), 78, 2020.
- [16] Klement, E.P.; Mesiar, R.; Pap, E," Triangular norms, Position paper II, General constructions and parametrized families," Fuzzy Sets Syst. 145, 411–438, 2004.