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Abstract 

   This article deal with the proposal of suggest and study of the properties of pre-test shrinkage estimators 

of Reliability Function for the Burr XII distribution using Progressive Type II censored sample. Since some 

difficulties to derive equations of risk function for proposed shrinkage estimators of reliability function 

under Precautionary Loss Function (PLF), we to study properties by using Monte-Carlo simulation. The 

numerical and Monte-Carlo simulations show that the performance of the proposed estimators is better than 

classical estimators in terms of relative risk. 
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1. INTRODUCTION 

         The Shrinkage estimators were proposed by numerous scholars who were interested to look for 

estimators with a high relative risk with compared to the classical estimators. One of The first 

researchers to propose the shrinkage estimator was Thompson (1968)[8] when the initial information exists 

for an unknown parameter θ as a guess value θ₀ then we must use it. so Thompson(1968) proposed the 

shrinkage estimators moving the classical estimator 𝜃 to guess θ₀ by using weighted shrinkage factor k .The 

shrinkage estimators defined as: 

                    �̃�𝑠ℎ = 𝑘𝜃 + (1 − 𝑘)𝜃₀                              ,0 < 𝑘 < 1                                                       (1) 

They researchers  can n׳t conform the real value of θ is closed to θ₀ Consequently, they proposed    

a preliminary test of hypothesis  𝐻₀: 𝜃 = 𝜃₀  against hypothesis H₁:θ≠ θ₀  to ascertain how     close 𝜃₀ 

and 𝜃, in order to ensure if the hypothesis H₀:θ =θ₀, Accept the estimator is         �̃�𝑠ℎ = 𝑘𝜃 + (1 − 𝑘)𝜃₀ 

otherwise the classical estimator.  

The pre-test shrinkage estimator can be defined as: 

                 �̃�𝑠ℎ = {  
𝑘𝜃 + (1 − 𝑘)𝜃₀                          𝐼𝑓 𝐻₀: 𝜃 = 𝜃₀ 𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑   

𝜃                                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    
                           (2)      

 The shrinkage estimator above studied by many Authors for example Prakash and Singh (2008)[5], 

Naghizadeh Qomi and 𝐵armoodeh (2015)[9], 𝐻ossain and 𝐻owlader(2016)[17]. 

         The Burr XII distribution, which was first suggested by Burr in (1942)[6]. Is a non-negative random 

variable׳s continuous probability distribution. Sometimes referred to as the generalized log-logistic 

distribution (Burr,1942), and is one of several distributions with probability density function. 

𝑓(𝑥, 𝜃, 𝛽) = 𝜃𝛽
𝑥𝛽−1

(1 + 𝑥𝛽)𝜃+1
                , 𝑥 > 0 , 𝜃, 𝛽 > 0                                (3) 

 and the accompanying cumulative distribution function  

𝐹(𝑥, 𝜃, 𝛽) = 1 − (1 + 𝑥𝛽)−𝜃             , 𝑥 > 0 , 𝜃, 𝛽 > 0                                     (4) 

        The Burr XII distribution is a Computational model for failure times that is straightforward to apply 

and versatile. The Burr XII distributions characteristics are utilized in family income    

modeling, quality control, economics, and duration of failure time modeling It is comparable to the log-

normal distribution as well. Additionally, due to its non-monotone failure rate, it bears resemblance to the 
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log-normal distribution, a widely used model in life and reliability testing. To lower the probability of failure 

the Burr XII distribution is being used more and more in  

the areas of lifetime data analysis and actuarial science. Gomes et al.(2015)[1] proposed the McDonald 

Burr XII distribution Gunasekera (2018)[16] proposed the reliability function of Burr XII distribution by 

the concept of generalized variable method progressive type II  right censored sample with random removals 

. Hassan et al. (2020)[11] developed a generalized Bayesian shrinkage estimator of Burr XII distribution 

parameters under various loss functions. 

         The progressive type II  right censored samples is One of censoring technique that is widely used in 

clinical studies, product quality control, industrial experiments, reliability testing, and life testing. The 

progressive type II right censored sample is explained as follows in[ 𝐵 alakrishnan  and Aggarwala 

(2000)][10]. Following the observation of, 𝑅₁ units are chosen at  random and eliminated after the first 

failure ; similarly, 𝑅₂ units are chosen at  random and eliminated following the observation of the second 

failure; and 𝑅ᵢ units are chosen at  random and eliminated following the observation of the ith failure.( i= 3, 

4,...m ). When the mth failure, is detected and the remaining 𝑅𝑚 = 𝑛 − 𝑚 − ∑ 𝑅𝑖
𝑚−1
𝑖=1  units are eliminated 

the experiment comes to an end. 

Suppose 𝑥1:𝑚:𝑛, 𝑥2:𝑚:𝑛 … , 𝑥𝑚:𝑚:𝑛  be a  random progressive form the Burr XII distribution. The common 

function of the progressive censored sample 𝑥1:𝑚:𝑛, 𝑥2:𝑚:𝑛 … , 𝑥𝑚:𝑚:𝑛 and expressed as: 

                          𝑓(𝑥1:𝑚:𝑛, … , 𝑥𝑚:𝑚:𝑛) = 𝐶 ∏ 𝑓(𝑥𝑖:𝑚:𝑛)
𝑚
𝑖=1 [1 − 𝐹(𝑥𝑖:𝑚:𝑛)]𝑅𝑖                                       (5)                      

                    where 𝐶 = 𝑛(𝑛 − 𝑅₁ − 1)(𝑛 − 𝑅₁ − 𝑅₂ − 2) … (𝑛 − 𝑅₁ − ⋯ 𝑅𝑚−1 − 𝑚 + 1). 

 Many researchers studied  progressive type II  right censored samples 𝐴bu-𝐴wwad et al.(2015) [14] , Al-

𝐻ussaini et al.(2015)[4], Qin and Gui (2020)[18], and Bantan et al. (2021)[12] . 

      the reliability function is the probability in which a device or system will operate up to determined 

time without failure. It is defined mathematically as  

                        𝑅(𝑥; 𝜃) = 1 − 𝐹(𝑥; 𝜃)                                                         

                 = 𝑃(𝑋 > 𝑥)                                                                         

The reliability function of the Burr XII distribution is given by  

= (1 + 𝑥𝛽)−𝜃                      ; 𝑥 > 0, 𝛽, 𝜃 > 0                                                      (6) 
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         The Precautionary Loss Function is one Type of asymmetric Loss Function that was proposed by 

( 𝑁 orstrom in (1996)[7]As a specific instance the general Loss of the Precautionary  

loss function was described. Norstrom (1996) introduce a class of precautionary loss functions of the form 

                      𝐿(𝜃, 𝜃) = 𝑤(𝜃)
(�̂�−𝜃)

2

�̂�𝑎                    0 ≤ 𝑎 ≤ 2 , 𝑤(𝜃) > 0                                             ( 7)  

where a is a precautionary index. For the case a = 1 and w(θ) = 1/θ in (7), we get the following asymmetric 

scale invariant loss function  

          𝐿(𝜃, 𝜃) = (√
𝜃

𝜃
− √

𝜃

𝜃
)

2

=
𝜃

𝜃
+

𝜃

𝜃
− 2                                                                              (8) 

Many researchers studied  loss function are Karimnezhad et al. (2014)[3] , Chen and Liu (2019) [19] , Rao 

and Pandey (2021)[2] 

. 

2.  Proposed Pre-test Shrinkage Estimators  

          In this section, we use the guess value 𝜃₀ as prior information about an unknown parameter θ, we will 

consider it existing, and depending on the density function, one can propose the following pre-test estimator. 

Where C is pre-test region for testing the null hypothesis 𝐻₀: 𝜃 = 𝜃₀ against the alternative hypothesis H₁:θ≠ 

θ₀ with significance of level 𝛼.  

The first proposed estimator �̃�𝑠ℎ1is defined as: 

            �̃�𝑠ℎ1 = {  
𝑘1�̂� + (1 − 𝑘1)𝑅₀                          𝐼𝑓 𝐻₀: 𝜃 = 𝜃₀ 𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑  

�̂�                                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    
                     (9) 

Where the shrinkage factor k₁ is a constant such that 𝑘₁ 𝜖 [0,1]  , since �̂�  given by equation (6) and 

Let   �̂�(𝑥) = (1 + 𝑥ᵝ)⁻�̂� ,  𝑅₀ = (1 + 𝑥ᵝ)⁻𝜃₀  . Let C be a pre-test region for test the null hypothesis 

𝐻₀:θ=𝜃₀against the alternative hypothesis 𝐻1:θ≠ 𝜃₀at the significance of level 𝛼. 

The second proposed estimator �̃�𝑠ℎ2 is defined as: 

               �̃�𝑠ℎ2 = {  
𝑘2�̂� + (1 − 𝑘2)𝑅₀                       𝐼𝑓𝐻₀: 𝜃 = 𝜃₀ 𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑  

�̂�                                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    
                      ( 10)                        

http://jceps.utq.edu.iq/
mailto:jceps@eps.utq.edu.iq


Journal of Education for Pure Science- University of Thi-Qar 
Vol.14, No.3 (2024) 

Website: jceps.utq.edu.iq                                                                                                     Email: jceps@eps.utq.edu.iq 

  5 

where k₂ =(1 – p(𝐻₀ Accepted))²   thus  

𝑘2 = (1 − [I(
𝑟2

2λ
, m) − (I (

𝑟1

2λ
, m))² 

where   I(t, m) =  
∫ 𝑥ᵐ−1 exp(−x)dx

t
0

Γm
 

The third proposed estimator �̃�𝑠ℎ3 is defined as: 

               �̃�𝑠ℎ3  = {  
𝑘3R̂ + (1 − 𝑘3)𝑅₀                   If 𝐻₀: θ = 𝜃₀ is accept𝑒𝑑   

R̂                                                        otherwise                  
                            (11)                         

where  𝑘3 =
2𝑚𝜃₀

�̂� (𝑟₁+𝑟₂)
     

The fourth proposed estimator �̃�𝑠ℎ4 is defined as: 

               �̃�𝑠ℎ4 = {
  𝑘4R̂ + (1 − 𝑘4)𝑅₀                  If 𝐻₀: θ = 𝜃₀ is accepted

R̂                                                otherwise                   
                               (12)                         

          where 𝑘4 = (
2𝑚𝜃₀

�̂� (𝑟₁+𝑟₂)
)²   

2.1 Simulation Concept 

            Simulation method can be understood as a representation or imitation of real reality, using certain 

methods, and models. One of the most prominent features of the simulation is to obtain very useful 

information about the real reality that it imitates, as well as the ability to repeat the experiment. The inputs  

that are changed each time a sufficient and appropriate explanation the nature of the mathematical sciences 

that were used. 

2.2  Monte Carlo Method 

              The Monte Carlo method, also known as Monte Carlo experiments, is a general class of 

computational methods that provide numerical results by repeatedly sampling a given population at random. 

The basic idea is to employ randomness to solve problems that, in theory, may be deterministic. They come 

in handy most of the time when other methods are impractical or impossible to apply, and they are frequently 

employed in mathematical and physical difficulties. Three issue classes optimization, numerical integration, 

and drawing from a probability distribution are the primary applications for Monte Carlo methods, Harrison 

(2010),[13] Rubinstein and Kroese (2016)[15]. 
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2.3  Steps of a Simulation Experiment 

We can now assuming that are able to generate pseudo-random Uniform(0,1) variables, efficiently generate 

a progressively Type II right censored sample from Burr XII distribution using the following simple 

algorithm:   

Step 1    Generate m independent Uniform(0,1) observations W₁,W₂,...,Wₘ .               

 Step  2   Set 𝑉𝑖 = 𝑊
𝑖

1
(𝑖+∑ 𝑅𝑗)𝑚

𝑗=𝑚−𝑖+1
⁄

     for 𝑖 = 1,2, … , 𝑚. 

Step  3   𝑈𝑖:𝑚:𝑛 = 1 − 𝑉𝑚𝑉𝑚−1 … 𝑉𝑚−𝑖+1  for 𝑖 = 1, 2, … , 𝑚.         Then   𝑈1:𝑚:𝑛, 𝑈2:𝑚:𝑛, … , 𝑈𝑚:𝑚:𝑛 is the 

required progressively Type II right censored sample form the Uniform(0,1) distribution.                                                

 Step 4   Finally, we set 𝑋𝑖:𝑚:𝑛 = 𝑋𝑖 = 𝐹⁻¹(𝑈𝑖) =  −((1 − 𝑈𝑖)
−1

𝜃 ) − 1)
1

𝛽,  for 𝑖 = 1, 2, … , 𝑚, where 

−((1 − 𝑈𝑖:𝑚:𝑛)
−1

𝜃 )⁻¹)
1

𝛽  is the inverse cumulative distribution function of the Burr XII distribution under 

consideration. Then 𝑋1∷𝑚:𝑛 , 𝑋2:𝑚:𝑛, … , 𝑋𝑚:𝑚:𝑛 is the required progressively Type II right censored sample 

form the distribution F(.). 

The following progressively type II right censored sample from the Burr XII was simulated using the above 

steps with n = 12,  m=5 , 𝑅𝑖=(2,1,1,1,2) and with n=24,  m=10, 𝑅𝑖=(2,1,1,1,2,2,1,1,1,2) and n=36, 

m=15 , 𝑅𝑖=(2,1,1,1,2,2,1,1,1,2.2,1,1,1,2) are considered.    

The above simulational algorithm requires exactly m pseudo random uniform observations and does not 

require any sorting. 

3. Relative Risk  

        To study the properties of estimators �̃�𝑠ℎ1, �̃�𝑠ℎ2, �̃�𝑠ℎ3 and �̃�𝑠ℎ4, we comparison were made with the 

relative risk under Precautionary Loss Function (PLF) of the estimators given above with respect to the 

classical estimator �̂� for this purpose. 

Therefore one can evaluate the relative risks with respect to the classical estimator �̂� of proposed pre-test 

shrinkage estimator �̃�𝑠ℎ denoted by R.R(.) of �̃�𝑠ℎ1, �̃�𝑠ℎ2, �̃�𝑠ℎ3 and �̃�𝑠ℎ4 under Precautionary Loss 

Function (PLF) Now, we define the relative risk for estimator �̃�𝑠ℎ1 under Precautionary Loss Function as : 

We define the relative risk of the estimators �̃�𝑠ℎ1 is given by: 

http://jceps.utq.edu.iq/
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𝑅1. 𝑅(�̃�𝑠ℎ1| 𝑃𝐿𝐹) =
𝑅(�̂�|𝑃𝐿𝐹)

𝑅(�̃�𝑠ℎ1|𝑃𝐿𝐹)
                                                                   (13) 

Similarly, we define the relative risk for estimators �̃�𝑠ℎ2, �̃�𝑠ℎ3 and �̃�𝑠ℎ4 as: 

The relative risk of �̃�𝑠ℎ2 is given by  

𝑅2. 𝑅(�̃�𝑠ℎ2| 𝑃𝐿𝐹) =
𝑅(�̂�|𝑃𝐿𝐹)

𝑅(�̃�𝑠ℎ2|𝑃𝐿𝐹)
                                                                     (14) 

Further, The relative risk of �̃�𝑠ℎ3 is given by  

𝑅3. 𝑅(�̃�𝑠ℎ3| 𝑃𝐿𝐹) =
𝑅(�̂�|𝑃𝐿𝐹)

𝑅(�̃�𝑠ℎ3|𝑃𝐿𝐹)
                                                                      (15) 

 Table 1. Relative Risk of  the Estimator �̃�𝒔𝒉𝟏 under Precautionary Loos Function at 𝒌𝟏 

 

Finally, The relative risk of �̃�𝑠ℎ4 is given by  

𝑅4. 𝑅(�̃�𝑠ℎ4| 𝑃𝐿𝐹) =
𝑅(�̂�|𝑃𝐿𝐹)

𝑅(�̃�𝑠ℎ4|𝑃𝐿𝐹)
                                                                        (16) 

K1 
 
 

m 
λ 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 

0.1 

0.01 

5 0.3080506 0.6078613 1.4186341 3.844372 10.40956 5.35672 2.2875485 1.24566 0.8727968 

10 0.8493754 0.3858151 0.6904445 2.237275 7.690305 2.826587 0.9943714 0.5529311 0.3864114 

15 1 0.4225036 0.4807028 1.555065 8.723496 1.919751 0.6796732 0.3768683 0.3057808 

0.05 

5 0.5859369 0.5931308 1.0191649 1.988382 3.385475 2.615965 1.8250075 1.2013097 0.9125095 

10 0.997551 0.5722351 0.6559814 1.397797 3.193781 1.998666 1.0106673 0.6383616 0.5090009 

15 1 0.7522824 0.5403125 1.13347 3.210026 1.562451 0.7023891 0.5032879 0.4566612 

0.2 

0.01 

5 0.3429769 0.6933839 1.6218662 3.967327 8.148565 4.717342 2.3062487 1.3304938 0.9558425 

10 0.8681157 0.4310283 0.7890705 2.446153 6.404835 2.803301 1.0942316 0.6238375 0.4399109 

15 1 0.4636484 0.5479645 1.732081 7.078799 2.020006 0.7639717 0.4304629 0.3483673 

0.05 

5 0.6225975 0.6447379 1.0935407 2.024395 3.1553 2.479652 1.8174908 1.2453545 0.9678542 

10 0.9978741 0.6112308 0.712517 1.468783 2.993619 1.985172 1.0700979 0.6942885 0.5575297 

15 1 0.7793024 0.5885951 1.208463 3.007887 1.602159 0.7628212 0.552673 0.4997931 

α 
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We observe that equations of the relative risk of our proposed estimators with respect to the classical 

estimator 𝜃  and the equations of the risk function depend on 𝑘1, 𝑚 𝑎𝑛𝑑 𝛼 . To study these Equations 

numerically we assume the following values in Equations (13),(14),(15) and (16) 

𝑘 = 0.1, 0.2, 𝑚 = 5,10,15, 𝛼 = 0.01, 0.05, 𝜆 = 0.2,0.4,0.6,0.8,1,1.2,1.4,1.6,1.8 

The results are shown in figures(1)-(10). 

 

Table 2. Relative Risk of the Estimator �̃�𝒔𝒉𝟐 under Precautionary Loos Function at 𝒌𝟐 

 
 

m 
λ 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 

0.01 

5 0.4298314 0.5473914 1.2258797 3.470135 11.50022 5.630083 2.1892873 1.1574952 0.8141401 

10 0.997038 0.4327067 0.6113448 1.970078 8.25232 2.71633 0.9014377 0.5141693 0.3904422 

15 1 0.6488403 0.4413872 1.365697 9.463593 1.766584 0.616591 0.3717762 0.3604758 

0.05 

5 0.907585 0.6165803 0.9561709 1.903565 3.479126 2.678465 1.8036083 1.1780556 0.9180465 

10 0.9999981 0.7803975 0.644905 1.313676 3.270463 1.967161 0.9794595 0.6618811 0.5960619 

15 1 0.9633518 0.5805169 1.060372 3.285968 1.505605 0.6965246 0.5784762 0.6279701 

 

 

Table 3 . Relative Risk of the Estimator �̃�𝒔𝒉𝟑 under Precautionary Loos Function at 𝒌𝟑 

 
 

m 
λ 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 

0.01 

5 0.3088971 0.6374202 1.5452509 3.667252 6.558198 4.612595 2.823345 1.8861623 1.51669 

10 0.862324 0.4291077 0.8220971 2.396524 4.280087 2.725952 1.539526 1.0549877 0.8334932 

15 1 0.4781374 0.5969808 1.816505 4.007911 2.155948 1.190096 0.8000706 0.6825733 

0.05 

5 0.6075575 0.6386572 1.0982315 1.934251 2.811288 2.427833 2.076044 1.5975535 1.3675346 

10 0.9979637 0.6326925 0.7576396 1.465951 2.413951 1.979857 1.368905 1.0221801 0.8690524 

15 1 0.8034884 0.6461089 1.252768 2.315017 1.70254 1.065962 0.8498354 0.7701218 

 

 

α 

α 
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Table 4 . Relative Risk of the Estimator �̃�𝒔𝒉𝟒 under Precautionary Loos Function at 𝒌𝟒 

 
 

m 
λ 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 

0.01 

5 0.2815836 0.5482513 1.2719207 3.414357 9.278812 6.250441 3.0793496 1.7978421 1.3493219 

10 0.8358918 0.3613687 0.6482075 2.063798 6.48448 3.440415 1.4512056 0.875558 0.6471692 

15 1 0.4053387 0.4623591 1.494871 6.795229 2.473532 1.0243536 0.611172 0.5073844 

0.05 

5 0.5604428 0.5625401 0.9733754 1.880588 3.249086 2.828476 2.2532373 1.5861943 1.2821677 

10 0.9973922 0.5589029 0.6430091 1.353055 2.966089 2.289867 1.3243967 0.8888427 0.7252517 

15 1 0.7478045 0.5383388 1.11858 2.939395 1.85517 0.9403461 0.7005144 0.6277306 

 

 

Figure 1. Relative Risk of the estimator �̃�𝑠ℎ1 under (PLF) when, n=12, m=5, 𝑅𝑖 = (0,0,0,0,7) 
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     Figure 2. Relative Risk of the estimator �̃�𝑠ℎ1 under (PLF) when, n=12, m=5, 𝑅𝑖 = (0,0,0,0,7) 

 

 

Figure 3. Relative Risk of the estimator �̃�𝑠ℎ1 under (PLF) when, n=12, m=5, 𝑅𝑖 = (0,0,0,0,7) 
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Figure 4. Relative Risk of the estimator �̃�𝑠ℎ1 under (PLF) when, n=12, m=5, 𝑅𝑖 = (0,0,0,0,7) 

 

 

Figure 5. Relative Risk of the estimator �̃�𝑠ℎ2 under (PLF) when, n=12, m=5, 𝑅𝑖 = (0,0,0,0,7) 
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Figure 6. Relative Risk of the estimator �̃�𝑠ℎ2 under (PLF) when, n=12, m=5, 𝑅𝑖 = (0,0,0,0,7) 

 

 

Figure 7. Relative Risk of the estimator �̃�𝑠ℎ3 under (PLF) when, n=12, m=5, 𝑅𝑖 = (0,0,0,0,7) 
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Figure 8. Relative Risk of the estimator �̃�𝑠ℎ3 under (PLF) )  when, n=12, m=5, 𝑅𝑖 = (0,0,0,0,7) 

 

 

Figure 9 . Relative Risk of the estimator �̃�𝑠ℎ4 under (PLF) when, n=12, m=5, 𝑅𝑖 = (0,0,0,0,7) 
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Figure 10 . Relative Risk of the estimator �̃�𝑠ℎ4 under (PLF) when, n=12, m=5, 𝑅𝑖 = (0,0,0,0,7) 

 

4. Conclusions                                                                                                                            

  In our simulation study the process have been repeated 10000 time we generated samples of m= 5, 10, 15 

from Burr XII distribution . the result were summarized tabulated in the following tables and figures for 

each estimator and for all sample. 

i. The shrinkage proposed estimators  �̃�𝑠ℎ1, �̃�𝑠ℎ2, �̃�𝑠ℎ3 and �̃�𝑠ℎ4 give high relative risk under PLF 

Concerning the classical estimator �̂� in the neighborhood θ=θ₀ i.e. λ≈ 1  and it decreases when 

vaiues are away from λ=1. It can be noted that the suggested estimators perform better than classical 

estimator. 

ii. We conclude that from figure (2), (3) and table (1) the relative risk of  the estimator �̃�𝑠ℎ1, under PLF 

Concerning the classical estimator �̂�  is  decreasing function of k when (0.8 < λ < 1.4) also the 

relative risk of  the estimator above under PLF is increasing function of k when (λ < 0.6) and when 

(1.4 < λ).  

iii. the relative risk of the estimator �̃�𝑠ℎ1,  under PLF Concerning the classical estimator �̂�  when (0.6<

𝜆 < 1) and when (𝜆 > 1.4) depend on figure(1) and table (1),  and  and for estimator �̃�𝑠ℎ2 under 

PLF Concerning the classical estimator �̂� when (0.6 < 𝜆 < 1) and (1 < 𝜆 < 1.8)depend on figure 

(5) and table (2) and for estimator �̃�𝑠ℎ3 under PLF Concerning the classical estimator �̂� when ( λ > 

0.6) depend on figure (7) and table (3) and  for estimator �̃�𝑠ℎ4  under PLF Concerning the classical 
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estimator �̂� when (0.6 < 𝜆 < 1) and(1 < 𝜆 < 1.8) when depend on figure (9) and table (4) are 

decreasing function of m. but the relative risk of the estimator �̃�𝑠ℎ1 and for estimators �̃�𝑠ℎ2  under 

PLF Concerning the classical estimator �̂� when (𝜆 < 0.6)and(𝜆 ≥ 1) depend on figure (1), (5) and 

table (1),(2) and for estimators �̃�𝑠ℎ3 under PLF Concerning the classical estimator �̂� when( λ < 0.6) 

depend  a  on figures(7) and table (3) and for estimator �̃�𝑠ℎ4  under PLF Concerning the classical 

estimator �̂� when (λ< 0.6) and (𝜆 ≥ 1) depend on figure (9) and table (4) are increasing function of 

m. 

iv. The estimators׳ relative risk �̃�𝑠ℎ1,  under PLF Concerning the classical estimator �̂�  when (0.8< 𝜆 <

1.2)  depend on figure(3),(4) and table (1) and for estimator �̃�𝑠ℎ2 under PLF Concerning the classical 

estimator �̂� when (0.6 < 𝜆 < 1) and (1 < 𝜆 < 1.2)depend on figure (5),(6) and table (2) and for 

estimator �̃�𝑠ℎ3 under Concerning the classical estimator �̂� when ( λ0.6 < 𝜆 < 1)𝑎𝑛𝑑(1 < 𝜆 < 1.8) 

depend on figure (7), (8) and table (3) and for estimator �̃�𝑠ℎ4  under PLF Concerning the classical 

estimator �̂�  when (0.6 < 𝜆 < 1) and (1 < 𝜆 < 1.4)   depend on figure (10) and table (4) are 

decreasing function of 𝛼. but the relative risk of the estimator �̃�𝑠ℎ1 and for estimators �̃�𝑠ℎ2  under 

PLF Concerning the classical estimator �̂� when (𝜆 < 0.6)and(𝜆 ≥ 1.4) depend on figure(3),(4), (6)  

and table (1), (2) and for estimators �̃�𝑠ℎ3 under PLF Concerning the classical estimator �̂� when( λ 

< 0.6) and (𝜆 > 1.6) depend  a  on figures(8) and table (3) and for estimator �̃�𝑠ℎ4   under PLF 

Concerning the classical estimator �̂� when (λ< 0.6) and (𝜆 ≥ 1.6) depend on figure (10) and table 

(4) are increasing function of 𝛼. 
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