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Abstract

In this paper, we study neutrosophic hesitant fuzzy ideal. We introduce the notions of neutrosophic
hesitant fuzzy primary ideal, neutrosophic hesitant fuzzy semiprimary ideal of a ring and discussion of

some important theorems and results.

Keywords: Neutrosophic hesitant fuzzy ideal of a ring (NHFI(Y)) , Neutrosophic hesitant fuzzy primary
ideal of a ring (NHFYI(Y)) , Neutrosophic hesitant fuzzy semiprimary ideal of a ring (NHFSYI(Y)).

1-Introduction

The theory of fuzzy set was introduced by Zadeh [22] in 1965 as generalized of a set and studied their
properties. Torra [19] in (2010) defined the notion of a hesitant fuzzy set (H.F.S) which further
characterized an element by a set of membership values by decreasing the loss of information during
fuzzification and defined the complement, union and intersection of H.F.Ss. Many authors gave some
results of the hesitant fuzzy set as [10],[12],[13],[14],[20],[21]. Mohammed Y. Abbasi, et al. [2] in
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(2018) introduced the hesitant fuzzy bi-ideal, hesitant fuzzy left (resp. right and two sided) ideal, and
hesitant fuzzy ideal in I"-semigroup and examined some of their characteristics. A. Abbas and Mohammad
[1] in (2021) introduced the notions of H. F ideal of a ring. Many authors gave some results of the hesitant
fuzzy ideal of aring as [8],[9], [18]. R. R. Rasool and M. J. Mohammed [15] in (2022) introduced a new

result related with hesitant intuitionistic fuzzy ideal of ring.

The neutrosophic sets (NS) are explored as an important generalization of the intuitionistic set by F.
Smarandache [16] in (2005). I. Arockiarani et al. [3] in (2013) introduced the concept of fuzzy
neutrosophic soft. In (2018) A .Solairaju, S .Thiruveni [17] introduced the concept of Neutrosophic fuzzy
ideals of near-rings. K.Hemabala, B.S.Kumar [7] in (2022) dispensed the theory of neutrosophic multi
fuzzy ideals of y near ring. in (2023) P. A. Parveen, M. H. Begum [11] introduced the new concept of
neutrosophic fuzzy (N. F.) bi-ideal of BS-algebras. Durgadevi. P., Devarasan. E. [5] in (2023) introduced

properties of neutrosophic fuzzy (N. F.) ideals in I Rings. Some new neutrosophic operations are explored.

In this work, we define a neutrosophic hesitant fuzzy primary ideal of a ring with some results about it.
Also, we proved the pre-image of the neutrosophic hesitant fuzzy primary ideal with respect to the
homomorphism between two rings. Next, we introduce the concept of neutrosophic hesitant fuzzy

semiprimary ideal of a ring and demonstrate new results about it.

2-Neutrosophic hesitant fuzzy primary ideal

Definition (2.1)
IfW= (Thw, Thyy Fhw) be a non-empty neutrosophic hesitant fuzzy (NHF) subset of a ring Y. Then W is
said
1) A NHF left ideal (NHFLI, for short) of Y if for all k,s € ¥:
Thyy (k = 5) 2 Ty, (K) N Ty, (5).
1) Ihw(k — S) 2 Ihw(k) n Ihw(s)'
Fp(k—s) € Fp, (k) UFy,,(s).
ThW (kS) 2 ThW (S)
2) Ihw(kS) 2 IhW(S).
Fhw(kS) c FhW(S).
i) A NHF right ideal (NHFRI, for short) of Y if for all k,s € ¥ :
Thyy (k = 5) 2 Ty, (K) N Ty, (5).
1) Ihw(k — S) 2 Ihw(k) n Ihw(s)'
Fhw(k — S) c Fhw(k) V) Fhw(s)'
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ThW (kS) 2 ThW (k)
Fh—W (kS) c FhW (k) .

iii) A NHF ideal (NHFI, for short) of Y if forall k,s € Y :

Ty (K = ) 2 Ty, (K) N Ty, (5).
l) Ihw(k - S) 2 Ihw(k) n IhW(S).
Fry (K= 5) € Fr, (K) U Fp, (5).

ThW (kS) 2 ThW (k) U ThW (S)
2) Ihw(ks) 2 Ihw(k) U Ihw(s)'
Fry (KS) € Fpy, (K) 0 Fpy, (5):

Definition (2.2)[4]

A proper ideal I of a ring Y is said to be primary ideal of Y if, V k, s € Y such that ks € I, then either k € I
ors™ €I, forsomen € N.

Definition (2.3)

A neutrosophic hesitant fuzzy ideal W = (Ty,, In,,, Fn,,? Of @ ring Y is called to be neutrosophic hesitant
fuzzy primary ideal of a ring Y (in short, NHFYI) if for any k,s € Y, then

Thw(ks) = Thw(k), Ihw(ks) = Ihw(k), Fhw(ks) = Fhw(k)-

or

Thyy, (ks) € Ty, (s"), Ip,, (ks) € I, (s"), Fp, (ks) 2 Fp, (s").

NHFYI(Y) represents the collection of all NHFYIs in Y.

Example(2.4)
Let (Z,+,.) bearing,and W = (T, I, Fn,,) be a N.H.F subset of Z as follows:

_ ((0.1,0.4] ifkiseven
Ty () = {(0.1,0.3] ifkis odd

Lo (k) = {[0.2,0.7) if kis even
hwi™ 7 1(0.2,0.5) ifkisodd

0.3,0.5) ifkiseven
Fi 00 = {050

(0.2,0.6) ifkisodd
Then, we can easily prove that W € NHFYI(Z).

Theorem (2.5)
Let Y be a ring and V, W € NHFYI(Y), where V = (T, In,, Fn,)s W = (Tpyy» Inyys Fry ). ThEN VAW E
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NHFYI(Y).
Proof

Suppose that V, W € NHFYI(Y),and a,b €Y
Clearly, VN'W € NHFI(Y),
VW = (Thy, Inys Fry) 0 Thyy Ingy Fr) = (Thy N oy Tny N Tngys Fry U Fry)

(Thv n Thw)(ab) :U[y1eThV(ab)],[yzeThw(ab)] min{yl’yz}

:U[yleThV(a)],[yzeThW(a)] min{ys,y2} = (Thy N Tay ) @).

Then (Ty, N Ty, )(ab) = (T, N Ty, ) (@) (1D
Similarly,

(Iny N Iny)@D) = (Iny N 1ny, ) (@) )
(Fhy U Fry, ) @b) = (Fay U Fry ) (2) 3)
From (1), (2) and (3), we get VN W € NHFYI(Y).

or

(Thv n Thw)(ab) =U[y1eThV(ab)],[yZEThW(ab)] min{yl'yz}

Sy, Ty (0m)] [Ty, (™) min{ys, ¥2} = (Tay N Try, ) ("), for some n € N.

Then (Ty, N Ty, )(ab) € (Tp, N Tp,, ) (™) (4)
Similarly,

(Iny N 1py,)(@D) € (In, N1y, ) (B™) (5)
(Fpy, U Fpy, )(@b) 2 (Fp, U Fp,, ) (™) (6)

From (4), (5) and (6), we get VN W € NHFYI(Y).

Proposition (2.6)

Let {W; ,i € I} be a family of a NHFYI(Y), then (n;¢; W;) is a NHFYI(Y).
Proof

Similarly to prove theorem (2.5).

Theorem (2.7)
Let Y be a ring and V, W € NHFYI(Y), where V = (T, In,, Fn,)» W = (Tyyy» Inyys Fry, ). ThENVUW E
NHFYI(Y).
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Proof
Suppose that V, W € NHFYI(Y), and a,b €Y.
Clearly, VU W € NHFI(Y),

VUW = (Tyy, lny, Fry) U Ty Ingys Fr? = (Thy U Trys Iny U Tnys Fry 0 Fry,)

(Iny U Iny, ) (@b) =Yy 1etny @0)] [72€1ny (ab)] max{y.,y.}

:U[)’1EIhV(a)],[YZEIhW(a)] max{yl! yZ} = (Ihv U Ihw)(a)

Then (I, U Ip,,)(ab) = (In, U Iy, )(@) (7)
Similarly,

(Thy U Tay ) (@b) = (Tpy, U Try, ) (2) (8)
(Fhy N Fry,)@b) = (Fay N Fry ) (@) ©)
From (7), (8) and (9), we get VU W € NHFYI(Y).

or

(Iny U In,, ) (ab) =Yly1e1n @b)] [y261ny (ab)] XYL Y2

gU[Y1EIhV(bn)].[)’2EIhW(bn)] max{y,,y,} = (Ihv U Ihw)(bn)’ for some n € N.

Then (I, U I, )(ab) € (In, U I, ) (™) (10)
Similarly,

(Thy U Ty, ) (@b) € (Ty, U Ty, ) (B™) (11)
(Fn, N Fpy,)(@b) 2 (Fp, N Fp,, ) (0™ (12)

From (10), (11) and (12), we get VU W € NHFYI(Y).

Proposition (2.8)
Let {W;,i € I} be a family of a NHFYI(Y), then (U;g; W;) is a NHFYI(Y).
Proof

Similarly to prove theorem (2.7).

Definition (2.9)
Let X be a non-empty set and W be a NHF set in X, then the (5, 9, y)-level set defined by
W0, = {x eX: Ty, 26,In, 29,F,, Sy} where §,9,y € [0,1] with §* + 9% +y~ < 3.
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Theorem (2.10)

Let A = (Ty,,1pn,,Fpn,) be NHFYI of a ring Y, then AH(s.s,w is primary ideal of Y if T,,, (0) 2 6, I, (0) 2
9, Fp,(0) €.

Proof

Let Ty, (0) 26, 1,,(0) 29, Fy, (0) S, then AH(&M * 0

Leta,be Y, ab € AH(&&V)'

Since ab € Al oy implies Ty, (ab) 2 6, 1,,(ab) 29, Fp, (ab) S .

Since A be NHFYI of aring Y, then

Tp,(ab) = Ty, (a) 2 8, I, (ab) =1,,(a) 2 9 and F,, (ab) = F,,(a) S .

Implies Ty, (a) 26, 1,,(a) 29and F,(a) Sy thena € AH(SM).

If

Tp, (™) 2 Ty, (ab) 2 §, I, (b™) 2 1, (ab) 2 9 and F,, (b") € Fp,, (ab) S .

Implies Ty, (b™) 2 6, I, (b") 2 9 and Fp,, (b™) Sy thenb™ € AH(&B‘y), for some n € N.
ThenVva,b €Y, abe€ AH(&S‘V) imply a € AH(&W or b" e AH(S,S,y)'

Hence AH(SSy) is primary ideal of Y.

Theorem (2.11)

Let A be a constant then A € NHFYI(Y).

Proof

Let A = {(k, Ty, (), 1, (K),Fp, (K)) : k € Y}, where Ty, (k) = 8,1, (k) =9, Fp, (k) =, 8,9,y €[0,1]
andleta,b € Y¥,thenab € Y.

Clearly, A € NHFI(Y)

Tp,(ab) = 8 = Ty, (a), then T, (ab) = Ty, (a);

Ip,(@b) =9 =1,,(a), then I, (ab) = I, (a);

Fp,(ab) =y =Fp,(a), then Fy,(ab) = F,(a).

Then A € NHFYI(Y).

or

Since b € Y, then b™ € Y, for some n € N, imply T, (b") = §, I, (b") =9, Fp,, (b") =,
Tn, (ab) = & = Ty, (b™), then T, (ab) € Ty, (b™);

In,(ab) =9 =1, (b™), then I, (ab) € I,,, (b™);

Fp,(ab) =y = Fp, (b™), then F,, (ab) 2 F,, (b™).
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Then A € NHFYI(Y).

Proposition (2.12)

1) Let A? is a neutrosophic hesitant fuzzy empty set, then A? € NHFYI(Y).

2) Let Al®1] js a neutrosophic hesitant fuzzy complete set, then Al%1l € NHFYI(Y).
Proof

Similarly to prove theorem (2.11).

Theorem (2.13)
Let g: M — M* be an onto homomorphism of a rings
1) If A € NHFYI(M*), then g~1(A) € NHFYI(M).
2) If A € NHFYI(M), then g(A) € NHFYI(M™®).
Proof (1).
Suppose g: M — M* be a homomorphism from a ring M into a ring M*.
Let A € NHFYI(M*), and a,b € M.
Clearly, g~1(A) € NHFI(M),
g7 (T, )(@b) = Ty, (g(ab)) = Ty, (g(@)g(®)) = Tr, (g(@)) = g7 (T, ) (@.
Then g‘l(ThA)(ab) = g‘l(ThA)(a)
Similarly,
97" (Iny) @) = g7 (1n,) @
g‘l(FhA)(ab) = g_l(FhA)(a)
Thus, from (13), (14) and (15), we get g~1(A) € NHFYI(M).
or
9~ (Ty, )(ab) = Ty, (g(@b)) = Ty, (g(a)g(b))
C Tp,(g(b))"
= Ty, (g(®™) = g7*(T,,)(b™), for some n € N.
Then g~*(Ty, )(ab) € g~ (T, ) (B™)
Similarly,
g‘l(IhA)(ab) c g_l(IhA)(bn)
9~ *(Fp,)(@b) 2 g=*(Fp, ) (b
Thus, from (16), (17) and (18), we get g~1(A) € NHFYI(M).

(13)

(14)
(15)

(16)

(17)
(18)
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Proof (2)
Similarly to proof (1).

3-Neutrosophic hesitant fuzzy semiprimary ideal

Definition (3.1)[6]
Let I be an ideal of a ring Y then I is called to be semiprimary ideal of Y if, V k, s € Y, ks € I, implies that

either a power of k or a power of s belongs to I.

Definition (3.2)

A neutrosophic hesitant fuzzy ideal A = (T, 1,,Fp,) of a ring Y is called neutrosophic hesitant fuzzy
semiprimary ideal of a ring Y (in short, NHFSYI) if for any k,s € Y,

Either Ty, (ks) € Ty, (k™), I, (ks) € I, (k™), Fp, (ks) 2 Fp, (k™).

or Ty, (ks) € Ty, (s™), I, (ks) € 1, (s™), Fp, (ks) 2 Fp,, (s™), for some n,m € N.

NHFSYI(Y) represents the collection of all NHFSYIs in Y.

Example (3.3)

Let (Z,+,.) bearing, and V = (T, Iy, Fp, ) be @ N.H.F subset of Z as follows:

_((0.1,0.4] ifkiseven
Ty (K) = {(0.1,0.3] ifk is odd

[0.2,0.7) ifkiseven
(0.2,0.5) ifkisodd

_([0.3,0.5) ifkiseven
Firy (1) = {(0.2,0.6) ifkis odd

Then, we can easily prove that V. € NHFSYI(Z).

1,09 = {

Theorem (3.4)

Let Y be a ring and V,W € NHFSYI(Y), where V = (Ty,, I, Fp, ), W = (Ty,,, Ipy,» Fpy, )- ThEN VAW E
NHFSYI(Y).

Proof.

Suppose that V, W € NHFSYI(Y), and a,b € Y, then for some n,m € N.

Clearly, VN W € NHFI(Y),

VW = (Thy, Iy, Fry) 0 Thyy Ingy Frw) = (Thy N Tryo Tny 0 Tnys Fry U Fry)

(Fhv U Fhw)(ab) :U[ylthV(ab)],[yzthW(ab)] max{y:, y2}
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2U[3’1€Fhv(an)],[hEFhW(a“)] max{y,, y,} = (Fhv U Fhw)(a“)

Then (Fy, U Fp,, )(ab) 2 (Fp, U Fp,,)(@") (19)
Similarly,

(Thy N Thy, ) (@b) € (Ty, N Ty, ) (@) (20)
(I, N Iny,)(@b) € (In, N1y, )@Y (21)
From (19), (20) and (21), we get VN W € NHFSYI(Y).

or

(Fhv U Fhw)(ab) =U[ylthv(ab)],[yZEFhW(ab)] max{yl,yz}

2U[J’1EFhV(bm)],[yZEFhW(bm)] max{yl, yZ} = (Fhv U Fhw)(bm)

Then (Fp, U Fy,, )(ab) 2 (Fp, U Fp,, ) (b™) (22)
Similarly,

(Thy N Thy)(@b) S (Thy, N Thy, ) O™ (23)
(Iny N 1py,) (@) € (In, N1gy, ) (O™ (24)

From (22), (23) and (24), we get VN W € NHFSYI(Y).

Proposition (3.5)
Let {W;,i € I} be a family of a NHFSYI(Y), then (N;¢; W;) is a NHFSYI(Y).
Proof

Similarly to prove theorem (3.4).

Theorem (3.6)

Let Y be a ring and V,W € NHFSYI(Y), where V = (Ty,, I, Fp, ), W = (Ty,,, Ip,» Fpy, ). ThENVUW E
NHFSYI(Y).

Proof

Suppose that V, W € NHFSYI(Y), and a,b € Y, then for some n,m € N.

Clearly, VU W € NHFI(Y),

VUW = (Tyy, lny, Fry) U (Thys Ingys Frw? = (Thy U Trys Iny U Lnys Fry 0 Fry,)
(Thy U Thy, ) (ab) :U[yleThV(ab)] [¥2EThyy (ab)] max{ys, y2}
—_ n
SYly T, M) [2€Tryy (@M max{y1, y2} = (Tay U Tay ) (@")

Then (ThV U Thw)(ab) c (Thv U Thw)(an) (25)
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Similarly,

(IhV V) Ihw)(ab) c (IhV V) Ihw)(an) (26)
(Fny NFpy,)(@b) 2 (Fy, N Fpy, )@ (27)
From (25), (26) and (27), we get VU W € NHFSYI(Y).

or

(Thv U Thw)(ab) :U[yleThV(ab)] ,[yzeThw(ab)] max{yl’yz}

gU[y1EThV(bm)],[yzeThW(bm)] max{yy,y.} = (Thv U Thw)(bm)

Then (Ty, U Ty, )(@b) S (T, U Tpy, ) (6™) (28)
Similarly,

(Iny U Ipy, ) (@b) € (In, U Iz, ) (B™) (29)
(Fp, N Fpy, )(@b) 2 (Fp, N Fp,, ) (b™) (30)

From (28), (29) and (30), we get VU W € NHFSYI(Y).

Proposition (3.7)

Let {W;,i € I} be a family of a NHFSYI(Y), then (U;¢; W;) is a NHFSYI(Y).

Proof

Similarly to prove theorem (3.6).

Theorem (3.8)

Let A = (Ty,,In,,Fpn,) be NHFSYI(Y), then AHs g, is semiprimary ideal of Y if T, (0) 2 8, 1,,(0) 29,
Fn,(0) S.

Proof

Let Ty, (0) 26, 1,,(0) 29, Fp, (0) S, then Aoy # )

Leta,b€e Y, ab € AH(&M

Since ab € AH(&B_Y) implies Ty, (ab) 2 §, I, (ab) 2 9, Fp, (ab) S y.

Since A be NHFSYI(Y), then

Tp,(@") 2 Ty, (ab) 2 8, 1, (a") 2 I, (ab) 2 9 and Fp, (a") € F,(ab) S .

Implies Ty, (a") 2 8,1, (a") 2 9 and Fp, (a") Sy thena" € AH(&S_y), for some n € N.
If

Tp, (b™) 2 Ty, (ab) 2 6, I, (b™) 21, (ab) 2 9 and Fp,, (b™) S Fp, (ab) Sy

Implies Ty, , (b™) 2 8, I, (b™) 2 9 and F,, (b™) Sy thenb™ € AH(&S’W for some m € N.

10
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ThenVva,b €Y, abe€ AH(&S‘Y) imply a" € AH(s,e,w orb™ e AH(&S‘V)

Hence AH(My) is semiprimary ideal of Y.

Theorem (3.9)

Let g: R = R* be an onto homomorphism of a rings

1) If A € NHFSYI(M*), then g~1(A) € NHFSYI(M).

2) If A € NHFSYI(M), then g(A) € NHFSYI(M™).

Proof (1)

Similarly to proof (2).

Proof (2)

Suppose g: M — M* be an onto homomorphism from a ring M into a ring M*.

Let A € NHFSYI(M), and y,e € M*, since g onto homomorphism, then there exist a,b € M such that
g@ =y=a=g"1y),g(b) =e=b=g"1(e), forsome n,m € N.

(10,11 = g([0.1] = Fi,) ) (7€) =Nacy-1(y) b=g-1(e) Frg (2D)

2Nn_g1m) Fan@) = (10,11 = g([0,1] = Fy,)) (7

Hence

(10,11 = g(10,4] = Fn,)) (ve) 2 ([0,1] = g([0.1] = Fy,,) ) (Y™ (1)
Similarly,

9(Tr,) ) € g(Tr, )™ (32)
9(In,) ve) € g(In,) ™) (33)

Thus from (31), (32) and (33) we get g(A) € NHFSYI(M).

or
(10,11 = g(10,1] = Fn,) ) (7€) =Nazg(5) g (e) Firn (ab)

2Npm_g-iemy Fry 0™ = ([0,1] = g([0,1] = Fy,) ) (™

Hence

(10,11 - g(10,1] - Fu,)) (ve) 2 ([0,1] - g([0,1] — Fy,) ) (™) (34)
Similarly,

9(Tr, ) ve) € g(Tn, ) (€™ (35)
9(1n,)ve) < g(1n,) (€™ (36)

Thus from (34), (35) and (36) we get g(A) € NHFSYI(M).

11
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6-Conclusion

In this paper we introduced the concept of neutrosophic hesitant fuzzy primary ideal and also introduced

neutrosophic hesitant fuzzy semiprimary ideal of a ring. Then prove several theorems pertaining to this sets

illustrate with example.
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