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Abstract: 

      Background: High-quality sleep plays a major role in improving brain development and lifestyle.  

Electroencephalogram (EEG) signals are the most important signals collected by polysomnography (PSG) used for 

sleep staging. Manual sleep scoring is a difficult task, however, developing an automatic sleep stage is important to 

support experts to detect sleep disorders in early stage. Method: In this paper, an automatic single-channel EEG 

signal sleep stages classification model is proposed.  A Discrete Wavelet Transform (DWT) based EEG feature is 

suggested. Three types of features including entropy, linear, and statistical features are extracted and evaluated to 

score sleep stages. First, we applied the DWT to each 30-second epoch to decompose the signal into five bands. 

Then, EEG features are extracted from each band. EEG signals from two datasets named Dreams, and EFD sleep are 

used to evaluate the proposed model. Results: We interpreted the results using essential statistical criteria. The results 

showed that the use of combination features improves the sleep classification results. Based on the results, with the 

Dream dataset, the classification accuracy rate, Kappa coefficient, and F-score were found 0.97,0.92, 0.95 For the 

second database, we obtained 0.95,0.94, 0.93 for accuracy rate, Kappa coefficient and F-score respectively.  

Conclusions: We developed a method to score sleep stages that can be used by healthcare providers to identify sleep 

disorders. 
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1-Introduction  

    Sleep is a complex and active process that involves activities from different neurons. Sleep is an 

essential phenomenon that maintains learning and memory functions as well as protects metabolizable energy.  Sleep 

experts classified sleep into main two stages, non- rapid eye movement (NREM) and rapid eye movement (REM). 

The REM stage in which dreams occur, lasts 5-20 minutes at each 90 minutes’ interval. While during NREM sleep, 

neurons become less active, and metabolic rate decreases, as well as blood pressure, and heart rate.  

 Sleep disorders are among the leading issues that affect the quality of life as sleep disorders cause several life-

threatening diseases. Mainly, sleep disorders can be diagnosed using the polysomnography (PSG) tool which is a 

collection of cardiorespiratory, and neurophysiologic recordings.  In clinical units, expert manually scoring PSG. 

However, this process is tiring and time-consuming. In 1968, the first sleep scoring rule and technology was 

introduced by Rechtschaffen and Kales (R & K). Then, in 2007, this technique was modified by the American 

Academy of Sleep Medicine (AASM), who’s published a new update as a second version in 2012. Based on the lates 

update carried out by the AASM, the sleep stages divided into wake (W), stage 1 (N1), stage 2 (N2), stage 3 (N3), 

and REM, in which the S4 was removed from the rule list of sleep stages. The AASM rules are split whole night 

sleep into epochs of 30-s- intervals, then, each epoch is assigned to one of sleep stages  in the literature, EEG signal 

is the most important PSG signal that is commonly used for sleep scoring compared with EOG, ECG. A High 

performance can be achieved by using this signal; however, it is not always easy to extract the most effective features 

from this signal.  Recently, Goldberger A.L et al., [1] proposed hand engineered features-based EEG model. In that 

study, they adopted frequency, time, and time-frequency domain EEG features. The extracted features were sent into 

Support Vector Machines (SVM), Random Forests (RF), and Neural Networks (NNs). Shao et al., [2] designed a 

hybrid intelligent model integrating data intelligence and knowledge intelligence. Cheng et al., [3]  Utilised sleep 

classification model based on a generative adversarial network ensemble deep learning model to address the 

imbalance issue in sleep scoring. Abdulla et al., [4] designed a multi-channel spectrum-based image model to score 

EEG sleep. Each EEG segment was converted into an image using a time-frequency image. The diffident texture 

features were extracted using spectrum pattern analysis. 

Other researchers employed transformation techniques and graph-based models. For example, Guo et al. [5] adopted 

a relative wavelet energy coupled with an artificial neural network. Jo et al. [6] employed a genetic algorithm based 

on a fuzzy classifier. In that study, the fast Fourier transform with a hanning window was applied to decompose EEG 

signals. Doroshenkov et al. [7] applied a Markov model based on a fast Fourier transform filter. Various features 

were extracted and then classified.  More recently, graphs-based model has been designed to classify sleep stages. 

Zhu et al. [8] identified EEG sleep stages using visibility graphs and horizontal visibility graphs. A support vector 

machine was used to classify graph features into the six sleep stages.  Shi et al. [9] suggested multi-a collaborative 

representation model based on a multi-learning algorithm. A k-means classifier and dictionary learning method were 

employed in classification phase. 

In this study, we used two different databases to evaluate the proposed model including a total of 17,758 epochs 

extracted from 28 subjects. Single-channel EEG was adopted to score sleep stages. The wavelet-based model was 

designed to extract features from each 30s epoch of the EEG signals. Linear, statistical, and entropy features were 

http://jceps.utq.edu.iq/
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extracted and evaluated. All EEG recordings were normalized, and then we split the data into training, and testing 

sets using 10-fold cross-validation. The extracted features were sent into different ensemble and individual 

classifiers. The results were interpreted using statistical measures including Precision, F-score, and Kappa. Despite 

the disadvantage of working on single-feature EEG signals, the obtained results prove the success of using the 

multifeatured model for sleep stages. 

In this paper, and we designed a sleep stages classification model based on DWT and entropy features. We have 

combined different entropy features. Based on our knowledge, this approach has not been used in sleep stages 

classification before.  

2. Experimental EEG recordings  

     We used two EEG datasets to evaluate the proposed model to identify sleep stages from EEG signals. We gave a 

brief description of the datasets used in this paper.  

2.1. Dataset_1 (Sleep-EDF dataset) 

 The first EEG dataset was collected from PysioNet [10][11][12][13]. The Sleep-EDF datasets is free available. 

Each polysmnographic (PSG) recording is included one EOG signal, two EEG signals, one EMG signal, 

Resporonasal, Eventmarker, EMG Submenta, and Tempbody. EEG signals from 61 subjects were collected. In this 

paper, we selected 13 subjects randomly and employed those EEG recordings for the evaluation. We selected EEG 

signals from Pz-Oz channel. The datasets were collected in the period of 1987 to 1994. Different subjects from 

Caucasian males and females were involved. European data format (EDF) technology was used to store EEG 

recordings.   A frequency of 100 Hz was adopted to sample the original EEG signals. The R& K criteria was 

employed to segment EEG recordings into epoch of 30 seconds (3000 data points) [14]. All segments were then 

named as AWA, S1, S2, S3, S4, REM. Table 1 shows the distribution of segments that were used in this study. 

2.2. Dataset_2 (St. Vincent’s University) 

Another dataset from at St. Vincent’s University Hospital was used for further evaluation of the proposed model. A 

period of 6 months was spent to record the dataset from different subjects (Goldberger et al., 2000). In this paper, we 

selected all subjects for evaluation. The demographic information of subjects was recorded as follows: age 50±10 

years, 21 males and 4 females, weight range 25.1-42.5 kg.  The PSG was included 2 EOG channels, 2 EEG channels 

(C3-A2 and C4-A1), and 1 EMG channel. We selected the C3-A2 EEG channel. EEG signals were divided into 

intervals of 30 seconds (3000 data points).  

3. The proposed Method for EEG sleep classification 

In this paper, EEG sleep classification model is presented   using DWT based on hybrid feature extraction 

model. Each epoch of 30 second is passed through DWT. As a result, each EEG segment was decomposed 

into five bands. To reduce the dimensionality of each band, a set of features is extracted. In this paper, three 

types of features are extracted and investigated including entropy, linear, and statistical features. The 

http://jceps.utq.edu.iq/
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extracted features are analysed and selected using statistical metrics. The sleeted features are sent to 

assemble machine learning models to classify the characteristics of the EEG into five sleep stages.  Fig 4 

depicts the methodology of the proposed model.  

3.1 Discrete wavelets transform (DWT) 

DWT is the most effective model to analyse nonstationary signals such as EEG signals.  We employed the discrete 

Wavelet transform (DWT) to analyse EEG signals. The DWT of signal 𝑥 can be  defined [15]as 

       𝐷𝑊𝑇(𝑖, 𝑗) =
1

√|2𝑖|
∫ 𝑥(𝑓)𝜓 (

𝑡 − 2𝑖𝑘

2𝑖
)

 ∞

∞

           (1) 

where 𝐷𝑊𝑇 (𝑖, 𝑗) refers to the wavelet coefficients,  𝑥(𝑓) denoted to the EEG signal, 𝜓(. ) is a wavelet function, and 

2𝑖 𝑎𝑛𝑑  𝑘 𝑎𝑟𝑒 scaling factors. 

The EEG signals are decomposed into different frequency bands. A set of approximations and details were generated 

after passing the EEG signal via a series of high and low-pass filters. 

Figure 2 shows an EEG epoch is being anlysed into a set of approximations and details. At each iteration, we 

employed two digital filters and two down-sampled outputs are employed. We obtained the detail (D1) and the 

approximation (A1), at the first level.  For further decomposition, the same process can be performed for the 

approximation A1. This process is repeated to obtain the desired output. To identify the appropriate number of the 

decomposition level as well as the type of wavelet, we conducted several experiments in this paper. We found that 

the Daubechies (db5) delivered good results compared to other wavelet functions. The five sub-bands were denoted 

as D1, D2, D3, D4, D5 A5 refers to the decomposition approximation coefficients and D1-D5 are the decomposition 

detail coefficients. It was observed that the six-level wavelet decomposition and Daubechies (db6) yielded better 

results compared to others. Therefore, in this study, D5 was chosen empirically. 

 

http://jceps.utq.edu.iq/
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Fig. 1. Methodology of EEG sleep identification 

 

 

                    

         

 

 

 

         

 

3.2 Features extraction 

Feature extraction is the most important phase of the EEG sleep classification.  When the features are not 

selected well the classification rate can be degraded.  As a result, it is an important aspect to design an 

effective model to pull out the most effective features from EEG signals.  In this work, the EEG feature 

extraction model is designed based on statistical and entropy features. After the decomposition of EEG 

signals into five bands, each band was passed to the feature extraction model to extract EEG features. 

Figure 3 describes the feature extraction model. We  extract 12 statistical features and 3 entropy  features  

from each of the five bands (𝛿, 𝜃, 𝛼, 𝛽, 𝛾).  A Total (5 x 13) feature vectors were extracted from each 

EEG segment.  As a result, each EEG signal is represented as a matrix of NXN (5X13), where N refers to 
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               Fig. 2. EEG epoch is being decomposed into three levels.  
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the number of segments for each EEG signal. The features are tested to evaluate their performance. All the 

features were evaluated using statistical metrics.   

                                                            

 

 

 

 

 

 

 

 

                                                    Fig. 3. EEG epoch is being decomposed into three 

 

3.2.1 Statistical features                                                                                                                                  

 Based on previous studies, EEG signals exhibit symmetric and skewed behaviour. For symmetric behaviour, we 

employed the mean and the standard division to achieve that. For the skewed distribution, we employed the following 

feature {median, range and quartile} to measure the centre of data. We utilised other statistical features, such as 

minimum, variation, skewness and kurtosis to figure out the important information about EEG signals. A total 12 

features of {median, second quartile, standard deviation, maximum, minimum, mean, mode, range, first quartile, 

variation, skewness, kurtosis} were extracted to represent EEG signals. 

Table 1 provides a short explanation of the statistical features. The 12 features are denoted as { 𝑋1, 𝑋2, 𝑋3, … . , 𝑋12}. 
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3.2.2 Linear features  

In addition, we also extract nonlinear features such as Shannon entropy, dispersion entropy, and approximate 

entropy [9]. 

1. Approximate entropy: is a feature that is used to measure the amount of regularity and unpredictability of a 

signal.  

2. Shannon entropy: is applied to measure the degree of uncertainty of a random time series.   The larger value 

of Shannon entropy means more randomness and uncertainty of the timeseries Shannon entropy can be 

defined as: 

𝐻 = − ∑ 𝑆𝑖

𝑛

𝑖=1
ln(𝑆𝑖)  (2)  

             Where 𝑆𝑖 is the probability of the 𝑖 sample in the timeseries value and 𝐻 is the Shannon entropy.  

3. Dispersion entropy: is employed to assess the complexity or irregularity of signals [16].  

                                    

𝐷𝑖𝑠𝑝𝐸𝑛(𝑚, 𝑐) = − ∑ 𝑝[ 𝑦𝑚(𝑖)] log(𝑝[ 𝑦𝑚(𝑖)])      (3)

𝑐𝑚

𝑖=1

 

 

3.3 Feature selection model based on statistical metrics  

In this paper, a features selection model integrated Student t-test, and Wilcoxon test is designed. The student’s t-test 

approach is based on the significance between two samples. The features with a higher t-value are selected.  The 

second metric is Wilcoxon test which is a non-parametric test. It determines whether the average of two samples 

vary or not based on the normally distributed.  

To enhance the sleep stages classification accuracy, the noisy EEG features are removed in this paper using statistical 

metrics. Our results showed that not all features are important to classify EEG sleep stages. Tables 2, and 3 report 

the results of feature selection. We can observe that some features did not pass the test.  We applied the t-test which 

works according to the following hypothesis.  

𝐻0: 𝜇1 = 𝜇2 𝑣𝑠 𝐻1: 𝜇1 ≠ 𝜇2 

where 𝜇1 refers to the average of the first sample,  𝜇2 denotes to average of the second sample, and the level of 

significance α=0.05. When the p-value ≤0.05 the features are accepted, while the features with values p-value ≥0.05 

are rejected. Based on the t-test, we found that the statistical features {range variance, standard deviation, mean, 

max, median, and kurtosis} can be used to differentiate among sleep stages. For entropy features, it was found that 

the features { Shannon entropy and approximation} are accepted and passed the test.  

In this paper, we also employed the Wilcoxon test to select the most appropriate features to classify EEG sleep stages. 

http://jceps.utq.edu.iq/
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Based on Wilcoxon test the following criteria are adopted  𝐻0: refers to features  that are belonged to the same 

population vs 𝐻1: refers to the features that not belonged to  the same population. We considered that the features 

with p ≤0.05 are accepted, while the features with p ≥0.05 are considered to be not significant. As a result, not features 

are accepted to represent EEG sleep stages. The new results based on Wilcoxon test are presented in Table 3.  The 

results of Wilcoxon are compatible and matched with t-tes results. 

 

                           

                                                           Fig. 4. EEG features selection model  
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Table 2 

Statistical feature evaluation using t-test 

Stag

e 

Max  Min  Range  Std  Mean  Median  skewness Kurtosis First 

Q 

Second 

Q 

mode Third 

Q 

AW 0.0111 0.017

7 

0.017

6 

0.031 0.0181 0.0179 0.0121 0.0117 0.5926 0.6119 0.6290 0.5822 

S1 0.042

0 

0.028

7 

0.202

0 

0.032 0.1120 0.0132 0.0228 0.0109 0.6210 0.6212 0.5311 0.7221 

S2 0.013

0 

0.003

4 

0.003

2 

0.056 0.0011 0.0370 0.0216 0.00011 0.6230 0.7243 0.5429 0.6220 

S3 0.023

0 

0.022

1 

0.030

5 

0.021 0.0529 0.1101 0.0353 0.0224 0.4922 0.4120 0.546 0.5821 

REM 0.032

1 

0.037

2 

0.054

0 

0.041 0.122 0.0117 0.0461 0.0176 0.5621 0.6148 0.5442 0.7221 

Statistical feature evaluation using Wilcoxon 

AW 0.021

4 

0.024

5 

0.021

2 

0.012 0.0121 0.0032 0.0104 0.01061 0.5324 0.7612 0.6876 0.5656 

S1 0.032

1 

0.0112 0.021

3 

0.021 0.1321 0.0103 0.0205 0.01321 0.6245 0.5678 0.5789 0.7789 

S2 0.021

7 

0.013

4 

0.0311 0.012 0.0453 0.0`12 0.0205 0.00431 0.7543 0.7123 0.7855 0.6767 

S3 0.013

2 

0.015

1 

0.021

4 

0.002 0.0532 0.1211 0.0312 0.02065 0.5642 0.5431 0.6556 0.5876 

REM 0.021

3 

0.012

1 

0.021

3 

0.011 0.1210 0.0100 0.0404 0.01021 0.5875 0.7863 0.6402 0.7655 
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3.4 Classifiers 

We employed several classification models. In this section, we explain those models.  

1. SVM is an efficient model that is used for binary classification. The algorithm employed a hyperplane between 

two classes to classify samples based on one or more feature samples [17].  

2. KNN is un-supervised model that is employed as a clustering.   The algorithm finds the number of nearest 

neighbours among data using a distance metric such as Euclidean distance. Then, it clusters the datapoints based 

on the results of the first step.   

3. Bagging: it is based on a uniform majority voting technique. This technique is used to group the output of 

classifiers to classify the test sample of an ensemble.  

4. Boosting: it’s like bagging ensemble.  It uses the voting strategy in cases of classification.  

5. Stacking: it employs a Meta classifier to combine the output of various models in one output. The classification 

is made by the top layer model using the bottom layer's output. 

 

 

 

3.5 Performance evaluation  

Table 3 

Entropy feature evaluation using Wilcoxon 

Stage Appr. entropy  Desp.entropy  Shan.entropy  

AW 0.101 0.5301 0.0380 

S1 0.1221 0.6038 0.1109 

S2 0.0341 0.5503 0.0285 

S3 0.0396 0.6331 0.0334 

REM 0.0524 0.8120 0.0188 

Entropy feature evaluation using t-test 

AW 0.102 0.5678 0.0332 

S1 0.1002 0.7864 0.1345 

S2 0.0345 0.5445 0.0564 

S3 0.0456 0.6589 0.0344 

REM 0.0112 0.5678 0.0176 

http://jceps.utq.edu.iq/
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The following metrics are used for evaluation the proposed model.  

• Accuracy(ACC) =
TP+TN

TP+TN+FP+FN
                                            (4)  

• Sensitivity(SEN) =
TP

TP+FN
                                                       (5)  

• Specificity(SPE) =
TN

TN+FP   
                                                    (6)  

• Precision(Prec) =
TP

TP+FP
                                                     (7)  

• F − score = 2 ×
Precision×Sensitivity

Precision+Sensitivity
                                     (8)  

TP: refers to the total number of stages that are correctly recognized. TN: denotes to the total number of stages who 

are appropriately classified wrongly. FN:  is the total number of stages that were mistakenly classified.  

4.Experimental Results 

In this paper, a robust model is proposed to classify EEG sleep stages. In this experiment, we discussed the main 

findings.  

To figure out the relationship between sleep stages, and to reflect the actual   situation of detection of sleep stages, 

we classified different classes of sleep-stages. Identifying REM and NREM is essential task for health provider to 

identify catalepsy disorder. In this paper, we created several classes of sleep stages as described in Table 4.  

The classification performance of the proposed model was evaluated based on 10-folds cross-validation metric, 

specificity and sensitivity and the proposed model was integrated with several machine learning techniques named 

KNN, Random Forest, Boosted ensemble, Gradient boosting, Bagged Ensemble, SVM, and ensemble algorithms. 

The EEG data were randomly divided into 10 samples. At each experiment, one sample was used in the testing set 

and remaining samples were employed as in the training set. 

 

 

 

 

 

 

 

 

 

 

 

4.1 Features selection evaluation  

Table 4 

Different classes of EEG sleep stages 

Classification problem Sleep Group 

Six sleep classification issue AW, N1, N2, N3, N4 and REM 

Five Sleep Classification issue AW, N1, N2, SWS (N3, N4) and REM 

Three sleep stages classification issue AW, NREM, and REM 

Two sleep stages classification issue AW, and sleep (N1-N4, REM) 

http://jceps.utq.edu.iq/
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First, the extracted features were evaluated to select the most powerful ones. Table 5-7 reports the obtained results 

based on different combination of features.  Table 5 shows the results based on statistical features. As mentioned in 

section XX, eight statistical features named {max, range, std, min, mean, median, skewness, kurtosis} were selected 

based on feature selection model. The selected features set was used to classify EEG sleep stages. Based on the 

results, the gradient boosting, stack ensemble, and Boosted ensemble recorded the highest classification average 

among the models with accuracies of 0.91%, 0.92% and 0.90% respectively. However, KNN ranked the lowest model 

among classification models.   

Another experiment was also conducted to evaluate the linear features. In this experiment, we adopted the two 

selected features using the feature selection model. The linear features named {approximation entropy, Shannon 

entropy} were used to classify sleep stages.  The results showed that the stacked ensemble obtained the best accuracy 

followed by gradient boosting. However, KNN and Random Forest scored the lowest accuracy among the 

classification models.  The results of six sleep stages are presented in Tables 5 and 6.  

The combination of the statistical features and the nonlinear features were tested and used to classify sleep stages. 

Table 7 reports the sleep classification results. We can observe that the integration of   statistical features and the 

nonlinear features improved the classification accuracy by for all models. it was observed that the stacked ensemble 

showed a high performance, however, the KNN recorded also the lowest accuracy.  We considered   the combination 

of the statistical features and the nonlinear features in our experiment in the next section.  

Table 5 

Classification results based on statistical features  

Classifier  Accuracy  Sensitivity  Specificity  Precision  f-score  

SVM 0.7777 0.691 0.7868 0.7632 0.7597 

KNN 0.6573 0.6730 0.6650 0.6502 06654 

Random forest 0.8194 0.8107 0.8100 0.8203 0.8039 

Gradient boosting 0.9114 0.9002 0.9000 0.9110 0.9011 

Bagged Ensemble 0.9034 0.9017 0.9102 0.9010 0.9021 

Boosted ensemble 0.9115 0.9020 0.9118 0.9033 0.9013 

Stacked ensemble 0.9110 0.9121 0.9231 0.9154 0.9186 

 

 

Table 6 

Classification results based on entropy features  

Classifier  Accuracy  Sensitivity  Specificity  Precision  f-score  

SVM 0.8035 0.8191 0.8723 0.8131 0.8021 

KNN 0.8021 0.8263 0.8123 0.8242 0.8343 

Random forest 0.7867 0.7721 0.7854 0.7754 0.8065 

Gradient boosting 0.89520 0.8840 0.8922 0.9040 0.8910 

http://jceps.utq.edu.iq/
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Bagged Ensemble 0.8988 0.8939 0.8887 0.8815 0.8923 

Boosted ensemble 0.8776 0.8726 0.8641 0.8790 0.8724 

Stacked ensemble 0.9021 0.8996 0.9110 0.9012 0.9021 

 

Table 7 

Classification results based on combination of features   

Classifier  Accuracy  Sensitivity  Specificity  Precision  f-score  

SVM 0.9037 0.8977 0.8985 0.9063 0.9033 

KNN 0.8986 0.8876 0.8966 0.8873 0.8852 

Random forest 0.9134 0.9144 0.9045 0.9156 0.9183 

Gradient boosting 0.9213 0.9180 0.9035 0.9074 0.9152 

Bagged Ensemble 0.9424 0.9382 0.9252 0.9283 0.9492 

Boosted ensemble 0.9323 0.9371 0.9212 0.9142 0.9353 

Stacked ensemble 0.963 0.9733 0.9642 0.9764 0.96531 

 

4.2 Classification different categories of EEG sleep stages  

The performance of proposed model was tested to classify several sleep classification problems.  In this experiment, 

five, two, three sleep classification categories were adopted.  The performance of proposed model was reported in 

Tables 8 and 9. In this experiment, EEG data from two datasets were employed to evaluate the proposed model. we 

divided the EEG data randomly into 10 groups. At each experiment, one group was used as the testing set, and 

remaining sets were used as the training sets.  The procedure was repeated ten times, and all results were reported.  

For five sleep classification problem, Table 9 reports the result.  We can notice that the proposed model performed 

well with all classification models. however, the ensemble models outperformed the individual ones.  The highest 

accuracy was obtained by the stacking ensemble with an accuracy 0.96% followed by the Bagged, and Boosted 

ensembles respectively.  

 

Table 8 

Five sleep classification problem 

 

Classifier  

Dataset-1 Dataset-1 

Accuracy  Sensitivity  Specificity  Accuracy  Sensitivity  Specificity  

SVM 0.9132 0.9071 0.8998 0.9012 0.9123 0.9012 

KNN 0.8834 0.8832 0.8843 0.8765 0.8743 0.8754 

Random forest 0.9031 0.9150 0.9133 0.9100 0.9012 0.9016 

Gradient boosting 0.9217 0.9271 0.9242 0.9128 0.9185 0.9122 

Bagged Ensemble 0.9343 0.9332 0.9434 0.9321 0.9383 0.9312 
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With three sleep classification problem, the performance of all models was improved. We record an average of 

accuracy of 0.96% for ensemble models, and 0.93% for individual models. Table 10 reports the result of three sleep 

classification problems.  We can notice that the proposed model performed was good performance with three-sleep 

classification problem.  The highest accuracy was obtained by stacking ensemble with an accuracy 0.97% followed 

by the Bagged 0.96%, and Boosted ensembles 096%.  

Another problem of sleep stages of two sleep classification problem was discussed in this experiment. From the 

results, it observed that the performance of all models was improved. The ensemble models recorded accuracies 

ranging from of 0.98% to 0.98%, and from 0.93% to 0.95% for individual models. Table 11 reports the result of three 

sleep classification problem.  We can notice that the proposed model performed was performed well with all three-

sleep classification problems.  The highest accuracy was obtained by stacking ensemble with an accuracy 0.98% 

followed by the Bagged 0.97%, and Boosted ensembles 097%.  

 

 

 

 

 

 

 

 

 

 

 

4.3 Performance evaluation based on Confusion matrix  

5-fold cross validation was also used for evaluation purpose. The   confusion matrices of proposed model using two 

sleep datasets were reported based on Stacking ensemble in Fig. 5. We found that accuracy of W, and S2 classification 

were higher than other stages. Our experiment showed that the extracted features of EEG had the ability to recognise 

stage AW, and stage N2 successfully. 

In addition, it was found that some epoch S3 were classified as S2. The reason was that both stage S2 and stage S3 

had some similar statistical features which made them difficult to identify. This was appeared in Datset_1 dataset.                                                          

Boosted ensemble 0.9331 0.9333 0.9365 0.9234 0.9445 0.9356 

Stacked 

ensemble 

0.9543 0.9554 0.9531 0.9551 0.9560 0.9617 

Table 10 

Three sleep classification problem 

 

Classifier  

Dataset-1 Dataset-1 

Accuracy  Sensitivity  Specificity  Accuracy  Sensitivity  Specificity  

SVM 0.9132 0.9071 0.8998 0.9012 0.9123 0.9012 

KNN 0.8834 0.8832 0.8843 0.8765 0.8743 0.8754 

Random forest 0.9231 0.9256 0.9123 0.9176 0.9167 0.9189 

Gradient boosting 0.9267 0.9278 0.9245 0.9123 0.9187 0.9112 

Bagged Ensemble 0.9452 0.9532 0.9454 0.9521 0.9583 0.9512 

Boosted ensemble 0.9454 0.9543 0.9547 0.9512 0.9521 0.9564 

Stacked ensemble 0.9543 0.9587 0.9532 0.95432 0.9576 0.9631 
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 W S1 S2 S3 REM 

W 0.96 0.01 0.03 0.02 0.00 

S1 0.03 0.95 0.01 0.001 0.00 

S2 0.01 0.001 0.95 0.01 0.02 

S3 0.01 0.04 0.05 0.90 0.000 

REM 0.001 0.001 0.01 0.02 0.96 

Predicted label 

 

Fig 4. confusion matrix of the proposed model 

 

4.4 Comparative with EEG sleep stages models  

To evaluate the proposed model in EEG sleep stages classification, we conduced comparisons with some existing 

sleep classification models. The output of comparisons was given in Table 12. We considered some metrics in the 

comparisons including accuracy and sensitivity. In addition, five and six sleep stages classification problems were 

included in these comparisons. We can notice that the proposed model performed better in six and five sleep stages 

problems than other models. The results of comparisons stated that the proposed model can contribute and add a 

significant impact EEG sleep stages research. It can be used as hardware system to by experts for identifying of sleep 

disorders. 

Table 12 

Comparisons among the proposed model with previous methods 

Authors Model Channel used Accuracy 

Doroshenkov et al., [36] HMM Pz-OZ, Fpz-Cz, 62% 

Ebrahimi et al., [37]  Wavelet based on  ANN , Pz-OZ, Fpz-Cz - 

Hassan et al., [38] TQWT model with  RF Pz-Oz 93.37% 

Hassan et al., [39] TQWT based on ensemble Pz-Oz 92.44% 

Hsu et al., [40]  Energy features based Model Pz-OZ, Fpz-Cz, - 

Liang et al., [41]  AR model based on  LDA Fpz-Cz 76.72% 

Zhu et al., [42]  Visibility graph Fpz-Cz 87.51%, 0.82% 

Berthomier et al., [43]  Fuzzy logic approach Fpz-Cz - 

 

Ronzhina et al., [45]  Power spectral density model with LDA Pz-OZ 76.71% 

Abdulla  et al., [46] Correlation graph-based model Pz-OZ 93% 

Diykh et al., [47] undirected graph Model C3-A, Pz-OZ, 95.5% 

Diykh et al., [48]  Graph model Pz-OZ 92.1% 

The proposed model  DWT based linear and entropy  features Pz-OZ 96%, 97% 

 

5.Conclusion  

In this paper, we proposed an intelligent model for sleep stages classification. DWT was utilised to analyse EEG 

signals. Each EEG segment was decomposed by DWT and g statistical and nonlinear features were extracted. These 

T
ru

e 
L

ab
el

 

 W S1 S2 S3 REM 

W 0.97 0.00 0.01 0.01 0.01 

S1 0.011 0.95 0.01 0.01 0.01 

S2 0.01 0.009 0.95 0.009 0.018 

S3 0.003 0.01 0.01 0.94 0.001 

REM 0.001 0.001 0.001 0.02 0.95 

Predicted label 
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features were tested using statistical metrics. The results proved that the proposed model could improve the 

performance of sleep classification making small step toward application in actual situation.   
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