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Abstract:

This paper present a new concept of intuitionistic fuzzy rectangular n-normed spaces, with some fundamental
definitions. Subsequently, we present the Cartesian product of intuitionistic fuzzy rectangular n-normed spaces, study
its effect on the properties of intuitionistic fuzzy rectangular n-normed spaces, and prove that the Cartesian product
of intuitionistic fuzzy rectangular n-normed spaces is also an intuitionistic fuzzy rectangular n-normed spaces.
Finally, we establish the completeness of the Cartesian product of complete intuitionistic fuzzy rectangular n-normed
spaces and provide some theorems related to these spaces.

Keywords: Rectangular n-normed space, fuzzy rectangular n-normed space, intuitionistic fuzzy rectangular n-
normed space, the Cartesian product of intuitionistic fuzzy rectangular n-normed spaces.

1-Introduction:

In 1986, K. Atanassov [1] presented the concept of the intuitionistic fuzzy set as a generalization of fuzzy set.
Later, in an intuitionistic fuzzy set, M. J. Mohammed and G. A. Ataa [2] created an intuitionistic fuzzy topology
space and established some features. In 2020, N. H. Sharif and M. J. Mohammed [13] presented a study on b-
intuitionistic fuzzy normed spaces with some characterizations, building on the research form studies in [7,12]. The
theory of 2-normed and n-normed linear spaces was first initially presented by S. Géhler [5, 6]. Subsequently, A.
Narayan and S.Vijayabalaji [10] established and expanded the theory of fuzzy n-normed space, building upon the
work of S. Gahler [6] and A. Katsaras [8]. S.Vijayabalaji and N. Thillaigovindan et al. [14] introduced the concept
of intuitionistic fuzzy n-normed linear space, and they also established some fundamental results .On the other hand,
A. Branciari proposed the idea of rectangular metric space in 2000 [3]. Following this, H. H. Muteer and M. J.
Mohammed [9] presented the idea of intuitionistic fuzzy rectangular b-normed spaces. Recently, M. R. Bader and
M. J. Mohammed [4] introduced the concept of fuzzy rectangular n-normed space and discussed some of their
properties.
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In this paper, we present the definition of an intuitionistic fuzzy rectangular n-normed space, as well as the
Cartesian product of these spaces. Also, we study its effect on the properties of intuitionistic fuzzy rectangular n-
normed spaces, proving some related theorems.

2- Preliminaries
In this paragraph, we review some fundamental ideas and preliminaries regarding fuzzy rectangular n-normed
space.

Definition 2.1 [4]

Let X be a vector space of dimension d > n, n € N(natural numbers). A rectangular n-norm on X is a function ||.,.....||
on XxXx -+ xX = X" satisfying the following for ns, nz,..., N, §, Z € X.

1) Im1, N2,..., Nall = 0 © Ny, N2,..., Na are linearly dependent,

2) M1, M2,..., Na|| is invariant under any permutation,

3) [An1, Anz,..., Aol = [A] 1, M2,..., na|| for any L € R,

4) |1, M2, Mot G+ 2| < |1, M2,- -5 Mall + M2 M2, =225 Bl + [Nz M2, -, 2]
[|.,--,.|| is said to be a rectangular n-norm on X and the pair (X, ||.....,.||) is said to be a rectangular n-normed space.

Definition 2.2 [11]

A continuous t-norm « is a binary operation on the interval [0,1], which satisfies the following axioms:
1) For each e € [0,1] implies that e = 1 = ¢;

2) « is associative and commutative;

3) « is continuous;

4) Foreache,s,z,de[0,1]ande <zands < dimpliesthate s <z «d.

Definition 2.3 [11]

A continuous t-conorm ¢ is a binary operation on the interval [0,1] which satisfies the following axioms:
1) For each e € [0,1] implies thate 0 0 =¢;

2) ¢ is associative and commutative;

3) ¢ is continuous;

4) Foreache,s,z,de[0,1]ande < zands < d implies thate 0 s < z ¢ d.

Definition 2.4 [4]

Let X be a vector space, = be a continuous t-norm. Then the 3-tuple (X, Y, «) is called a fuzzy rectangular n-normed
space (for short, FR-n-NS) on X, if Y is a fuzzy set on X"x(0, o) satisfies the following for all n1, n2,..., Mn, §, Z €
Xand ¢, t,6>0

1) Y(M1, n2,..., Mn, £) =0, for all £ € R with £ <0,

2) Y(M1, N2s-..., M, £) = 1 © M1, M2,..., Mn are linearly dependent,

3) Y(M1, M2,..., M, L) IS invariant under any permutation of n1, nz,..., Mo,

4) Y0, Mz Moy €)= Y, M2 M 7). 16 € IO,

5) Y(M1, M2, Mot §+2, L+ T +6) = Y (M1, M2,..., Mo, )

Y, M2, .o 5, 1) < Y1 M2 - 2, €)
6) Y(M1, N2,..., Mo, £) IS @ NnON-decreasing function of £ € R and

}I_)H;JY(HL 112,- L] nn, E): la
Hence, (Y) is said to be a fuzzy rectangular n-norm on X.
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Definition 2.5[4]

Let (X, Y, ») be a FR-n-NS. Then:

(i) A sequence {n,} in X is said to be convergent to n, if given ¢ >0, £ >0, 0 < < 1 there isng € N in which
Y(M, M2y -5 Mo-1, M — M, £) > 1 —¢ for all n = no.

(ii) A sequence {nn} in X is said to be Cauchy sequence if, a given ¢ >0 with0 < ¢ <1 and £ > 0 there is no € N in

which
Y(M1, M2, -+-er Moty Mo — N £) > 1 —v for all n, x > no.

(iii) A FR-n-NS (X, Y, «) is said to be complete if, every Cauchy sequence converges.

3-CARTESIAN PRODUCT OF INTUITIONISTIC FUZZY RECTANGULAR n-NORMED SPACES

In this section, we present the definition of an intuitionistic fuzzy rectangular n-normed space, and also we define
the Cartesian product of two-intuitionistic fuzzy rectangular n-normed space and prove some results related to it.

Definition 3.1:

Let X be a vector space , » be a continuous t-norm, ¢ be a continuous t-conorm, a function Y, H: X"x (0, o) — [0,00]
is called intuitionistic fuzzy rectangular n-norm if it satisfying the following for all (11, n2,..., M, §, Z) € X and €, f,
c>0:

1) Y(M1, N2,..., Mo, £) + HM1, M2s..., Mo, £) < 1,

2) Y(M1, N2..., M, £) =0, for all £ € R with £ <0,

3) Y(M1, N2,..., Moy £) =1 & M1, M2,..., Mw are linearly dependent,

4) Y(n1, M2,..., N, £) is invariant under any permutation of n1, n,..., Mo,

5) (A, Mz, Moy ©) = Y(1s Moy, Moy 720, i 2 € PO},

6) Y(N1, N2,..., Mt h +z, £+ T +¢) =Y (M1, n2,..., Mo, )

<YMy, N2, .0 G, 1)« Y(M1, M2, ..., Z, €)

7) Y(M1, n2,..., Mo, £) is @ NON-decreasing function of £ € R and
}i_)rgY(m, N2,---5 Ny £) =1,

8) HMz1, 2,-.., M, £) =1,

9) HMw, n2,-.., Mn, £) =0 & M1, 12,..., Nn are linearly dependent,

10) HM1, M2,-.., M, £) is invariant under any permutation of ny, na,..., N,

£ .
11) Hn1, Anz,..., An, £) = HM1, N2,..., Moy |7|)’ if L € F\{0},

12) H(ﬂl, N2, Mot f+z, C+ T+ G) < H(ﬂla N2+, Moy 0)
OHMuL N2, ..., 5, H O HM1L M2, ..., Z, 6),
13) H(n1, n2,. .., Mu, £) is @ NoN- increasing function of £ € R and

{11—{{)10]{(“1’ N2,-.., Mo, )= 0.
Hence, (X, Y, H, =, 0) is called an intuitionistic fuzzy rectangular n-normed space (for short, IFR-n-NS).

Example 3.2:
Let (X, ||.,.....|]) be a rectangular n-normed space. Define e s = e.s and e 0 s = min{1, e + s} for each e, s € [0, I].

Defined as follows:

¢ [1m1,M2,7nll
Y‘ 1y 29e ey ,E -_— f 1y 2oees E :—,
(M2 Moo Mo O = gy HOw M mos 0= 5500

£>0,M1,N2,...,Mn) € X, 50 (X, Y, H, + 0)is an IFR-n-NS. Hence (X, Y, H, =, ) is said to be a standard intuitionistic
fuzzy rectangular n-normed space(for short, St-IFR-n-NS) induced by a rectangular n- normed space (X, [|.,.....]).
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Definition 3.3:
Let (X, Y, H, =, 0) be an IFR-n-NS. Then:
(i) A sequence {n,} in X is said to be convergent to n, if for each ¢ € (0,1) and £ > 0 there is no € N in which
Y(M1, N2,- - No-t, No—M, ) > 1 — @ and HMa, n2,..., o1, Na—n, £) < @ ,for all n > no.
(Or equivalently,
}i_{EOY(m* N2,..., M1, Na— 1, £) =l and }L@O HMy m2,..., Mo, No—m, £) = 0).

(i) A sequence {n.}in X is said to be Cauchy if, for all each ¢ € (0,1) and € > 0 there is ng € N in which
Y(M1, N2, - -5 No-1, No— N £) > 1= and HMg, n2,. .., No-1, No— N, £) < @ ,for all n, K > no.
(Or equivalently,
}LrgoY(nl, N2,..., Mo, Ma— M, £) =l and }LrgoH(nl, N2,.- > No-1, Mo— M, £) = 0.

(it) An IFR-n-NS (X, Y, H) is said to be complete if, every Cauchy sequence converges.

Definition 3.4:

Let (X, Y1, Hi, = 0) and (U, Y2, Ha, +, 0) be two IFR-n-NS. The Cartesian product of (X, Y1, Hi, +, ¢) and (U, Y2, Ha,
«, 0) is the product space (X X U, Y, H, «, 0), where X x U is the Cartesian product of the sets X" x U"and Y', H are
a function

Y (X" x UM x (0,00) — [0,1]) and

H:((X" x U") x (0,00) — [0,1]) are given by:

Y:(M1 M2,. .0 Moy 91, 92, ..., On), ©) = Y1y, M2,..., Mo, £) = Y284, 92,...., I, £) and

H:(nl, N2,.-+» Moy 91, 92, ey Sn), E) =H1(n1, N2,...> Mo, E) 0]’12(91, 92,.. . Sn, E).

For all (N1, N2,..., Mo, 91, 92, ..., Jn) € X" X UM and £ > 0.

Next we show that if X and Y are IFR-n-NSs, then their Cartesian product will also be an IFR-n-NS.

Theorem 3.5:
Let (X, Y1, Hy, =, 0) and (U, Y32, Ha, «, ¢) be an IFR-n-NSs. Then (X" x U", Y, H, =, 0) is an IFR-n-NS.

Proof:

Since (X, Y1, Hy, = ) and (U, Y72, Ha, =, 0) be an IFR-n-NSs

1)

Since Yi(ny, n2,..., Mn, £) + H1(81, 92, ..., 90, ) <1

and Ya(ni, Nz,..., Mo, £) + H2(81, 92, ..., 9, £) < 1

= Y((M1, N2+ o5 Moy 91, 92,..., In), ) + H(M1, M2s- -5 Moy 31, F2,..., ), ) < 1.
)

Since Y1(n1, n2,..., Mn, £) =0 and Y'2(84, 92.,..., 9y, £) =0, forall £>0
= Y((ﬂl, n2,...5 Nn, 91, 92,. vy 9n), {),) =0.

®3)

Since Y'1(ny, N2,..., Mo, £) = 1 © Mg, M2,..., Ny are linearly dependent
and Y2(81, 92, ..., 9, ) =1 & 84, 9, ..., 3y are linearly dependent
= Y((N1, N2,---» Moy 31, Y2,..., ), £) =1

< (M1, N2,- -5 My 31, B2,...., Jy) are linearly dependent.

(4)

Since Y1(Mz, Mz, Moy €) = Y1(t, M2y s Moy %)
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and Y2(A91, A9%,..., 29, ) = Y2(91, 9., Gn, —)

1]
= Y(}V(nla N2,...5 N, 911 82,- cey Sn), E)
= Y1(An1, Anz,..., A, £)* Y2(A31, A32,..., A9y, £)

= Y308 M Moy 72 Y03, 92, 80), 72)
= (1 v My 83, B2, 90), 7).
(5)
Since Yi(ny, N2,...,ma+f+2z, L +1+¢)
= Y1(M1, N2,- .-, Mo, £) * Y1(N1, M2,..., §, T) » Yi(n1, 2,..., Z, €) and
Y2(91, 92,..., 9 +I+w, L+ 1 +¢)
> Y2(91, 92,..., 9n, £) « Y281, O2,..., F, 1) » Y2(84, 92,..., W, €)
= Y((N1, N2,+ .- Moy 31, Y2,..., J) + (M1, N2o-.., B, 91, Bo,.., I)
+ (M M2se- s Z, 91, B2, W), (L + T+ )
=>YMy N2, M+t H+2,91,9,...,9% +I+w, (L+1+¢))
=Y1(Ny, N2se., Mot G+ 2z, C+F+6) = Y291, 92, ..., % +I+w, L+T+eg)
= Yl(nl, N2,-.+» Nn, E) * Yl(nl, N2, .- fj, ”f) * Yl(nl, ne ..., Z, B) *
Y2(91, 92, cees Sn, E) * Yz(Sl, 92, cees J, ”f) * Yz(Sl, 92,..., w, G)
= Y1(n1, N2,..., Nn, E) * Yz(gl, 92, ey Sn, E) * Y'l(m, nz, ..., ﬁ, T) *
Y2(91, 82, .., I, ) = Yu(R1, N2, ..., Z,6) * Y281, 2, ..., W, )
= Y((ﬂl, N2, -5 N, 91, 92,..., Sn), E) * Y((T]l, nz, ..., ﬁ, 91, 92,..., J), T) *
Y((Tll, nz, ..., zZ, 91, 92,..., W), G).
(6)
Since Yi(ny, n2,..., N, £): (0,00) = [0,1] is continuous in ¢
and Y'2(94, 92, ..., 9, £): (0, ) — [0,1] is continuous in £
= Y((M1, N2---» Moy 91, 25, 9n), £): (0,00) = [0,1] is continuous in L.
()
Since {41_)7’210 Y11, N2,-.., Mny £) =1 and

{él_)rgj Y2(91,92,..., 9, ) =1
= {11_)1’210 Y((M1, N25- - Moy 91, B2,..0, S), €) = 1.
(8)
Since Hl(nl, N2,.-+» N, E) =1and H2(91, 92,. . 9n, E) = 1, forall £>0
=4 H((nl, N2,...5 Moy 91, 92,...,9n), E): 1.
©)
Since Hi(ny, n2,..., Mo, £) =0 & My, M2,..., M are linearly dependent
and  Hz(81, 92, ..., 90, £) =0 & 84, o, ..., 9y are linearly dependent
=  H(Mw M2-.., Moy 91, 92,..., ), £) =0
S (ML, M2,-. Moy 31, I2,..., 3y) are linearly dependent.
(10)

Slnce Hl(xnl’ 7»‘[]2,..., Xnm E) :]—Il(n]d N2,..., Nn, %)
and Ha(A91, A9z, A%, €) = Ha(91, %2, O, %)
= H(Mnl: N2,...5 Mo, 911 92,- cey Sn), E)

= Hi(An2, Mnz,...., Mo, €) O H2(A81, A92,..., A9y, £)

= Fla(e My Moy 70) O a9, 9., 92, )

jceps.utg.edu.ig
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£
=H((n1’ an c nn, 911 923- c 81'1)1 m)

(11)
Since Hi(ny, n2,..., M+ +2z, L +1+¢)
< Hi(my, n2,-.., M, £) O Hi(M1, M2,..., f, T) ¢ Hi(Mz, M2,..., z, ) and
H2(81, 92,..., 9 + I +w, L +1+¢)
< Ha(84, 92,..., 9, £) O Ho(81, 92,..., I, 1) = Y2(84, 92,..., W, €)
= H((M1, M2,-- - Mny 31, 92,..., I) + M1, N2,..., B, 91, Bo,..., T)
+ (ML N2 os Z, 91, 92,0, W), (L + T +¢))
=>HMy, M2, Mo+ G +2, 91, 92,..., 9, +I+w, (L +T+¢))
=HiMu 2oy Mot +2, £ +T+) O H2(84, 92, ..., 9 + I +w, L+ T +¢)
< Hi(y, M, Mo, ©) 0 Ha(ny, Mz, -, B, 1) 0 Ha(ny, mz, -, 2, €)
0]’12(91, 92, ey 9[,, E) 0]’12(91, 92, ceey J, ’f) 0]’12(91, 92,..., w, G)
< Hi(M1, M2,- -+, Mo, €) O H2(81, 92, ..., 9n, €) O Hi(Mz, M2, ..., §, 1)
O Ha(B1, 92, ..., 3, 1) O Hi(Re, X2, ..., Z,€) O H2(91, 92, ..., W, €)
= H((M1, M2+ - o> My 91, 92,0, S0), ©) O H((M2, M2, ..., B, 91, 82,..., I), T)
0]’1((1’]1, ne, ..., zZ, 91, 92,..., W), G).
(12)
Since Hi(ny, n2,..., N, £): (0,00) = [0,1] is continuous in ¢
and Hz(94, 92, ..., 9, £) : (0, ) — [0,1] is continuous in £
= H((M1, N2+ - -5 Moy 91, 2,..., %), £): (0,00) — [0,1] is continuous in L.
(13) Since {éfﬁ Hi(mw, n2,..., M, £) =0and

{;im ]’12(81,92,. . Sn, E) =0
= }I_)IEIO H(M1, m2,- .., Moy 91, S2,..., ), £) = 0.
Therefore, it is a complete proof.

After that the following theorem proves that the converse of the above theorem (3.5) is true.

Theorem 3.6:
If (X" x U", Y, H, =, 0) is an IFR-n-NS, then (X, Y1, Hi, », 0) and (U, Y2, Hz, , 0) be an IRF-n-NSs by defining

Yl(nl, N2,..., NMn, 0) = Y((ﬂl’ N2, -+ Mo, 0), E) and

Hl(nl, N2,.-.5 Nn, E) :H((nl’ N2,...5 MNn, O): E),
Y2(31, 92, ceey 9n, E) = Y((O, 91, 92,..., 9.,), 5) and

Ho(81, 92, ..., 9n, £) = H((0, 81, 92, ..., ), 0)
for all n1, nz,..., Mw € Xand 94, 9»,..., I € Uand £ > 0.

Proof:
1)
Y11, N2,- .-, Mns £) + Hi(M1, N2,..., Mo, £)
= Y((fll, N2, Nns 0), E) +H((n1, N2,--+5 Mo, 0)’ B) <1
= Y11, N2,-- -5 Moy £) + HiM1, N2,- .0, Moy £) < 1.
(2)
Y1(M1, M2s- -5 Ms £) = Y((N1, M2,-.., M, 0), £) =0
forall ng, nz,...,m € X
= Y1(n1, N2,..., Ma, £) =0 and
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Hi(g, m2,..., M, ©) = H((M1, N2,--., M, 0), £) =1
For all n1, n2,..., Nn € X = Hi(ng, n2,..., M, £) = 1.
3
Forall £>0,1=Y1M1, n2,-.., Mo, £) = Y((M1, N2,-.., M, 0), £)
< 1y, M2,..., N are linearly dependent
and 0 = Hi(m1, n2,..., Mn, £) = H((M1, N2,-.., N, 0), £)
S 11, M2, .., N are linearly dependent.
4
Forall £ >0,
Y1(An1, An2,..., A, £) = Y(AM(N1, N2,..., Mo, 0), £)
Y (1, M2y -, T O), %) = YN, M2 ey o ljél) for all % € F\{0} and
Hi(Ang, Ana,..., A, £) = HAAM41, N2,-.., Mo, 0), £)
H((M, M., M, O), |flél) = Fi(Ms, M2s-.» M %) for all A € F\{0}.
®)
For all n1, n2,...,Mn + § + 2 € X and €4, £2, £3> 0. Then
Y1(M1, N2,..., Mo + § + 2z, (81 + L2 + £3))
=Y (M1, M2y -y Mo+ + 2, 0), (L1 + L2+ £3))
=Y((M1, M2 .o s Moy 0) + (M1, M2, -, B, 0) + (M1, M2, 2, 0), (81 + £2 + £3))
>Y((ML N2 ..o Mo, 0), £2) » Y (M1, M2, ..., B, 0), £2) » Y'((n1, M2, ..., Z, 0), £3)
= Y1(1’]1, N2, ...5 No, El) * Yl(T]l, nz ..., fj, I32) * Yl(nl, nz, ..., Z, 53)
Y1, N2, ..., Mo+ § + 2, (02 + €2 + £3))
> Y11, M2, -+, Moy 1) = Y1(N1, M2, --., B, €2) = Y1(M1, M2, ..., Z, L3)
and Hi(ny, n2,..., Mo + § + 2, (L1 + L2 + £3))
=H(M, M2, ..., M+t 2,0), (L1 + L2+ L3))
=H(M1 M2 .o Moy 0) + M1, M2, -.., §, 0) + (M1, M2, 2, 0), (L1 + L2 + £3))
< H(M1, M2, -- -5 Mo, 0), £2) © H((M1, M2, - .-, §, 0), £2) © H((M1, M2, ..., 2, 0), L3)
< Hi(n, M2, - Moy €2) O Hi(na, M2, -, B, €2) O Ha(a, M2, -, 2, €3)
Hi(, 2, o, Mo+ § + 2, (€ + L2+ £3))
< Hi(M, m2, ..., M, 1) O Hi(M1, M2, ..., §, £2) O Hi(1, n2, ..., z, L3).
(6)
Y1(M1, M2, -., Moy £) = Y((1, M2, ..., My 0) ) is a continuous in £
and Hi((m1, M2, ---» May £) = H((M1, M2, .-, M, 0), £) is a continuous in €.
(7
}LI{)IOYl(nl, M2, ooy Moy £) = }LIEIOY((nl, N2, ..., Mn, 0), ) =1
and }i_)rgﬁ(m, N2y «vs Moy L) = }LrgH((nl, N2, +.., Mo, 0), £) = 0.
Then (X, Y1, Ha, =, 0) is an IFR-n-NS.
Similarly, we can prove that (U, Y, Ho, =, 0) is a IFR-n-NS.

In the following the theorem, we prove that if there is a convergent sequence in X and another convergent sequence
in U, then their Cartesian product will also be convergent.

Theorem 3.7:

Let {n.} be a sequence in an IFR-n- NS (X, Y1, Hy, =, ) converge to n in X, {3,} be a sequence in an IFR-n- NS (U,
Y2, Ha, =, 0) converge to § in U, then {(n., 9»)} is a sequence in an IFR-n- NS (XxU, Y, H, «, ¢) converge to (n, 9) in
X x U.
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Proof:

Let ¢ € (0,1) and £ > 0. Since {n,} is a convergence sequence in X,
there is n1€ N in which Yi(ny, 2, ..., Ne-1, e —M, £) > 1 -0
and Hi(ms, N2, .- ,No-1, Mo — M, £) < @, for all n > ns.

Since {9,}is a convergence sequence in U,

there is nz € N in which Y'2(91, 92,..., 3, -3, 0) > 1 -0

and Hao(81, 92,..., 9 — 9, £) <@, for all n = ny.

Then, for all ¢ € (0,1) and € > 0, there is ng € N,

where ng = max{ns, nz} in which

Y(nl, nz, ..., No-1, 91, 92, ey Sn.l, (T]n, Sn) — (T|, 3), E)

> Y11, N2, - oNo-1, Mo — N, £) * Y2(81, 92, ..., 901, 9 — 9, 0)
>1-9)-1-9>1-09

and H(n1, N2, «-.» No-1, 91, 92, ey Sn.l, (nn, Sn) — (T|, 3), E)

< H1(n1, N2, ...,Ne-1, Mo — M, E) 0]‘12(91, 92, .. .,3[1_1, 9 — 9, E)
<000<g.

Thus, {(n., 9.)} converges to (n, 9).

After that the following theorem proves that the converse of the above theorem (3.7) is true.

Theorem 3.8:
Let (nn, 9n) be a sequence in an IFR-n-NS (X x U, Y, H, =, 0), then {n.} is a sequence in an IFR-n- NS (X, Y1, H, »,
0) converge to n in X and {9,} be a sequence in an IFR-n- NS (U, Y, Hz, =, 0) converge to 3 in U.

Proof:
The prove of this Theorem is clear.

In the following the theorem, we prove that if there is a Cauchy sequence in X and another Cauchy sequence in
U, then their Cartesian product will also be Cauchy.

Theorem 3.9:
Let {n.} be a Cauchy sequence in an IFR-n- NS (X, Y1, Hi, =, ¢) and {8,»} be a Cauchy sequence in an IFR-n-NS (U,
Y2, Ha, =, ©), then {(n., 9n)} is a Cauchy sequence in an IFR-n- NS (X x U, Y', H, =, ).

Proof:

By theorem (3.5), (X X U, Y, H, =, 0) is an IFR-n-NS.

Since {n.} be a Cauchy sequence in an IFR-n- NS (X, Y1, Hy, *, )
Then for all ¢ € (0,1) and € > 0, there is n1€ N in which

Y1(M1, N2, ..o Mo — M £) > 1—¢ and

HiMz, M2, ..., Na— M, £) <o, for all n, x = n1.

Since {9,} be a Cauchy sequence in an IFR-n- NS (U, Y32, Hz, =, 0).
Then for all ¢ € (0,1) and € > 0, there is n2 € N in which

Y2(81, 92, ..., 9 — 9, £) > 1—¢ and

Ha2(81, 92, ..., 9 — 8, £) <o, for all n, k = n».

Then for all ¢ € (0,1) and £ > 0, there is ng € N

where, no = max{ni, n.}, for all n, x = n.

Y(M1, M2, -+ Moty 91, 92, -0y Fn-1, My Fn) — (M, ), L)

= Yl(l’]l, N2, ...,Nn-1, Mo — Nk, E) * Yz(Sl, 92, .. ,9%1, 9 — 9 E)
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>1-¢)«(1-9)>1-¢and

HMu, M2, .oy Moty 91, F2, .y o1y, My 90) — (M 96, )

< _Hl(nlz N2, ...,Nn-1, Mo — Nk, E) 0]’12(31, 92, ..,901, In — I, E)
<p0¢<eo.

Thus, {(m», )} is a Cauchy sequence in (X x U, Y, H, =, 0).

After that the following theorem proves that the converse of the above theorem (3.9) is true.

Theorem 3.10:
If {(nn, 9n)} is a Cauchy sequence in an IFR-n- NS (Xx U, Y, H, =, ¢), then {n.} be a Cauchy sequence in an IFR-n-
NS (X, Y1, Hi, =, 0) and {3,} be a Cauchy sequence in an IFR-n- NS (U, Y, Hz, =, 0).

Proof:
The prove of this Theorem is clear.

The following can be proved using techniques in (3.10) and (3.7).

Theorem 3.11:
If (X, Y1, Hy, , 0) and (U, Y3, Ho, =, ¢) are complete an IFR-n-NSs, then the product (XxU, Y, H, =, ¢) is complete
an IFR-n-NS.

Proof:

Let (1, 9s) be a Cauchy sequence in XxU

by theorem (3.10)

= {nn}be a Cauchy sequence in (X, Y1, Hi, , )

and {9} is a Cauchy sequence in (U, Y2, Ha, =, 0).

Since X and U are complete by definition

{nn} is a convergence sequence in X and {38,} is a convergence sequence in U
by theorem (3.7)

= {(mm, 9n)} is a convergence sequence in X x U.

The following can be proved using techniques in (3.9) and (3.8).

Theorem 3.12:
If (X% U, Y,H, = 0) be a complete an IFR-n-NS, then (X, Y1, Hy, =, ¢) and (U, Y3, Hz, =, 0) are complete an IFR-n-
NSs.

Proof:

Let {n.} be a Cauchy sequence in X, {9.} be a Cauchy sequence in U

by theorem (3.9)

= (Ma, ) is a Cauchy sequence in X x U

since X x U complete, by definition

= {(nn, In)} is a convergence sequence in X x U

by theorem (3.8)

= {nn} is a convergence sequence in X and {9} is a convergence sequence in U.
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4-Discussion

This study, we first presented the definition of intuitionistic fuzzy rectangular n-normed spaces. Further, we define
the corresponding Cartesian product for these spaces. Additionally, we presented some related concepts and theorems
concerning the Cartesian product. The results of this study will help researchers better understand how to handle the
Cartesian product in intuitionistic fuzzy rectangular n-normed spaces.
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