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Abstract:

This paper explores approximate analytical solutions for a class of fractional differential equations involving the
Caputo fractional derivative. The proposed method employs the Laplace transform in conjunction with the Picard
iterative technique to derive solutions with improved accuracy and simplicity. The Caputo derivative's distinct
formulation enables an intuitive representation of initial conditions, facilitating its application in various scientific
and engineering problems. The study outlines the theoretical foundation of the approach, demonstrating its efficiency
through illustrative examples. Results indicate that this methodology provides a reliable framework for addressing
the complexities of fractional differential equations, offering insights into their behavior and practical applications.
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1-Introduction

Picard's iterative method is one of the oldest and most numerous approximate methods used to solve many
differential and integral equations as well as difference equations. This technique is characterized by the simplicity
of its general idea, as the calculation of any new term depends on the previous term. Many researchers and interested
people have studied fractional differential and integral equations because of their importance and applications in
other sciences, for example, in thermodynamics, economics, astronomy, chemistry, biology, etc.

Here are some of these studies: In 2014, Ai-Min Yang, Cheng Zhang, Hossein Jafari, Carlo Cattani, and Ying Jiao
studied the Fourier law of the one-dimensional heat conduction equation in fractal media. One-dimensional local
fractional Volterra integral equation of the second kind, which is obtained from the transformation of the Fourier
flux equation in discontinuous media, is also approximated in this study [1],
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Pankaj Kumar and Prakash Agrawal used the Picard iteration approach with Caputo-type fractional derivative to
offer a numerical solution strategy for a family of fractional differential equations (FDEs) in 2006 [2], In 1992
Takeshi Taniguchi examined the circumstances in which a series of stochastic processes built using successive
approximations converge uniformly to solutions of an Ito-type stochastic differential equation. He will introduce the
local or global existence and uniqueness theorem for solutions of the aforementioned equation under broader
circumstances[3], there are more studies on this approach see [4], [5], [6], [7], [8], [9], [10], [11], [12].

In this study, we will present analytical and numerical solutions for nonlinear fractional differential equations using
the Picard approach with the Laplace transform. The paper will be presented as follows: In the second section, we
will mention some basic concepts about the fractional derivative and the Laplace transform. In the third section, we
will discuss the algorithm of the approach used with the differential equation in the case of the fractional derivative.
We will apply the method to solve some equations using the approach mentioned in the fourth section. Finally, we
will present the conclusion that includes the results and conclusions that we reached through this study.

2- Basic concepts

Definition 1. [13] A real function ¢(w), w > 0, is said to be in the space Cg,9 € R if there exists a real number
q,(q > 9), such that ¢p(w) = wid;(w), where ¢(u) € [0,00) and it is said to be in the space CJ* if $™ €
Cﬁ,m € N.

Definition 2. [14] For & > 0the gamma function I'(¢) is defined by the integral

I'(s) :f ettt dr 2.1
0
The basic properties of the gamma function are that it satisfies the following as [15]
1
1. r(3)=vr.
2. T(e+1)=¢€l(e), e€C.
3. T(e)=(-1)!, c€C.
Definition 3. [16] The Mittag -Leffler function of one parameter can be defined in terms of a power series as
_ye ¢
E®=) ey 22)
and the Mittag -Leffler function of two parameters is given by
[ee] Ek
E =Z ——F,e>0,y>0. 2.3

Properties For some specific values of € and y, the Mittag-Leffler function reduces to some familiar. For example,
[17], [18], [19]

1 Ep:(®) =Xk 0r(k+1) Zko —eE

Ek+1 _ eE—l

_
2. EI,Z(E) Zk 0 r(k+2) _Zk 0 (k+1)! - 3 :

2k 2k
3. Eyn(8) = mow;m—zk”;.c%ma

EZk _ EZk+1 Slnh(E)
EZ Z(E ) Zk 0 r'(2k+2) Zk 0 E(2k+1)l - [

00 § w (—DkgK
EZ,I(_EZ) = ZkZO F((Zk-gl) = ZkZO 2K)! = COS(E)

2y = (-8)" DR sing®
6. EZ,Z( E )_ Zk 0F(2k+2) Zk 0 £(2k+1)! B

Definition 4. [16] The Riemann-Liouville integral operator of order £ > 0, of a Function f(§) € C,, p = —11s

defined as:

e

o
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£ 1 ’ e-1
) = 70 fo (£ — 0)* () do.

Definition 5. [20] The Caputo fractional derivative of order €, wheren — 1 < € < n, n € N, is defined by:

1 §
CDECE) = D) = i | B @) )

Definition 6. [21] Let f() is an integrable function, then the Laplace transform of f(€), & = 0 is defined by

oo

A
F(s) = L{®) = fo e~SE(E)dE = Limp_o, fo e~SE(E)dE,

Table 1. Laplace transforms of some important functions.

function Laplace transform
k k
S
IS F'e+1)
S£+1
oft 1
S—¢
Sin(£%) &
s? + g2
Cos(£%) S
s? + g2
Sinh (&) €
SZ — 82
Cosh(&f) S
SZ — 82
™) F(s) O f390)
g~ n - Z g~ n+k+1
k=0
J"£(®) F(s)
Sn
‘Dy_lE&yO\ws) sE€Y
S&E—A
Lemma 2.1. [22]Laplace transform of Riemann-Liouville fractional integral of order € > 0 is given by:
e _F(s)
L{]E (E)} T oge
Theorem 2.1. [23]Laplace transform of Caputo fractional derivative of order € > 0 is given by:
n-1
L{ DFE} = sF) - Y s 1M (0),
k=0

3- Analysis of the method

(2.4)

(2.5)

(2.6)

2.7)

(2.8)

Let us consider the following partial differential equations Consider the following fractional differential equation

DG ) + R(d) + N($) = g€ w); X (£,0) = dE(®).

Taking Laplace transform

3.1)
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n=1 0
9&@®wn—§f%§%%=u@—umm+an. (32)
k=0
Or equivalent
n-1 () 0
LoGw) =y T ED 4 e ) - seL(R@) + @) (33)
k=0
Taking inverse Laplace transform
n-1 (nk
dEw) = ) TWE0) + LS L@) ~ L7 (STLR@) + N(@))). (34)
k=0
Suppose that the solution is an infinite series
$E W) =) B o). (35)
i=0

After placing Equation (3.5) in Equation (3.4), the following relationship will result:

0o n-1 Kk 1 . - o
$o + ; $iy1 = a %q:(k)(z, 0)+L1t <S—SL(g)> —Lt S—£L<R (Z cl>i> +N (Z cln)) . (3.6)

i=0 i=0

Therefore, the iterative formula for calculating all terms is

n-1 Kk
do= ) - db®.
k=0
n—-1 k

1 1
bns1 = %q)lé(g) +Lt <S_£ L(g)) -L! <S_€ L(R(q)n) + N(q)n)))

k=0

The approximate solution is given by

(I)(Fv (L)) = limn—mo (I)n+1- (37)

4- Analysis solution

Example 1 Assume the following fractional differential equation with order 0 <e <1

12


http://jceps.utq.edu.iq/

jceps.utg.edu.ig

CDED + de = ¢, (4.1)
where ¢p(%,0) = 1 + €.

Through the algorithm of the method in the previous section, we arrive at:

N ¢i+1:1+e§+L_1(iL N ;i | - N b; w
o ({(50)-(5))

After a series of algebraic operations and using the Laplace transform and its inverse and Table (1.1), we obtain the
approximate solution terms for Equation (4.1).

¢0:1+eg.

(.\)E

= E
q)l 1+e*+ T(1+e)

(.\)E (.\)ZE

r'(1+g) T(1+2¢)

¢2:1+e5+

2e 3e

w® ® w

= 3
b3=1+e+ I(1+€) + [(1+2¢) ' T(1+3g)’

Thus, the approximate solution and the exact solution at € = 1 of Equation (4.1) will be, respectively, as follows:

3e

2
b=1+eb+-—2 o Y 4 =1+l +E (09

ra+e T Taeze T Taese)
¢ =eb+e®.
Example 2 Assume the following fractional differential equation with order 0 <e <1
“Di + &g = 30, (4.2)
where ¢ (&, 0) = €2,

Through the algorithm of the method in the previous section, we arrive at:
B0 divn =12+ L7 (FL(3C0 0 — §TEZ0 B0))

After a series of algebraic operations and using the Laplace transform and its inverse and Table (1.1), we obtain the
approximate solution terms for Equation (4.2).

bo = 52-

Ezws

— 2
by =8+ r(1+e)’

_ 2 2 (DZS (DS
by =8+ (r(1+25) + r(1+s))'

(1)38 (1)28 )

<2 2 :
b3 =8 +3 (F(1+3s) traem T F(1+£))'

13


http://jceps.utq.edu.iq/

jceps.utg.edu.ig

Thus, the approximate solution and the exact solution at € = 1 of Equation (4.2) will be, respectively, as follows:

¢=8+8 (r(;o:s) + r((;jzs) + F(‘;is)) o = X E(09).
b = ge®.
Example 3 Assume the following fractional differential equation with order 0 <e <1
“Dfd — 6 ¢z + Pgge = 0, (4.3)

where ¢(§,0) = 68,
Through the algorithm of the method in the previous section, we arrive at:
520 Guer = 65+ 17 (SL(=(520 bigg + 60520 GO0 $)5))

After a series of algebraic operations and using the Laplace transform and its inverse and Table (1.1), we obtain the
approximate solution terms for Equation (4.3).

o = 6.
_ Ew®
$1 = 68+ 21651,
€ 2€ F( +1/2)228 3e
b, = 65+ 216% (1"((10+£) +72 1"(‘;5+1) + 1296 I‘(18+£)\/EI‘(1-T3£))'

Thus, the approximate solution and the exact solution at € = 1 of Equation (4.3) will be, respectively, as follows:

_ w® w?E [(e+1/2)2%8 w38
(I) - 6E + 216E (F(1+S) +72 I'(2e+1) +1296 F(1+£)\/‘EF(1+3£))
_ 6%
¢ = 1-36w’
Example 4 Assume the following fractional differential equation with order 1 <e <2
“Dfdp — gz + ¢* = E2w?, (4.4)

where ¢(§,0) = 0, ¢, (§,0) =&,

Through the algorithm of the method in the previous section, we arrive at:

320 dir = o+ L7 (L(E07 — (T2 007 + (B0 0g)).

After a series of algebraic operations and using the Laplace transform and its inverse and Table (1.1), we obtain the
approximate solution terms for Equation (4.4).
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bo = Sw.
b1 = Ew.
b, = Ew.

Thus, the approximate solution and the exact solution at € = 1 of Equation (4.3) will be, respectively, as follows:
¢ = So.
¢ = So.

Example 5 Assume the following fractional system differential equation with order 0 <e <1

“Df + Yz = 0,

(4.5)
CDZLIJ + q)E =0, (4.6)
where (&, 0) = ef and Y( 0) = e7%.

Through the algorithm of the method in the previous section, we arrive at:

Yo bipg =5 —L71 (S_la L((ZiZo "pi)i))'

B2 i = e - 17 (FL(CE 90)

After a series of algebraic operations and using the Laplace transform and its inverse and Table (1.1), we obtain the
approximate solution terms for Equation (4.5) and Equation (4.6).

q)o = eE.
Yo =e%

g, €
_Jf_ W
b, =e r(1+e)’

=&Y
— _E e "W
b=ty

I(1+28) T(1+g)

¢2=e5+ez( o™ o )

ety f( L o
bz =ete (F(1+2y) r(1+y))'

_ E E _ 0)8 _ 0)38 (.L)ZS

b3 =e>te ( [(1+e) [(1+3¢) r(1+2s))'
_ o -t w3 w?Y wY

U3 =e+e (F(1+3y) + r(1+2y) + r(1+y))'

Thus, the approximate solution and the exact solution at € =y = 1 of Equation (4.5) and Equation (4.6) will be,
respectively, as follows:
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€ 3¢ 2¢€

0wt ®
I(1+e) T(1+43¢) T(1+2¢)

d=eb+eb(- + - = eSE(—w®).
( )

P S A w?f wY o= o Y
Y=e"+e (F(1+3y)+F(1+2y)+F(1+y))+ e °E, (wY).

¢ =ebe @,
P = e %e®,
5- Numercal Solution

In this section we will present numerical solutions to the equations discussed in the previous section. We obtained
the numerical solutions using Picard's method and with the help of MATLAB. The tables show the solutions at
different fractional orders of the differential equations.

Table 2. Numerical solutions of Equation 4.1 at € different values of using the Picard Iteration method.

§ w Ge=05 DPe=06 Pe=07 DPe=08 Pe=09 Pe=1 Gexact  |P1 — dxl
0.0010 0.0020 2.0535 2.0284 2.0153 2.0085 2.0049 2.0030 2.0030 0.0000

0.1120 0.1129 2.6391 2.4988 2.4002 2.3291 2.2769 2.2380 2.2380 0.0000
0.2230 0.2238 3.0870 2.8965 2.7543 2.6469 2.5646 2.5005 2.5006 0.0001
0.3340 0.3347 3.5296 3.3040 3.1276 2.9894 2.8804 2.7935 2.7940 0.0006
0.4450 0.4456 3.9830 3.7327 3.5283 3.3629 3.2290 3.1200 3.1218 0.0018
0.5560 0.5564 4.4541 4.1878 3.9610 3.7714 3.6141 3.4837 3.4881 0.0045
0.6670 0.6673 4.9476 4.6730 4.4292 4.2185 4.0394 3.8879 3.8974 0.0095
0.7780 0.7782 5.4672 5.1916 4.9360 4.7077 4.5085 4.3367 4.3547 0.0180
0.8890 0.8891 6.0164 5.7466 5.4847 5.2426 5.0254 4.8342 4.8657 0.0315
1.0000 1.0000 6.5989 6.3415 6.0789 5.8269 5.5943 5.3849 5.4366 0.0516

Table 3. Numerical solutions of Equation 4.2 at € different values of using the Picard Iteration method.

€ w Ge=05 Pe=06 Pe=07 DPe=08 Pe=09 Pe=1 Gexact |1 — GEl
0.0010 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.1120 0.1129 0.0191 0.0173 0.0161 0.0152 0.0145 0.0140 0.0140 0.0000
0.2230 0.2238 0.0914 0.0819 0.0748 0.0695 0.0654 0.0622 0.0622 0.0000
0.3340 0.3347 0.2380 0.2128 0.1931 0.1777 0.1655 0.1558 0.1559 0.0001
0.4450 0.4456 0.4797 0.4302 0.3897 0.3569 0.3304 0.3088 0.3092 0.0004
0.5560 0.5564 0.8379 0.7556 0.6855 0.6268 0.5782 0.5379 0.5393 0.0014
0.6670 0.6673 1.3343 1.2122 1.1037 1.0100 0.9302 0.8629 0.8671 0.0042
0.7780 0.7782 19914 1.8246 16699 1.5317 1.4111 13072 1.3181 0.0109
0.8890 0.8891 2.8323 2.6191 24121 22207 2.0491 1.8980 1.9228 0.0249
1.0000 1.0000 3.8806 3.6233 3.3606 3.1086 2.8760 2.6667 2.7183 0.0516

Table 4. Numerical solutions of Equation 4.4 at € different values of using the Picard Iteration method.

§ w Pe=05  Pe=06  Pe=07  Pe=08  Pe=09  DPe=1  Pexact [P1 — P&l
0.0010 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1120 0.1129 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126
0.2230 0.2238 0.0499 0.0499 0.0499 0.0499 0.0499 0.0499 0.0499
0.3340 0.3347 0.1118 0.1118 0.1118 0.1118 0.1118 0.1118 0.1118
0.4450 0.4456 0.1983 0.1983 0.1983 0.1983 0.1983 0.1983 0.1983
0.5560 0.5564 0.3094 0.3094 0.3094 0.3094 0.3094 0.3094 0.3094
0.6670 0.6673 0.4451 0.4451 0.4451 0.4451 0.4451 0.4451 0.4451

O|O|O|O0|O0O|O|O

16


http://jceps.utq.edu.iq/

jceps.utg.edu.ig

0.7780 0.7782 0.6055 0.6055 0.6055 0.6055 0.6055 0.6055 0.6055 0
0.8890 0.8891 0.7904 0.7904 0.7904 0.7904 0.7904 0.7904 0.7904 0
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0

Table 5. Numerical solutions of Equation 4.5 at € different values of using the Picard Iteration method.

§ w Ge=05 Pe=06 Pe=07 DPe=08 Pe=09 Pe=1 Gexact |91 — d&l
0.0010 0.0030 0.9420 0.9675 0.9824 0.9908 0.9954 0.9980 0.9980 0.0000

0.1120 0.1138 0.7938 0.8420 0.8878 0.9297 0.9667 0.9982 0.9982 0.0000
0.2230 0.2246 0.7870 0.8269 0.8695 0.9133 0.9568 0.9984 0.9984 0.0000
0.3340 0.3353 0.8083 0.8375 0.8725 0.9118 0.9543 0.9987 0.9987 0.0000
0.4450 0.4461 0.8467 0.8631 0.8882 0.9197 0.9569 0.9989 0.9989 0.0000
0.5560 0.5569 0.9005 0.9007 0.9137 0.9349 0.9635 0.9991 0.9991 0.0000
0.6670 0.6677 0.9706 0.9498 0.9478 0.9565 0.9736 0.9994 0.9993 0.0000
0.7780 0.7784 1.0601 1.0114 0.9907 0.9840 0.9871 0.9996 0.9996 0.0001
0.8890 0.8892 1.1740 1.0881 1.0431 1.0177 1.0038 1.0000 0.9998 0.0002
1.0000 1.0000 1.3187 1.1837 1.1069 1.0583 1.0241 1.0005 1.0000 0.0005

Table 6. Numerical solutions of Equation 4.6 at y different values of using the Picard Iteration method.
E QY05 Yr=os Yr=07 %r=08 ¥Yr=09 ¥r=1 YExacr |¥1 — ¥l
0.0010 0.0030 1.0639 1.0639 1.0181 1.0093 1.0046 1.0020 1.0020 0.0000
0.1120 0.1138 1.3690 1.3690 1.1480 1.0838 1.0368 1.0018 1.0018 0.0000
0.2230 0.2246 1.4991 1.4991 1.2080 1.1199 1.0532 1.0016 1.0016 0.0000
0.3340 0.3353 1.5874 1.5874 1.2493 1.1447 1.0644 1.0013 1.0013 0.0000
0.4450 0.4461 1.6522 1.6522 1.2800 1.1632 1.0728 1.0011 1.0011 0.0000
0.5560 0.5569 1.7004 1.7004 1.3038 1.1775 1.0793 1.0009 1.0009 0.0000
0.6670 0.6677 1.7359 1.7359 1.3226 1.1888 1.0843 1.0007 1.0007 0.0000
0.7780 0.7784 1.7607 1.7607 1.3374 1.1978 1.0884 1.0004 1.0004 0.0000
0.8890 0.8892 1.7762 1.7762 1.3489 1.2050 1.0916 1.0002 1.0002 0.0000
1.0000 1.0000 1.7836 1.7836 1.3576 1.2106 1.0941 0.9999 1.0000 0.0001

Through the numerical solutions presented in this section, it is clear that the approximate solution approaches the
exact solution when the order of the fractional differential equation approaches the integer order. Therefore, the
method used in this study is considered an effective and efficient method that can be relied upon in solving other
types of linear and nonlinear differential and integral equations.

6- Conclusions

We used VIT with ABFO to evaluate the fractional-order three-dimensional Navier—Stokes equations in this paper.
The VIT result closely resembles the precise solution to the provided issues. The convergence of the fractional-order
answers to integer-order solutions was confirmed by a graphical examination of the results. Furthermore, the
proposed method is clear, simple, and low-cost to implement; it may be extended to solve additional fractional-order
partial differential equations.
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