Journal of Education for Pure Science

https://doi.org/10.32792/jeps.v15i1.624

jeceps.utq.edu.iq jceps@eps.utq.edu.iq

Analytical Solution of Fractional Differential Equations Using
Natural Variation Iteration Method

Tarig M. Elzaki!*, Athmar Razaaq Saeed?*

!Department of Mathematics, Faculty of Sciences and Arts-Alkamil, University of Jeddah, Saudi Arabia
2Department of Mathematics, Faculty of Education for Pure Science University of Thi-Qar

* Corresponding email: athmar.razaag.math@utq.edu.iq

Received 20/ 12 /2024, Accepted 3/2 /2025, Published 01/03 /2025

—G)
@ B This work is licensed under a Creative Commons Attribution 4.0 International
License.

Abstract:

The approach for resolving a set of linear and nonlinear equations using fractional natural variation
iterations is proposed in this article. According to the findings, this strategy is far more successful and
promising than previous numerical approaches.
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1-Introduction
Modern technology has radically changed the world and our way of life. Numerous engineering fields,

such as fluid dynamics, aerodynamics, the sciences of the body, and finance, utilise technology. The
modeling of mathematical objects has a profound impact on and shapes the design of technology.
Mathematical computations can be used to model many diseases, and data collection and careful analysis
can be used to control them [9]. Fractional order differential equations (FDES) are the name given to the
non-integer order differential equations [1,6]. Fractional calculus is the area of mathematics concerned with
FDEs [12].The operators for fractional derivatives have been provided by numerous academics in great
number. The fractional derivative operator by Caputo [10] is the most well-known. The fractional order

integral operator was developed by Li et al. to handle differential equations [11].

In this paper, we will deal with the natural transform iterative method (NTIM), a combination of the

natural transform and the new iterative method which is variation iteration method (VIM) [4,5].
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2-Preliminaries

This section goes over several fractional calculus principles and symbols that will come in
handy during this inquiry [2, 3].

Definition 2.1. Suppose v({) € R,{ > 0 , which is in the space C,,,m € R if there
exists

{p,(p>m),s.t.v({) = {Pv1({),where v,({) € C[0,8) }
and v({) is known as in the space CJ} whenv™ € C,,,m €N .
Definition 2.2. The fractional integral operator of order y > 0 for Riemann Liouville of

v({) € Cp,m = —1 is given by the form

Y v(]) = %y)fo( C -9 1tv®Ed vy>07>0 o
v = v(©, y=0

where I'(-) is the recognizable Gamma function. The following are the characteristics of
the operator IY : Forv € Cm,m = —1,y,0 = 0,then

1. v = I"v(Q)
2. T'I°v(Q) = I°TVv({)

Definition 2.3. In the understanding of Caputo, v({)’s fractional derivative is as follows:

1 ¢
DY) = D) = s [ @ = H W@ 22)
0

suchthatn — 1 <y <nn € N,{ > 0andv € C*
Definition 2.4. The following formula gives the Mittag-Leffler function E,, if it satisfies the

following:

(00} ZY
E, (2) = Y=o TariD , foreachy>0 (2.3)
Definition 2.5. [3]The function v({) for { € R has a natural transform defined by

N[v()]= RS, U) = [ e ¢ v(UQ)d{, S,U € (—o0,) (2.4)

3-Analysis Fractional Natural Variation Iteration Method (FNVIM)

Suppose that the general fractional nonlinear PDEs with Caputo fractional operator
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ng(f,() + Rv(®,0) + Fv(£,0) = 8(¢4,0) m-1<y<m (3.1)
depending on the initial condition
v(L, 0) =3(0), (3.2)

the derivative of v(¢,{) is ng(& {) in Caputo sense, R is linear differential operator, F nonlinear
differential operator, and the source phrase is 8(#, {). Now, by taking NT on both sides of (1)

N[ DIV O]+ NIRv(O + Fy(6,0)] = N[8(4,9)],

or

4 = gy—(k+1)
V() —ZUTM, 0) + N[RV(£,0) + Fv(£,0) — 3(£,0)] = 0.
k=0

The iteration formula:

T = ) e V(8,0) + N[RV(6,0) + Fy(6,0) = 3(,9)]
k=0

N4 7, gr—(k+1)
Vn+1(€r {) =Vp+ A(f) ’

where M(&) Lagrange multiplier

Taking variation

14

S n S)/—(k+1)
61 (8] = 8] + A8 | = ) e (£,0) + NRv(6,9) + Fra(£,9) = 3(£,)] |
k=0

By using computation S[Vng1l = 6lve] + A(8) 5—:6[1/,1]
We impose the condition % =0

1+~ =0
uY
Hence A(¢) = —

14
Vne1(£,0) = V= v+ 2 v(£,0) === N [Rv,(£,0) + F(£,0) — 8(£, 0]
By applying Natural inverse after placing the value of A($), its follow:
14
Vne1(£,0) = v(£,0) = N7V [ N [Rv,(£,0) + Fyn(8,0) = 3(£,0).

The solution is provided by
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v(£,0) = limv,

4- Applications
Example 4.1 Let us consider the FPDE
DIv(£,{) =ve(6,) = v(£), 0<y <1
with initial condition
v(£,0) = et + ¢
Taking the natural transform of (4.1), we get

NIDYv(&,)] = N[vee(£,0) — v(£,9)]

V(8,0 — S v(£,0) = N[ve(£,0) — v(£ O]
SV — S v(0,0) = N[22 — (0011 V(B0 = v+ AQ)

Y 92 n(,
V(8.0 = + v(£,0) + =~ N[22 — y, (,0)]

Taking the inverse Natural transform

Vasr(6,0) = v(£,0) + N2 N[ 2229y (2,0)]]

Vvo=v(£,0) = et + ¢

U
vy=e "t + £’+N‘1[S—yN[e‘[ —et — 7]

—,—1 _ (44
—e™" + ¢ {’[F(y+1)]

vy=e + L+ N o-N[e™ —e™f —£+0(—2)]]

r'(y+1)

gz
r(2y+1)

—et 4 #—{’[F(EID]+£[

_ (_1\yn_ T
Vn—( 1) I'(ny+1)

Therefore, we have v(¢,{) = lim v,
n—->oo

77


http://jceps.utq.edu.iq/

jceps.utg.edu.ig

ZY ZZY
TG +D Ty +1D

—et +0[1- ] =e " +4E, (- ")
If y = 1, and by applying Taylor, the approximation yields
) e
v(£,)) =e Ol — 0+ =]
Example 4.2 Consider the nonlinear fractional equation is given as the following:

DIv(£,9,0) — vy —vie —hv =0

w.r.t initial condition v(£,9,0) =9
solution: N[D}/v(f, 9, ()] — N} +vig+hv] =0
SY y-1 2,2 92,2
mV(f,ﬁ,{) T v(¢,9,0) — N[W'I‘W'F th =0
s st 9%v,2 92,2
Vn+1(€;19; () = 'Vn(‘g,ﬁ, {) +A($) mvn —WV(f,ﬁ, 0) - N[ 042 + 0092 + hvnl
SY s sr-1 0%v,%2 0%, ]
MWy (8,9, =v,(£,9,0) — — AT v(£,9,0) — N 572 + 592 + hv,
. . _ sY 32 n2 62 nz 1
Taking Natural inverse V1 (£,9,0) = v(£,9,0) + N1 [W N [% + agz + hvn]
vo =v(£,9,0) = VeI
N~
v, = VIS + [U [o+0+hV29] | = F+F( 5 MV

v, =VE#9 + N1

—N[0+0+h\/_+ 0T hzx/_]]

_ &
= VI + gy W+ s VT

(V (ZV (n)/
= VP9 + ——— VP9 + R2VPY + -+ + ——— h™P9

ry+1) F(2y+1) r'ny +1)
(V (ZV (n)/
v(£,9,0) = lim v, =\/E[1+F(y+ 5 h+F(2y+1) h? +"'+—r(ny+1) h"
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= E,(h{V V9

Example 4.3 Consider the nonlinear fractional equations is given as the following:

Dv(L, ) — vy — 2w + (vw); = 0

DZw(, Q) —wy — 200, + (vw), =0 0<y<10<o0<1
with the initial condition v(l,0) = e
w(l,0) = e!

v([,0) = N[vy + 2vw; — (vw);] =0

SO‘ n SO'—1
—W(S,U) = ) 2= 0(L,0) = N[ oy + 260, - (ve)] = 0

SY y-1

S
Voer =V + )\1(2) Vh — U v([,0) =N I

012 *2(vn al

92v,, avn 6(vn oon) ”

o o—-1

S
Wiyt = Wy +2,(8) [UG Wy — Uo

10— N 0%w ) dwy, 6(vn oon)
“)(’)_lazer(“al l

9%vy

. . _ 1| u” Ovp 9(vn wn)
By applying Natural inverse ~ v,,.; =v([,0) + N IS—yN [ oz T2 (vn o0 ) - T]l

92wy

e =000+ 1 [ 0] Z22 4 2 o 2) 20

vo =v(,0) = €' ; wo = w(l,0) = €'
{r ¢°
— ol L . — ol l
. e+F(V+1)e ' @1 e+1“(a+1)e
2 2
v, = el + ¢ el + & el + 207 e?l — 207 e?!
2 ry+1) T2y + D¢ F(Zy +1) Ty+o+1)
2 2
w, = el + ¢ el + & el + 287 e?l — 2470 g2l
z [(o+1) r2o+1) ¢ F(ZO‘ +1) Ty+o+1)
14 2y 2y y+o
v(,)) =e'|1+ ¢ + < 2L < - <
Fry+1) ry +1) ry+1) 'ly+o+1)
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w(l, ) =e'|1

N (0’ N (20’ N 2821 (20 _ {]/+0
llc+1) TQRoc+1) ™~ r2c+1) Ty+o+1) "

Settingy = f = 1, we have v(,)) = e! [1 + Z+2—T+ ] = el*¢

w(l,0) =el[1+ (+§—T+...] — olHe

5- Conclusion

In this paper, we studied the analysis of homotopy, then we took many examples that illustrate the solutions
method and how approximate method were found for the solution by substituting the initial values given in the
question. Also we applied the Elzaki transform for Captu fractional equation to find an approximate solution for it.
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