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Abstract: 

Fractional differential equations have gained significant attention in recent years due to their ability to model complex 

phenomena in various scientific and engineering fields. This study focuses on solving fractional differential equations 

involving the nonlinear Caputo fractional derivative and the Caputo-Fabrizio fractional derivative. We employ the 

Daftardar-Jafari Method (DJM) and the Elzaki Daftardar-Jafari Method (EDJM) to derive approximate analytical 

solutions. The combination of these methods provides a systematic and efficient approach to addressing the 

challenges posed by nonlinearities and the memory effects inherent in fractional derivatives. Through illustrative 

examples, we demonstrate the accuracy and applicability of the proposed methods. The results indicate that DJM 

and EDJM are powerful tools for solving nonlinear fractional differential equations, offering insights into their 

underlying dynamics. 

 

Keywords: Elzaki transform, Caputo fractional derivative, Dafter -Jafari method (EDJM). 

 

1-Introduction  

Fractional calculus, an extension of classical calculus, has emerged as a powerful mathematical tool for modeling 

complex systems characterized by memory and hereditary properties. Fractional differential equations (FDEs), which 

incorporate derivatives of non-integer orders, have found applications in diverse fields such as viscoelasticity, fluid 

dynamics, control theory, and biological systems. Among the various definitions of fractional derivatives, the Caputo 

fractional derivative and the Caputo-Fabrizio fractional derivative are widely utilized due to their ability to 

effectively capture the dynamics of real-world phenomena[1], [2], [3]. 

However, solving fractional differential equations, particularly those involving nonlinear terms, presents significant 

analytical and computational challenges. Traditional methods often struggle to provide accurate or efficient solutions 

for such equations, necessitating the development of novel approaches. In this context, the Daftardar-Jafari Method 

(DJM) and its extension, the Elzaki Daftardar-Jafari Method (EDJM), have shown considerable promise. These 

iterative methods are known for their simplicity, convergence properties, and ability to handle nonlinearities 

effectively[4], [5], [6]. 
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This paper aims to apply DJM and EDJM to solve fractional differential equations involving the nonlinear Caputo 

and Caputo-Fabrizio fractional derivatives. By leveraging these methods, we seek to obtain approximate analytical 

solutions that offer deeper insights into the behavior of the underlying systems. The rest of the paper is organized as 

follows: Section 2 presents the mathematical preliminaries and definitions relevant to fractional calculus. Section 3 

describes the methodology and implementation of DJM and EDJM. Section 4 illustrates the application of these 

methods to specific examples, followed by a discussion of the results. Finally, Section 5 concludes the paper and 

highlights potential directions for future research. 

Basic concepts 

Definition 1. [7]   A real function ϕ(ω), ω > 0, is said to be in the space  Cϑ, ϑ ∈ R   if  there  exists  a  real  

number  q, (q > ϑ),  such that ϕ(ω) = ωqϕ1(ω), where ϕ(μ) ∈ [0, ∞) and  it  is said to be in the space Cϑ
m if  

ϕ(m) ∈ Cϑ, m ∈ Ν. 

 

Definition 2. [1] For   ε > 0 the   gamma function Γ(ε) is defined by the integral 

Γ(ε) = ∫ e−τ τε−1
∞

0

 dτ                                                                                                                               (1) 

The basic properties of the gamma function are that it satisfies the following as [8] 

1.  Γ (
1

2
) = √π  . 

2.  Γ(ε + 1) = ε Γ(ε) , ε ∈ ∁  . 

3.  Γ(ε) = (ε − 1)!  ,             ε ∈ ∁  . 

 

Definition 3. [5] The Mittag -Leffler function of one parameter can be defined in terms of a power series as 

Eε(ξ) = ∑
ξk

Γ(εk + 1)
, ε > 0,

∞

k=0
                                                                                                          (2)  

and the Mittag -Leffler function of two parameters is given by 

Eε,γ(ξ) = ∑
ξk

Γ(εk + γ)
,         ε > 0,

∞

k=0
γ > 0.                                                                                   (3)  

Properties For some specific values of ε and γ, the Mittag-Leffler function reduces to some familiar. For example, 

[9], [10], [11] 

1. E1,1(ξ) = ∑k=0
∞  

ξk

Γ(k+1)
= ∑k=0

∞  
ξk

k!
= eξ 

2. E1,2(ξ) = ∑k=0
∞  

ξk

Γ(k+2)
=

1

ξ
∑k=0

∞  
ξk+1

(k+1)!
=

eξ−1

ξ
 

3. E2,1(ξ2) = ∑k=0
∞  

ξ2k

Γ(2k+1)
= ∑k=0

∞  
ξ2k

(2k)!
= Cosh(ξ) 

4. E2,2(ξ2) = ∑k=0
∞  

ξ2k

Γ(2k+2)
= ∑k=0

∞  
ξ2k+1

ξ(2k+1)!
=

Sinh(ξ)

ξ
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5. E2,1(−ξ2) = ∑k=0
∞  

(−ξ2)
k

Γ(2k+1)
= ∑k=0

∞  
(−1)kξ2k

(2k)!
= Cos(ξ) 

6. E2,2(−ξ2) = ∑k=0
∞  

(−ξ2)
k

Γ(2k+2)
= ∑k=0

∞  
(−1)kξ2k+1

ξ(2k+1)!
=

Sin(ξ)

ξ
 

 Definition 4. [5] The Riemann-Liouville integral operator of order ε > 0, of a Function f(ξ) ∈ Cμ, μ ≥ −1 is 

defined as: 

Jξ
εf(ξ) =

1

Γ(ε)
∫  

ξ

0

  (ξ − ω)ε−1f(ω) dω                                                                                  (4) 

Definition 5. [12]The Caputo fractional derivative of order ε, where n − 1 < ε < n, n ∈ N, is defined by: 

  CDξ
εf(ξ) = Jξ

n−εDnf(ξ) =
1

Γ(n − ε)
∫ (ξ − ω)n−ε−1f (n)(ω)dω.

ξ

0

                                                       (5) 

Definition 6. [13] Let f(ξ) is an integrable function, then the Laplace transform of f(ξ), ξ ≥ 0 is defined by 

F(s) = L{f(ξ)} = ∫  
∞

0

  e−sξf(ξ)dξ = LimA→∞ ∫  
A

0

  e−sξf(ξ)dξ                                    (6)  

 

Table 1. Laplace transforms of some important functions. 

function Laplace 

transform 

k k

s
 

ξε Γ(ε + 1)

sε+1
 

eεξ 1

s − ε
 

Sin(εξ) ε

s2 + ε2
 

Cos(εξ) s

s2 + ε2
 

Sinh(εξ) ε

 s2 − ε2
 

Cosh(εξ) s

s2 − ε2
 

f (n)(ξ) F(s)

s−n

− ∑
f (k)(0)

s−n+k+1

n−1

k=0

 

Jn f(ξ) F(s)

sn
 

ωγ−1Eε,γ(λωε) sε−γ

sε − λ
 

Lemma 1.1. [14]Laplace transform of Riemann-Liouville fractional integral of order ε > 0 is given by: 

L{Jξ
εf(ξ)} =

F(s)

sε
                                                                                                                                                   (7)  
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Theorem 1.1. [15]Laplace transform of Caputo fractional derivative of order ε > 0 is given by: 

L{ CDξ
εf(ξ)} = sεF(s) − ∑  

n−1

k=0

   sε−k−1f (k)(0)                                                                                              (8)  

Definition 1.5.1. The fractional derivative with the Caputo-Fabrizio operator for 0 < a ≤ 1 is defined as:                    

  CF𝒟x
αf(x) =

B(α)

1 − α
∫  

x

0

exp [−
α(x − t)

1 − α
] f ′(t)dt                                                                                       (9)  

where f ∈ ℋ1(a, b), a < b,  f ′ is the derivative of f, and B(α) is a normalization function such that B(0) = B(1) =

1, and the Caputo-Fabrizio fractional integral of order α of a function f is defined by 

  CFIx
αf(x) =

1 − α

B(α)
f(x) +

α

B(α)
∫  

x

0

f(s)ds

                 =
1 − α

B(α)
f(x) +

α

B(α)
Jx
1(f(x))                                                                                                (10)

 

Properties 1.5.1. The operator's fundamental attributes are as follows  

1.   CF𝒟x
αf(x) = f(x), where α = 0. 

2.   CF𝒟x
α[f(x) + g(x)] =   CF𝒟x

αf(x) +   CF𝒟x
αg(x). 

3.   CF𝒟x
αc = 0, c is constant. 

4.   CFIx
αf(x) = f(x) ,   where α = 0, 

5.   CFIx
αf(x) = ∫0

x
 f(t) dt , where α = 1, 

6.   CFIx
α[f(x) + g(x)] =   CFIx

αf(x) +   CFIx
αg(x) 

7.    CFIx
α  CF𝒟x

α f(x) = f(x) − f(0) ⋅ 

8.   CFIx
αc =

c

B(α)
(1 − α + αx). 

9.   CFIx
αxk =

xk

B(α)
(1 − α +

αx

k+1
). 

Lemma Elzaki transforms of Caputo-Fabrizio fractional derivative of order 0 < α ≤ 1 are given by: 

10. ℰ{  CF𝒟x
αf(x)} =

1

1−α+αv
(T(v) − v2f(0)) . 

Proof 

L{  CF𝒟x
αf(x)} = L {

1

1 − α
∫  

x

0

exp [−
α(x − t)

1 − α
] f ′(t)dt } 

By The Laplace transform of convolution, we get 

L{  CF𝒟x
αf(x)} =

1

1 − α
L {e−

αx
1−α } L{f ′(t)} 

=
1

1 − α
(

1

s +
α

1 − α

) (sF(s) − f(0)) 
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=
1

(1 − α)s + α
(sF(s) − f(0)) 

 

2. Analysis of fractional Dafter -Jafari method (EDJM) with caputo Fabrizio operator: 

We Consider fractional differential equation 

 cfDt
αu(x, t) + R[u(x, t)] + N[u(x, t)] = g(x, t), t > 0,  n − 1 < α ⩽ n                                               (11) 

With the initial condition u(x, 0) = u0(x)                                                                                                 (12) 

where  cfDt
αu(x, t) is the derivative of u(x, t) in Caputo- Fabrizio operator, R, N differential operators, including 

linear and nonlinear and g(x, t) is the energy term. 

Now by taking integral of Caputo- Fabrizio to both sides of Eq. (8), we obtain 

It
α

 
Cf  cfDt

αu(x, t) + It
α

 
Cf R[u(x, t)] + It

α
 

Cf N[u(x, t)] = It
α

 
Cf g(x, t) (10) 

We get  

u(x, t) − u(x, 0) = It
α

 
Cf g(x, t) − It

α
 

Cf R[u(x, t)] − It
α

 
Cf N[u(x, t)]  

From (9) we get 

u(x, t) = u0(x) + It
α

 
Cf g(x, t) − It

α
 

Cf R[u(x, t)] − It
α

 
Cf N[u(x, t)]                                                        (13) 

Now, we represent solution as an infinite series given below  

u(x, t) = ∑  

∞

n=0

un(x, t)                                                                                                                                                    (14)        

By substituting (12) in (11) ,we get  

∑  

∞

n=0

un(x, t) = u0(x) + It
α

 
Cf g(x, t) − It

α
 

Cf R [∑  

∞

n=0

un(x, t) ]

− It
α

 
Cf N [∑  

∞

n=0

un(x, t) ]                                                                                                           (15) 

                                                                                                                              

and the nonlinear term N is decomposed as 
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N (∑  

∞

n=0

un(x, t)) = N(u0) + ∑  

∞

i=0

{N (∑  (uj)

i

j=0

) − N (∑  (uj)

i−1

j=0

)}

=  ∑  (Gi)

∞

i=0

                                                                                                                                  (16)  

from Eqs  (14) ,(13),and Eqs(12) is equivalent to  

∑  ∞
n=0 un(x, t) = u0(x) + It

α
 

Cf g(x, t) − It
α

 
Cf R[∑  ∞

n=0 un(x, t)] − It
α

 
Cf N(u0) − It

α
 

Cf ∑  ∞
i=0 {N (∑  (uj)

i

j=0
) −

N (∑  (uj)
i−1

j=0
)}                                                                                       (17) 

Now , we define the recurrence relation : 

F = u0(x) + It
α

 
Cf g(x, t)  

L(ui) = − It
α

 
Cf R[ui(x, t) ]  

Gi = − It
α

 
Cf {N (∑  (uj)

i

j=0
) − N (∑  (uj)

i−1

j=0
)}                                                                                     (18) 

By substituting (16) in (15) ,we get  

u(x, t) = F − L(u) − G(u)       

Where G(u) = ∑  (Gj)
∞

j=0
 and L(u) = L(∑  (uj)

∞

j=0
 

 

Moreover  ,  the relation is define with recurrence so that  

u0 = F 

uj+1 = −L(uj) − Gj 

The solution is written as 

u(x, t) = ∑  

∞

n=0

un(x, t) = u0 + u1 + u2 + ⋯ 
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Applications of DJM  

Example 1. Consider the following system in the caputo Fabrizio operator: 

Dt
αu(x, t)) + uux = uxx 

Cf   ,   0 < α ⩽ 1 

with initial conditions 

 u(x, 0) = x 

taking integral of Caputo- Fabrizio to both sides of above equation we get  

u = x + It
α

 
Cf (uxx) − It

α
 

Cf (uux) 

From the relation (16) we get  

F = x 

L(u) = It
α

 
Cf (uxx)  

Gi = − It
α

 
Cf (uux)  

Now  

G0 = − It
α

 
Cf (u0u0x)  

G1 = − It
α( 

Cf (u0 + u1)(u0x + u1x)) + It
α

 
Cf  (u0u0x) 

G2 = − It
α( 

Cf (u0 + u1 + u2)(u0x + u1x + u2x)) + It
α

 
Cf  It

α( 
Cf (u0 + u1)(u0x + u1x)) 

We get  

u0 = F = x 

u1 = L(u0) + G0 = It
α( 

Cf 0) − It
α( 

Cf x)  

      = −((1 − α)x − αxt) = −x(1 − α + αt)  

u2 = L(u1) + G1 = It
α( 

Cf 0) − It
α( 

Cf α2x((t − 1)2) + It
α( 

Cf x)   

      = (x − αx − α2x + α2x) + (2α2x − 3α2x + αx)t + (−α2x + 2α3x)t2 −
1

3
α3xt3 

The approximate solution is given by : 
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u(x, t) = x − x(1 − α + αt) + (x − αx − α2x + α2x) + (2α2x − 3α2x + αx)t + (−α2x + 2α3x)t2 −

1

3
α3xt3+……. 

The above equation is approximate solution to the form  

u(x, t) =
x

1 + t
 

For α = 1, which is the exact solution of above equation 

Example 2 :Consider the following system in the caputo Fabrizio operator: 

 Dt
αu(x, t)) − vx + v + u = 0 

Cf   ,   0 < α ⩽ 1 

Dt
βv(x, t)) − ux + v + u = 0Cf ,   0 < β ⩽ 1                                           

with initial conditions 

 u(x, 0) = sinhx   

v(x, 0) = coshx.                                                                                                

Taking integral  caputo Fabrizio on both sides ,we obtain 

u(x, t) = sinhx + It
α(vx − v − u) 

Cf                           

                    v(x, t) = coshx + It
α(ux − v − u) 

Cf .                                  

Then  

  Fα = sinhx,      

  Fβ = coshx,      

   Lα(u, v) = It
α(vx − v − u) 

Cf .                                                                                                                                       

  Lβ(u, v) = It
α(ux − v − u) 

Cf . 

 

Gα = 0      

Gβ = 0     
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 Naser et al., Vol.15, No.1(2025)                                                      Website: jceps.utq.edu.iq, ISSN: 2710-429X 

70 

 

N0w  

u0(x, t) = F1 = sinhx,  

v0(x, t) = F2 = coshx,  

u1(x, t) = Lα(u0, v0)  

                = It
α(−v0x + v0 + u0) 

Cf   

               = It
α(−coshx) 

Cf   

               = −coshx(1 − α + αt)  

v1(x, t) = Lβ(u0, v0)  

                = It
β(u0x − v0 − u0) 

Cf   

               = It
β(−sinhx) 

Cf   

               = −sihx(1 − β + βt)  

u2(x, t) = Lα(u1, v1)  

                = It
α(v1x − v1 − u1) 

Cf   

               = It
α(sinhx(1 − α + αt)) 

Cf   

               = sinhx [(1 − 2α + α2)(2α − 2α2)t +
α2

2
t2] 

v2(x, t) = Lβ(u1, v1)  

                = It
β(u1x − v1 − u1) 

Cf   

               = It
β(sihx(1 − β + βt)) 

Cf   

= coshx [(1 − 2β + β2)(2β − 2β2)t +
β2

2
t2]  

 

          The approximate solution is given by : 
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u(x, t) = sinhx − coshx(1 − α + αt) + sinhx [(1 − 2α + α2)(2α − 2α2)t +
α2

2
t2] − … … ….                           

 v(x, t) = coshx − sihx(1 − β + βt) + coshx [(1 − 2β + β2)(2β − 2β2)t +
β2

2
t2] −  … … ..  

                                 

 

3- Conclusion  

In this study, we applied the Daftardar-Jafari Method (DJM) and the Elzaki Daftardar-Jafari Method (EDJM) to 

fractional differential equations involving the nonlinear Caputo fractional derivative and the Caputo-Fabrizio 

fractional derivative. These methods demonstrated their robustness and efficiency in deriving approximate 

analytical solutions for nonlinear fractional differential equations, effectively addressing the challenges posed by 

fractional operators and nonlinearities. 

The results obtained highlight the accuracy and reliability of DJM and EDJM in solving complex fractional 

systems. By providing systematic iterative approaches, these methods enable a deeper understanding of the 

dynamics governed by fractional derivatives. Furthermore, the illustrative examples underline the flexibility of 

these techniques in handling different forms of nonlinear fractional differential equations. 

This work not only advances the application of DJM and EDJM but also contributes to the broader field of 

fractional calculus by providing alternative tools for tackling nonlinear problems. Future research could explore the 

extension of these methods to multi-dimensional fractional systems, fractional partial differential equations, and 

equations involving other types of fractional operators. Additionally, incorporating numerical techniques or hybrid 

approaches could further enhance the applicability and efficiency of these methods in solving real-world problems. 
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