
Journal of Education for Pure Science- University of Thi-Qar
Vol.10, No.2 (June, 2020)

Website: jceps.utq.edu.iq															 																																				 																																Email: jceps@eps.utq.edu.iq

 89

DOI: http://doi.org/10.32792/utq.jceps.10.02.010

A proposed technique for improving run length encoding

(Dhyaa Alrahman Latef Thajel Prof.Dr. Kadhim Mahdi Hashim

University of thi-qar, college of education for pure science

Received 20/2/2020 Accepted 6/8/2020 Published 30/11/2020

 This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract:

 Image compression, is used to reduce the quantity of pixels used in image representation without
excessively change image visualization. Reducing image size enhance images sharing, transmitting and
storing. Data compression has become more important than ever, due to the increasing demand for internet
use and exchange of a huge amount of images, videos, audio and documents as well as growing demand
for electronic archiving by government departments that produce thousands of documents per day. In this
paper, a proposed technique for improving run length encoding results will be presented.
 The proposed technique is a lossless and completed technique, it is consisting of two parts the
compression part and decompression part. The compression part contains some basic stages such as: pre-
processing, run length encoding, replace maximum values by unused values, minimize levels, delta
encoding, while the decompression part is the revers of compression part.

 This technique is applied on twenty documents and compared with RLE. The experimental results
showed that the proposed technique gives a higher compression ratio than the RLE.

Keywords: Data compression, run-length encoding, delta encoding, lossless.

Introduction:
Image compression is an application of data compression that encodes the original image with few bits.
The objective of image compression is to reduce the redundancy of the image and to store or transmit data
in an efficient form. The field of image compression continues to grow at a rapid pace. As we look to the
future, the need to store and transmit images will only continue to increase faster than the available
capability to process all the data. Even with the rapid growth in computer power and increase Internet
bandwidth, the ability to process and transmit the desired amount of image data continues to be problematic
[1].

2. Background:
2.1 Run-length encoding (RLE) [2, 3]:
 Is one of the simplest forms of data compression methods, the principle of RLE is to exploit the
repeating values in a source. This repeating string of characters is called a run. The algorithm counts the
consecutive repeating amount of a symbol and uses that value to represent the run.

Journal of Education for Pure Science- University of Thi-Qar
Vol.10, No.2 (June, 2020)

Website: jceps.utq.edu.iq															 																																				 																																Email: jceps@eps.utq.edu.iq

 90

 In RLE, runs of data are stored as a single data value and count, rather than as the original run. This is
most useful on data that contains many such runs: for example, simple graphic images such as icons, line
drawings, and animations.
__
2.2 Lossless compression:
reduces bits by identifying and removing statistical redundancy. No information is lost in lossless
compression. Lossless compression methods reduce size whilst preserving all of the original image
information, and therefore without degrading the quality of the data [4]. Some of these techniques are like
run length encoding, entropy encoding, Huffman encoding, arithmetic coding, Lempel–Ziv–Welch coding,
deflation, chain codes, delta encoding and block coding.
__
2.3 Delta encoding:
 Delta encoding represents streams of compressed pixels as the difference between the current value and
the previous value [5]. The first value in the delta encoded file is the same as the first value in the original
image. While the following pixels in the encoded file are equal to the difference between the corresponding
value in the input data, and the previous value in the input data [6].
__
2.4 BMP file format(.bmp):
 The bitmap file format deal with graphic file related to microsoft windows OS. Normally these files
are uncompressed so they are large. These files are used in basic windows programming [7]. BMP files
always contain RGB data. The file can be1-bite: 2 colors (monochrome), 4-bit: 16 colors, 8-bit: 256 colors,
24-bit: 16777216 colors, mixes 256 tints of Red with 256 tints of Green and Blue [8]

3. The Proposed Technique:

3.1 Compression part;

The proposed compression part is described in figure (3.1).

 No

 Yes

Start
Preprocessing Apply the run length

encoding to the vector

Separate ones runs from zeros

runs in two vectors.

Replace maximum

values by unused values
 Minimize levels Convert all output arrays to

binary and then stored.
End

Read
image(x)

New matrixes

after replacement

Matrix of replaced values

If there are
unused

Convert into
binary image

Figure (3.1): The compression part for the proposed

technique

Journal of Education for Pure Science- University of Thi-Qar
Vol.10, No.2 (June, 2020)

Website: jceps.utq.edu.iq															 																																				 																																Email: jceps@eps.utq.edu.iq

 91

3.1.1 Read image and convert into binary image:
 The first step is reading a document image from its location in storage location in computer, if the input
image is of gray level or color image, it will be converted to binary image and then compressed.
__
3.1.2 Preprocessing:
 Matrix of image is converted into a row logical vector so that it will be ready to apply the run length

encoding.

3.1.3 Apply the run length encoding to the vector:
 In this step, run length encoding is applied to the logical vector which produced from the block
processing stage. The output of this stage is a decimal vector representing the number of ones and the
number of zeros in succession starting from the second position in the output vector where the first location
is allocated to a sign in whether the input vector starts with ones or zeros. If it starts with ones, it takes zero
and if it starts with zeros, takes one.
__
3.1.4 Separate one runs from zeros runs in two vectors:
 Ones in the binary documents represent the background and zeros that represent the information and
when applying the run length encoding ones produce decimal numbers greater than zeros this means the
nature of numbers produced from ones differs from the nature of numbers produced from zeros, in this
stage they will be separated into two matrices to increase the efficiency of the proposed data compression
technique. In fact, the odd position will be separated from even position.

3.1.5 Replace maximum values by unused values:
This stage consists of many steps they will be explained in the following.

Step1: Input the integer matrix:
the output matrixes from the previous step will be the input matrixes in this step.
__
Step2: Calculate maximum number of bits that is needed and maximum value to represent data:
 Find the histogram of integer matrix, and find how many numbers (levels) are used in integer matrix.
The length of the histogram represents the number of levels; it will be called (L). Then find how many bits
are need to represent (L) by using flowing formula: B=log2 (L). Where (B) is number of bits are need to
represent (L).
 If (B) is a fraction number, it is rounded to the larger integer. So the (ceil) function is used for rounding
and the formula will be: B = ceil (log2 (L)). Then calculate maximum value to represent data (max value)

by flowing formula: max value = (2)B -1

__
Example (3.1): Let (A) input integer matrix, after calculating the histogram of A, the number of levels (the
numbers used) was 280. The max bit and max value, can bd calculated as follows:
L = 280;
B = log2(280); B =8.129
There is no 8.129 bit this value is rounded to 9 by (ceil) function: -
B = ceil (8.129) = 9 bits;

Journal of Education for Pure Science- University of Thi-Qar
Vol.10, No.2 (June, 2020)

Website: jceps.utq.edu.iq															 																																				 																																Email: jceps@eps.utq.edu.iq

 92

The maximum value is calculated as: -
92 - 1=511.

Step3: Search for unused values (levels) that are smaller than max value
Example (3.2): Let (A) input integer matrix and the histogram information of A is represented in table
(3.1), then:

NO 1 2 3 4 5 6
Gray scale value 3 4 5 7 510 1000
Number of repetitions 2000 1000 1000 2000 200 100

Table (3.1) histogram information of A

The values that were in A are 3, 4,5,7,510,1000, that mean L = 6; B = log2 (6) =2.584; B = ceil (2.584) =

3 bits; max value = 32 -1 = 7 Searches for unused values that are less than 7 in A, there are four values
0,1, 2 and 6.

Step4: Check the conditions:
 If maximum element in input matrix > max bit and unused numbers  [], then go to next step else go
to end without any change. In the example (3.2) the maximum element in input matrix is 1000 greater than
7 and unused numbers = [0, 1, 2, 6], the condition is met then go to the next step

Step5: Replace maximum number in input data by minimum number in unused values:
 To complete the example (3.2) in this step the maximum value in the entered matrix will be replaced
by the minimum unused value as follows:1000 replaced by 0. This process is repeated as long as the
condition in the previous step is met so 510 replaced by 1.
In this case, the number 7 will be the maximum of the entered matrix, which is equal to the max value, not
smaller than it, and the condition will not be met and the process will stop. The histogram information of
A will be as follows:

NO 1 2 3 4 5 6

New values 0 1 3 4 5 7
Number of repetitions 100 200 2000 1000 1000 2000

Table (3.2) histogram information of matrix (A) after replacement

Step6: Calculate the size of the replaced values plus the new data and the size of the input data:
 The replacement process is not suitable for small arrays, and the size of the outputs may be greater
than the size of the inputs, but it is very useful for large arrays. In this step, the size of the input will be
compared with the size of the outputs to ensure that, the replacement works only if there is a reduction in
the size of the entered matrix.
 To complete the example (3.2) and from the tables (3.1), (3.2) the size of the input and outputs are
calculated as follows: A is the input matrix, number of its elements is 6300 and maximum value is 1000,
this takes 10 bits so size of input will be 6300x10 = 63000 bits where maximum value after replacement is
7, this takes 3 bits so size of output will be 6300x3 = 18900 bits. And there are two values [1000, 510]
every one take 10 bits replaced by another values [0, 1] every one take 1 bit, this means that, the cost of
storing the replaced values costs 22 bit, which is added to the size of the outputs and the comparison is as
follows: Size of input: 63000 bits; Size of outputs: 18900 +22=18922 bits; So: Size of input >> Size of
outputs. In this case, go to the next step, and the outputs will be produced.

Journal of Education for Pure Science- University of Thi-Qar
Vol.10, No.2 (June, 2020)

Website: jceps.utq.edu.iq															 																																				 																																Email: jceps@eps.utq.edu.iq

 93

3.1.6 Minimize levels:
 Take the indexes of large numbers that have few repetitions and then reduce the levels to the middle.
This process produces two outputs, the first output is the indexes matrix that is sent to the delta encoding
and then compression ones and then the max replace, and the second output is the new matrix after reducing
the levels in middle. The size of the inputs is compared to the size of the outputs. If the output size is less
than the input size, this process is repeated automatically. The steps for this stage will be illustrated by the
following example:
Example (3.3): Let (A) input integer (odd position or even position) matrix after applying max replace
steps and following table is representing the histogram information of A.

levels 0-7 8-15 16-31 32-63 64-127 128-137

 repetitions 100000 200 100 50 70 10

Table (3-3): histogram information of A

To apply minimize levels stage the following steps are followed:
Step1: Calculate (max value), it has already been explained in the max replace stage.
L = 138; B= ceil(log2(138) = 8; max value = 8(2) -1=255.

Step2: Search for numbers > ((max value-1) /2)) subtract them from ((max value + 1) /2)) and take their
indexes. (max value-1) /2 = (255-1) /2=127. From the table (3.3). there are 10 numbers > 127 let this
numbers are existed in following indexes:

indexes 500 1000 3000 5000 10000 20000 40000 60000 80000 100000
numbers 128 129 130 131 132 133 134 135 136 137

Subtract this numbers from ((max bit+1) /2)) = ((255+1) /2)) =128, after Subtracting will be as following:

indexes 500 1000 3000 5000 10000 20000 40000 60000 80000 100000
numbers 0 1 2 3 4 5 6 7 8 9

0-7 8-15

And the histogram information of A will be change as following table:
levels 0-7 8-15 16-31 32-63 64-127

Number of repetitions 100008 202 100 50 70

Table (3.4) histogram information of A After Minimize levels for one iteration
Indexes matrix= [500,1000,3000,5000,10000,20000,40000,60000,80000,100000]

Journal of Education for Pure Science- University of Thi-Qar
Vol.10, No.2 (June, 2020)

Website: jceps.utq.edu.iq															 																																				 																																Email: jceps@eps.utq.edu.iq

 94

Step3: indexes matrix will be compressed by delta max replace. In this example the indexes matrix after
compression will be as following: [500,500,2000,2000,5000,10000,20000,20000,20000,20000]. There has
been no change in compression one’s step (there is no ones to compression) and there has been no change
in max replace part because it is not suitable for small matrixes.

Step4: calculate the size of outputs and inputs. From table (3.3) input matrix A has 100430 elements and
maximum value was 137 it is take 8 bits. So size of A= 8x100430 = 803440 bits. From table (3.4)
maximum value of A after minimize levels was 127 it is take 7 bits. So size of output A= 7x100430 =
703010 bits. And indexes matrix after compression has 10 elements and maximum value was 20000 it is
take 15 bits. So size of indexes matrix after compression = 15x10 = 150 bits.
General size of outputs =150 + 703010= 703160 bits.

Step5: Compare the size of the input with the size of the outputs if the outputs size is smaller than input
size go to step (1) and repeat until the size of the outputs will be greater than input size then go to end and
give the outputs of last iteration. In this example general size of outputs (703160 bits) < size of input

(803440 bits). So go to step (1) and repeat all steps for second iteration.

3.1.7 Convert all output vectors to binary and then stored.
Step1: Convert vectors to binary form and then convert them to logical row vectors.

Step2: The row vectors are connected together and the first final file is produced and stored.

Step3: Collect header information in one decimal vector.

Step4: Convert decimal header vector to binary form and then converts it to logical row vectors and it is
stored in separate file. The header file key is the number of elements of the header file vector before
converting from decimal into binary form.

3.2.2 Decompression parts: The decompression part reverses the compression stages completely.

4. Experimental Results:
 The proposed compression technique was applied to the set of twenty testing images the average of
compression time of the test images was 0.2259 second and average of decompression time was 1.4101
second. The sizes and compression ratios of RLE were obtained and compared with the sizes and
compression ratios of the compressed files that were produced by the proposed compression technique.
Table (4.1) show the comparison results between proposed technique and RLE.

No.

Original
Size

(KB)

CR of compressed
files

 RLE Proposed
technique

Image1 493 1.1650 3.2940
Image2 493 1.4522 3.9043
Image3 493 2.1052 6.8211
Image4 493 3.4050 12.0449
Image5 493 4.9310 11.3999
Image6 493 3.6974 11.9724
Image7 493 5.7435 13.9843
Image8 493 3.4026 9.6249
Image9 493 3.7526 11.8294

Image10 493 5.9728 18.5439

Journal of Education for Pure Science- University of Thi-Qar
Vol.10, No.2 (June, 2020)

Website: jceps.utq.edu.iq															 																																				 																																Email: jceps@eps.utq.edu.iq

 95

Image11 493 5.4324 15.6909
Image12 493 2.8181 8.8516
Image13 493 4.0713 12.5874
Image14 493 2.2567 8.5316
Image15 493 4.2734 10.5262
Image16 493 2.8663 9.5036
Image17 493 3.4517 8.8065
Image18 493 4.2478 11.4998
Image19 493 4.3126 13.9561
Image20 493 10.4411 27.1576
average 493 3.9899 11.5265

Result analysis: through experimental results, it was observed that the proposed technique gives a higher
compression ratio (CR) than RLE.
__
5. Conclusions:

1- The results of the proposed technique were compared with run length encoding
2- Through experimental results, it was observed that the proposed technique gives a higher

compression ratio (CR) than RLE.
3- The files that were decompressed are exactly the same as the original files, and there is no error

ratio. This means that PSNR and SNR are zeros.
4- The bit rate of the proposed technique is the lowest compared to the RLE.

References:

[1] Wei-Yi Wei, An Introduction to ImageCompression.
[2] F. Semiconductor, “Using the Run Length Encoding Features on the MPC5645S, 2011.
[3] S. Gaurav Vijayvargiya and R. P. Pandey, “A Survey: Various Techniques of Image Compression,
2013.
[4] A. H. Hussein, S. Sh. Mahmud, R. J. Mohammed, Image Compression.
[5] M. Dipperstein, “Adaptive Delta Coding Discussion and Implementation, Online available:
http://michael. dipperstein.com /delta /index. html
[6] S. W. Smith, “Data Compression, Sci. Eng. Guid. to Digit. Signal Process, 1997
[7] Shubham Venayak1, Sukhwinder Singh, “A Study of 2-D Image Compression Technique”,
International Journal of Enhanced Research in Management & Computer Applications, Vol. 3 Issue 3,
March-2014
[8] Scott E Umbaugh, digital image processing and analysis, 2011.
[10] Digital Image Processing By Rafael C. Gonzalez and Richard Eugene Woods.
[11] Johnson, Stephen, Stephen Johnson on Digital Photography, 2006.
[12] Report Paula Aguilera, Comparison of different image compression formats (ECE 533 Proj

