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Abstract:

In this paper, we present an approximate solution for the Fornberg-Whitham equation using fractional operators,
specifically the Atangana-Baleanu derivative, and apply the Yang Adomian Decomposition Method (YADM). The
results indicate high efficiency and show a significant agreement with the exact solution.

Keywords: Adomian Decomposition Method; Yang transform; Atangana-Baleanu derivative.

1-Introduction

In recent decades, fractional calculus (FC) has been applied to numerous phenomena across natural sciences,
engineering, fluid dynamics, life sciences, and other practical sciences. FC provides a robust framework for
effectively describing these phenomena using fractional mathematical tools. Fractional derivatives (FDs) are
especially valuable in capturing the hereditary and memory characteristics of various processes and materials.
Applications of FDs appear in multiple engineering and scientific challenges, including diffusion and reaction
processes, frequency-dependent signal processing, system modeling, damping behaviors in materials, and the
relaxation and creep of viscoelastic substances. [1-3].

The examination of nonlinear wave equations and their answers holds vital significance across many
academic disciplines. One of the most compelling solutions for nonlinear fractional partial differential equations
(FPDEs) is the concept of traveling waves. Nonlinear FPDEs are frequently associated with complex physical and
mechanical processes, making the exact solutions of these equations, particularly traveling wave solutions, highly
desirable. Certain FPDEs, such as the Korteweg-de Vries and Camassa-Holm equations, exhibit various traveling
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wave solutions and are instrumental in modeling nonlinear, Omnidirectional dispersing waves in shallow
depths. [4] Additionally, the Fornberg-Whitham equation (FWE) is notably significant in mathematical physics,
with applications spanning multiple scientific disciplines.

The Fornberg-Whitham equation (FWE) [5],[6] is formulated as follows:
Dfu — Uypt T Uy T UUy = 3UpUyy + Ulyxx

This equation describes the qualitative behavior of wave breaking in nonlinear dispersive waves. The FWE is
known to allow peakon solutions, providing a numerical framework for understanding limiting wave heights
and the occurrence of wave breaks. In 1978, Fornberg and Whitham introduced a peaked solution given by:

x_2t
u(x,t) = Ce2 3

where C is a constant. The analysis of FWEs has been approached through various numerical and analytical
methods, including the Laplace decomposition technique [7], Lie symmetry [8], variational iteration technique
[9], differential transformation technique [10], new iterative technique [11], homotopy-perturbation technique
[12], and homotopy analysis transform technique [13], In addition to the numerous scientific studies in which
solutions and methods for solving differential equations of both fractional and classical orders have been
proposed [14-17], [19-32]

The Adomian Decomposition Method (ADM), pioneered by George Adomian, has emerged as a robust
analytical framework for solving nonlinear differential equations. Unlike iterative or perturbation-based
techniques, ADM systematically decomposes nonlinear terms into computable Adomian polynomials, enabling
precise handling of complex nonlinearities without restrictive linearization assumptions [29-31]. This method
has been extensively applied to fractional-order systems, particularly under operators like Caputo, Riemann-
Liouville, and the modern Atangana-Baleanu derivative, which preserves memory effects critical for modeling
hereditary phenomena [33,34].

A key advancement in ADM’s application to fractional equations lies in its integration with integral transforms.
In this study, the Yang transform is combined with ADM to streamline the resolution of the time-fractional
Fornberg-Whitham equation (FWE). While traditional mesh-based methods [18] provide discrete
approximations, the Yang-ADM synergy generates continuous, rapidly convergent series solutions, avoiding the
numerical overhead of spatial discretization. Recent innovations in ADM, such as optimized algorithms for
Adomian polynomial generation [34], have further enhanced its computational efficiency, addressing historical
critiques about polynomial complexity.
This manuscript advances the analytical resolution of the fractional FWE using the Atangana-Baleanu fractional
operator, a non-singular kernel derivative that accurately models memory-dependent wave-breaking dynamics.
While prior studies employed methods like differential transformation [10] or homotopy techniques [12,13], their
reliance on linearization or small parameters limits generality. In contrast, ADM’s direct decomposition
framework circumvents these constraints, yielding semi-analytical solutions in series form with minimal
computational effort. The method’s convergence, rigorously established for fractional PDEs [35,36], ensures
reliability, while its avoidance of discretization errors aligns with the need for precise physical insights into wave
behavior.
Study Contributions:

1. Yang-ADM Hybridization: Unifies the Yang transform’s operational simplicity with ADM’s nonlinear

decomposition, enabling efficient handling of Atangana-Baleanu fractional terms.

2. Streamlined Polynomial Computation: Leverages recent algorithmic improvements [38] to accelerate

Adomian polynomial generation, enhancing practicality.
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3. Memory-Effect Preservation: Utilizes the Atangana-Baleanu operator to maintain the FWE's intrinsic
memory properties, critical for modeling wave-breaking.

This work underscores ADM’s adaptability to modern fractional calculus challenges, demonstrating its

superiority over iterative and mesh-dependent methods in balancing accuracy, efficiency, and analytical

transparency. By achieving semi-analytical solutions with clear convergence, the study provides a template for

solving broader classes of FPDEs prevalent in engineering and physics.

2-Preliminaries
Definition.1. The Caputo fractional derivative of function f(x),x > 0 is defined by [32]

1
['(n—«)

J@ -0 fM()dt, n-1<x<neN

pif ey =1 (1)
—f (x), x=n €N
Note. 1.From Definition 1, the following outcome is derived:
TE+D)  pow _ -
thﬁ _ {—F(ﬂ—oc+1) 7, n—1<«x< n, L > n—-1 B ER @
0 n—1<x<n, n>pf p €N
Definition.2. The Atangana-Baleanu fractional derivative is expressed as[33][34]:
M@) (t —9(t-2)%\ ,
ABDIu(t) = 2 [*Ey (A )l (x)dx, (3)
Where 0 <9 < 1and M (9) is a normalization function, such that M'(0) = M(1) = 1.
Definition.3. The Atangana-Baleanu Fractional Integral (ABFI) of order 9 is defined as follows[34]:
AB 9 _ 1-9 9 t _ 9—1
ol u(t) = ) u(t) + OO fa(t 2)" u(x)dx, (4)
Where 0 <9 < 1and M (9) is a normalization function, such that M'(0) =M (1) = 1.
Definition.4. The Yang transform YT is stated as[35]
o _£
Y{u(®)} = [, e u(t) dt, ¢ >0, (5)
with 1 representing the transform variable.
Some of properties of it:
1. Y{1}=v
2. Y{t} =v?
3. Y{t"} =ov"n!
4. Y{#*}=0v"r(®@+1),9€R
Theorem. The Yang transform of fractional order derivative is defined by
u u(k)
a. Y{Du@} ="ty O o 1<os<n (©6)
AB__ g _ e
b. Y{"Dlu()} = = (Y{u(©} - vu(0)), 0<9 <1, @)

Proof. The proof of (a) as in [36]. To prove (b) We take the transformation into Eq(3) and then utilize the
convolution property to obtain the desired result after simplification. Thus, the proof is completed
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Definition 5. The Mittag-Leffler function with two Parameters is defined by [37], [38]

M

Eﬂ,p(z) — Z;’:zom , 0(,#7,2 eC , Re(ﬁ) >0 , RE(#?) >0
Note.2. From definition5. The following result is obtained:
(1) Ey1(x*) = cosh(x).
(2) Epp(2?) = Smxﬂ
1
(3) Ey5(x?) = ~[=1+ cos h(x)].
3-Fornberg-Whitham equation with Atangana-Baleanu fractional derivative
Consider the fractional Fornberg-Whitham equation
ABDIU — Uy + Uy + Uy = 3Upthyy + Uy, 0 <O < 1,
With initial condition

w(x,0) = gx),

Through the application of the Yang transform to Equation (8), we get:
Y{*PD0u} = Y{tppr — w0, — wtt, + 3tupthy, + tthy,, ),

Or equivalently,

[Y{u} — vu(x, 0)]
1-9 +9v?

= Y{uxxt — Uy — Uy + 3uxuxx + uuxxx}'

Rearrange,
Y{u} = vae(x,0) + (1 — 9 + 90 Y{thyry — w0, — wth, + 3ttty + wtty,,},
Taking inverse of Yang Transform, we obtain

w(x, t) = u(x,0) + Y (1 =9 + 90?)Y{thypr — 1w, — wth, + 3uptty, + utty,,}],

Let
[00)
u(x,t) = Z Uy,
n=0
(0]
Un, = Z Ay,
n=0
[ee]
Uy Uxx = Z B,
n=0
(o]
/u’/u'xxx = Z Cn'
n=0
Where

Ag = Uglox, By = UgxUoxx Co = UgUgxxx)

©)

(10)

an

(12)

(13)

(14)
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A1 = Uglyy + Uglox, By = Ugxllixy + UpxUoxx

Ay = Uglgy + WUy + Uy,
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Cl = UoUpxxx + U Upxxxr

By = UgxlUoxy + Uixlixy + UsxUoxx

Cy = UgUpyyy + UsUigex + UpUoxxx)

By combining Equation (11), (12) , (13) and (14) into Equation (10) yields the following result

[oe]

Z wu, = u(x,0)+Y?

n=0

We present recursive relations as a continuation of the FADM,

U1 = Y7H(1 =9+ 90?)Y{tppne — thny — An + 3B, + G,

Consequently, the solution for Equation (8) is

4-Application

(1-9+ 191719)Y[z s — Z oy — ZAn + 32 B,
n=0 n=0 n=0 n=0
uO = (xl O)x
n=0,

ul,t) = ug+uy +u, + -

Example.1. Consider the fractional Fornberg-Whitham equation

AB fD}fu — Uy + Uy + U, = U,y + Ulhyyy,

With initial condition

using eq.(16), we obtain

19’t19_1

N &R

u(x,0) = ez,

192t219_1 1

u, = —|(1-9)

I | T@o)

]8e’z—‘+[(1—19)2+2(1—19)

19t19 192t2ﬁ

T+ T T@o+ 1)

+ i Cn}], (15)
n=0

(16)

a7

(18)

| &R

1
4e.
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tl?—z 192t219—2 1934;319—2 1 x
=—|1-9*9———=<+2(1-9 25 €2
Us [( Ve 20Dz - T rEe - 1)] 32°¢
tﬁ—l 19247219_1 193t319—1 1 x
3(1 - 9)%9 5(1—9 2 —e3
+[ A=DY5y 50-D 71257+ 2 T@y ]16e
(1—9)% +3(1 — 9)%9 ial +3(1—-9 O 9P )1
r@+1) Tz +D TG+ |8

Then,

9

x ﬁt‘ﬁ—l 192t219—1 1 x
ulx,t) =ez2—|1-9+ §ez

1 x
T+ 1)]5"32 - [(1 ~ DTy Y Ta

x 2
The exact solution at 9 = 1, u(x, £) = e2 3",

Example.2. Consider the fractional Fornberg-Whitham equation
ABN\Y —
DEU — Upyr + Uy + Uthy, = Uty + Ulhyyy,

With initial condition
x
w(x,0) = (coshz)z,

Apply eq.(16), We achieve

_( hx)z
Uy = (COS 2 .

£ 11 X
u=—(1-94+9——-+ —sinh—].

r@+n)32°M72
2t X erraa et 1o o - E 4 o2
= gz Cosh | A=+ 200 =9 e s+ rag v | " 128 ™2 [P T D iy
t? 92t 933 11331«

+3(1-9)

U3 = — [(1 —19)3 + 3(1 —ﬁ)zﬁm

121 x t19—1 1927[7219_1 1934:;319—1
h=|3(1 - 9)29 5(1—19 2
* 2048 °°° z[ A=Yy T 50D Fae+ r(319)]
11 x 9-2 192t219_2 193,14:319—2
 sinho|(1 - 92— +2(1 -0 .
512° 12 [( Ve P20 - D - ree -

The approximate solution is

dla—ops2a-n 2t T J1s

_ r@+1) 29+ 1)|a°

[ t19—2 1924:219—2 1934:319—2 1 x
A -929—— 4201 -9 3

_( A Ve s v 1)] 32
da—oret ssa-alt L 1 g

_ r@) r(29) rio) |16°

[ t'ﬁ 1924:219 193t319 1 x
=92 +301-9)20———+3(1-9 Ze3

_( 74301 =) ey +3( )F(219+1)+F(319+1)]862

h_
r2o+1) TG+ 1)|8192 ™7

29-1

reml
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Approximate Solution u(x,t) at ¥ =1 Approximate Solution u(x,t) at ¥ = 0.4

( t)—l+1 h 1 h 9+ 9 h 1-=-9)2+201-9)9 ’ + ¢
wlx, £) =5+ 5coshy == sin F(19 el COS T@+1  I'@d+1)

11 t19 1 ’1‘7219 1

_ 2

128smh [19(1 9)—— 1"(19) +9 F29)

(1—9)% +3(1 — 9)9 AN 3(1 —9) 9727 9% 11331 hx

r'@+ 1 r2o+1) [ TGo+ 1|19z
1 9-1 27[7219_1 193t3l9 1
h=|3(1 = 9)29 5(1 -9 2
+ 2048 [ A=D95 50-DTa57 2@y ]
11 9-2 192t20—2 193t30_2
—sinhZ|(1 = 9)20—— +2(1 —
51250 [( NP2 - - T tee o

When selcting 9 = 1, we get exact solution «(x,£) = cosh? (— - —t)

Approximate solution for different +J values Exact and Approximate solution for = 1

9r 9~
#=04
8+ — ) = 0.7 / 8l Approximate Solution (¢ = 1)
s 1} = (0.9 = = = Exact Solution
e— ) = 1

Figure 1 Plot showing the solutions for various values of 19, alongside the exact solution at9 = 1, for Example 1.

53


http://jceps.utq.edu.iq/

tg.edu.iq

JCEpPS.U

Approximate Solution u(x,t) at ¥ = 0.9

=0.7

Approximate Solution u(x,t) at ¥

el¥2-231)

Surface Plot of u(x,t)

1 for Example 1

Figure 2. Graph for different values of 9 and the exact solution at $

(x)n
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u(x,t)
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Table 1.absolute error for Example 1

x v=1 v=09 v=0.7 9v=0.4
1 0.00063554 0.039917 0.060537 0.079106

2 0.0010478 0.065811 0.099809 0.13042

3 0.0017276 0.1085 0.16456 0.21503

4 0.0028483 0.17889 0.27131 0.35453

5 0.0046961 0.29495 0.44731 0.58452

Approximate solution for different 4 values
Exact and Approximate Solution for ¥ =1

¢=07

Approximate Solution (¢ = 1) #=08

= = = Exact Solution e 1} = 0.9
25t ] } l | | 2=1

55 6 6.5 7 75 8 85 9 95 10 5 5.5 6 6.5 7 75 8 8.5 9 95 10

Figure 3. Graph for different values of 3 and the exact solution at 9 = 1 for Example 2.
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=1

Approximate Solution u(x,t) at 9

= (cosh((x/4) - (11/24)t))?

Surface Plot of u(x.,t)

40

40

Approximate Solution u(x,t) at 9 = 0.7

0.8

Approximate Solution u(x,t) at 9

=0.9

Approximate Solution u(x,t) at 9

40 |

1, in Example 2.

Figure 4. Visualization of the solutions for varies values of 9, including the exact solution at 9
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Table 2. absolute error for Example 2.

x 9=1 9=0.9 9=0.8 9=07
5 0.005757 0.0039514 0.065314 0.17893
5.5 0.0070306 0.0070339 0.079532 0.22314
6 0.008746 0.010558 0.098746 0.28137
6.5 0.011011 0.014746 0.12416 0.35728
7 0.013967 0.01986 0.15738 0.45564
7.5 0.017801 0.026222 0.20049 0.58262
8 0.022754 0.034232 0.25619 0.74621
8.5 0.029136 0.044392 0.32799 0.95667
9 0.037348 0.057341 0.42039 1.2272
9.5 0.047907 0.073892 0.53921 1.5749
Conclusion

We investigated the Fornberg-Whitham equation using the fractional Atangana-Baleanu operator and
employed the Yang Adomian Decomposition Method (YADM) to obtain an approximate solution. The results
demonstrated the high accuracy and efficiency of the proposed method, as they closely aligned with the exact
solution. This confirms the applicability of fractional operators in modeling complex nonlinear phenomena and
highlights the effectiveness of YADM in solving fractional differential equations. Future work may explore the
extension of this approach to other nonlinear fractional models and compare its performance with alternative
numerical and analytical techniques.
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