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Abstract: 

In this paper, the Homotopy Perturbation Method (HPM) is employed to solve nonlinear partial differential 
equations, which often present significant analytical and computational challenges due to the complexity of their 
nonlinear terms. To address these difficulties, a new assumption for treating the nonlinear components is introduced, 
offering a simpler and more practical alternative to the traditional Adomian decomposition approach. While this 
new assumption enhances the applicability of HPM to a broader class of problems, it may have limitations when 
dealing with equations exhibiting highly singular behavior or strong nonlinearity. 
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1-Introduction  

 

          Nonlinear partial differential equations (NPDEs) play a fundamental role in modeling a wide range of complex 

physical and engineering phenomena, including fluid dynamics, nonlinear wave propagation, plasma physics, and 

nonlinear control systems [1–5]. These equations are inherently difficult to solve due to their nonlinearity and 

complex boundary or initial conditions. In most cases, finding exact analytical solutions is either extremely difficult 

or entirely infeasible. This motivates the development and application of approximate and semi-analytical 

techniques to obtain useful solutions with acceptable accuracy [6–10]. 

Among such techniques, the Homotopy Perturbation Method (HPM) has emerged as a powerful and reliable tool 

for solving various types of linear and nonlinear differential equations [11–15]. The HPM efficiently merges the 

classical perturbation methods with homotopy theory, offering series solutions that often converge rapidly to the 
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exact or approximate solution. However, one of the main challenges in applying HPM lies in the treatment of 

nonlinear terms, which typically requires specific assumptions or decompositions, such as Adomian’s 

decomposition, which, although effective, can be computationally intensive or analytically complex in certain 

scenarios [16–18]. 

In this paper, we propose a new and simplified assumption for handling nonlinear terms within the HPM 

framework. Unlike Adomian’s approach, the proposed assumption is characterized by its ease of implementation 

and lower computational overhead. The goal of this study is to enhance the applicability of HPM to a broader class 

of nonlinear problems, while maintaining a balance between accuracy, efficiency, and simplicity. The proposed 

technique is evaluated through multiple benchmark examples involving nonlinear partial differential equations. In 

addition, a convergence analysis and error estimation are conducted to verify the robustness and reliability of the 

results [19–21]. 

This work contributes to the growing body of research focused on developing flexible and efficient methods for 

solving nonlinear models and offers potential for future extensions in solving higher-dimensional and more complex 

nonlinear systems. 

2-Main Result  

To demonstrate the foundational concept of the Homotopy Perturbation Method (HPM), we analyze the subsequent 

differential equation 

                                                           𝐴(𝑢) = 𝑓(𝑟) ↔ 𝐴(𝑢) − 𝑓(𝑟) = 0, 𝑟 ∈ Ω,                                                                                          (1) 

where 𝐴 is a differential operator of general form, and 𝑓(𝑟) is a closed-form analytic function 

Suppose that 𝐴(𝑢) = 𝐿(𝑛) + 𝑅(𝑢) + 𝑁(𝑢). Therefore Eq. (1) can be rewritten as 

                                                   𝐿(𝑛)𝑢 + 𝑅(𝑢) + 𝑁(𝑢) − 𝑓(𝑟) = 0,                                                                                                              (2) 

Using the Homotopy Perturbation Method (HPM), we define a homotopy mapping  𝑣(𝑟, 𝑝): Ω × [0,1] → 𝑅 obeying 

the following condition 

𝐻(𝑣, 𝑝) = (1 − 𝑝)[𝐿(𝑛)(𝑣) − 𝐿(𝑛)(𝑢0)] + 𝑝[𝐴(𝑣) − 𝑓(𝑟)] = 0 

or 

                𝐻(𝑣, 𝑝) = 𝐿(𝑛)(𝑣) − 𝐿(𝑛)(𝑢0) + 𝑝𝐿(𝑛)(𝑢0) + 𝑝[𝑅(𝑣) + 𝑁(𝑣) − 𝑓(𝑟)] = 0                                                                        (3) 

 

In this framework, 𝑝 ∈ [0,1]  represents the embedding variable, while 𝑢0 is the preliminary approximation of 

Equation (1), fulfilling the boundary constraints. From Eq. (3), it follows that: 

𝐻(𝑣, 0) = 𝐿(𝑛)(𝑣) − 𝐿(𝑛)(𝑢0) = 0 

and 

𝐻(𝑣, 1) = 𝐴(𝑣) − 𝑓(𝑟) = 0 

As per the HPM framework, the embedding parameter 𝑝 is initially treated as a perturbation factor, and the solution 

to Equation (1) is postulated as a series expansion in terms of 𝑝: 

                                                                          𝑣 = ∑  

∞

𝑚=0

𝑝𝑚𝑣𝑚 = 𝑣0 + 𝑝𝑣1 + 𝑝2𝑣2 + ⋯                                                                         (4) 

http://jceps.utq.edu.iq/
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Furthermore, nonlinear operators may be expanded into a series of components: 

                                                                            𝑁(𝑣) = ∑  

∞

𝑚=0

𝑝𝑚𝐻𝑚(𝑣) = 𝐻0 + 𝑝𝐻1 + 𝑝2𝐻2 + ⋯                                                        (5) 

In this method, we replaced He's polynomials in the nonlinear part with a simpler and more effective hypothesis, 

which is the same hypothesis used in the Daftardar-Jafari method [31]. Which are given by 

𝐻𝑚 = 𝑁 (∑ 𝑣𝑘

𝑚

𝑘=0

) − 𝑁 ( ∑ 𝑣𝑘

𝑚−1

𝑘=0

) ,     𝑖 > 0, 𝑚 = 1,2, … 

and 

𝐻0 = v0v0𝓍 , 

By inserting Equations (4) and (5) into Equation (3), the following expression is derived: 

                       𝐿(𝑛) ( ∑  

∞

𝑚=0

 𝑝𝑚𝑣𝑚) − 𝐿(𝑛)(𝑢0) + 𝑝𝐿(𝑛)(𝑢0) + 𝑝 [𝑅 ( ∑  

∞

𝑚=0

 𝑝𝑚𝑣𝑚) + ∑  

∞

𝑚=0

 𝑝𝑚𝐻𝑚 − 𝑓(𝑟)] = 0                               (6) 

When the multipliers of equal powers of 𝑝 in Equation (6) are equated, the following is obtained: 

𝑝0: 𝐿(𝑛)(𝑣0) − 𝐿(𝑛)(𝑢0) = 0, 𝐿(𝑛−1)(𝑣0) = 𝐿(𝑛−1)(𝑢).

𝑝1: 𝐿(𝑛)(𝑣1) + 𝐿(𝑛)(𝑢0) + 𝑅(𝑣0) + 𝐻0 − 𝑓(𝑟) = 0, 𝐿(𝑛−1)(𝑣1) = 0.

𝑝2: 𝐿(𝑛)(𝑣2) + 𝑅(𝑣1) + 𝐻1 = 0, 𝐿(𝑛−1)(𝑣2) = 0.

𝑝3: 𝐿(𝑛)(𝑣3) + 𝑅(𝑣2) + 𝐻2 = 0, 𝐿(𝑛−1)(𝑣3) = 0.

 

⋮ 

By assigning  𝑝 = 1, the approximate solution to Equation (1) is obtained in the following form: 

𝑢 = lim
𝑝→1

 𝑣 = 𝑣0 + 𝑣1 + 𝑣2 + ⋯ 

3-Applications 

Example 1. Consider  the following nonlinear PDF: 

𝑢𝑡 + 𝑢𝑢𝑥 = 𝑥2 + 𝑥𝑡2 

With initial condition  

𝑢(𝑥, 0) = 0 

Assume the homotopy equation 𝐻(𝑣, 𝑝) = 0, governing the deformation process, we achieve 

                                                 𝑣𝑡 + 𝑝[𝑣𝑣𝑥 − 𝑥2 − 𝑥𝑡2] = 0                                                                                                                           (7) 

Given that the initial values are 𝑢0 = 0, 

Assume the solution is expressed through an infinite series expansion 

                                                                 𝑣 = ∑𝑚=0
∞  𝑝𝑚𝑣𝑚                                                                                                                                  (8)   

The nonlinear operator is decomposed into the following contributions 

                                             𝑣𝑣𝑥 = ∑𝑚=0
∞  𝑝𝑚𝐻𝑚                                                                                                                                                 (9) 

Where 

𝐻𝑚 = 𝑁(∑𝑘=0
𝑚  𝑣𝑘) − 𝑁(∑𝑘=0

𝑚−1  𝑣𝑘),            𝐻0 = 𝑣0𝑣0𝑥 , 𝑚 ≥ 1 

When Equations (8) and (9) are substituted into Equation (7), the resultant form becomes 

http://jceps.utq.edu.iq/
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∑  

∞

𝑚=0

𝑝𝑚𝑣𝑚𝑡 = −𝑝 [ ∑  

∞

𝑚=0

 𝑝𝑚𝐻𝑚 − 𝑥2 − 𝑥𝑡2] 

Subsequently, the expression becomes: 

𝑝0: 𝑣0𝑡 = 0, 𝑣0 = 0,       

𝐻0 = 𝑣0𝑣0𝑥 = 0 

𝑝1: 𝑣1𝑡 = −[𝐻0 − 𝑥2 − 𝑥𝑡2] ⇒ 𝑣1 = 𝑥𝑡 + 𝑥
𝑡3

3
, 

𝐻1 = (𝑣0 + 𝑣1)(𝑣0 + 𝑣1)𝑥 − 𝑣0𝑣0𝑥 = 𝑥𝑡2 + 2𝑥
𝑡4

3
+ 𝑥

t6

9
 

𝑝2: 𝑣2𝑡 = −[𝐻1] ⇒ 𝑣2𝑡 = − [𝑥 (𝑡 +
𝑡3

3
)

2

− 0] ⇒ 𝑣2 = −
𝑥𝑡3

3
− 2𝑥

𝑡5

15
− 𝑥

t7

63
 

𝐻2 = (𝑣0 + 𝑣1 + 𝑣2)(𝑣0 + 𝑣1 + 𝑣2)𝑥 − (𝑣0 + 𝑣1)(𝑣0 + 𝑣1)𝑥 

⋮ 

Thus, the final approximate solution to the problem is expressed as 

𝑢(𝑥, 𝑡) =  lim
𝑝→1

𝑣 = 𝑣0 + 𝑣1 + 𝑣2 + ⋯ 

          = 𝑥𝑡                                           

Example.2. Consider  the following nonlinear PDE: 

                                                                              𝑢𝑡 = 𝑥2 +
1

4
𝑢𝑥

2                                                                                                                   (10) 

With initial condition  

                                                                              𝑢(𝑥, 0) = 0                                                                                                                          (11) 

Define the homotopy operator 𝐻(𝑣, 𝑝), satisfying 𝐻(𝑣, 𝑝) = 0, we get  

                                                                     𝑣𝑡 − 𝑝 [𝑥2 +
1

4
𝑣𝑥

2] = 0                                                                                                              (12) 

Given that the initial values are 𝑢0 = 0, 

Now, let’s assume the solution is in the form of an infinite series 

                                                                   𝑣 = ∑𝑚=0
∞  𝑝𝑚𝑣𝑚                                                                                                                            (13)   

and  assume the nonlinear part in the following form 

                                                               𝑣𝑥
2 = ∑𝑚=0

∞  𝑝𝑚𝐻𝑚                                                                                                                             (14) 

Where 

𝐻𝑚 = 𝑁(∑𝑘=0
𝑚  𝑣𝑘) − 𝑁(∑𝑘=0

𝑚−1  𝑣𝑘),            𝐻0 = 𝑣0𝑥
2  

Replacing the terms in Equation (12) with Equations (13) and (14) leads to 

∑  

∞

𝑚=0

𝑝𝑚𝑣𝑚𝑡 = 𝑝 [
1

4
∑  

∞

𝑚=0

 𝑝𝑚𝐻𝑚 + 𝑥2] 

Identifying and equating terms with the same power of 𝑝 provides 
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𝑝0: 𝑣0𝑡 = 0, 𝑣0 = 0,                                                                                                     

𝐻0 = 𝑣0𝑥
2 = 0,                                                                                                  

𝑝1: 𝑣1𝑡 = [𝐻0 + 𝑥2] ⇒ 𝑣1 = 𝑥2𝑡,                                                                                       

𝐻1 = (𝑣0𝑥 + 𝑣1𝑥)2 − 𝑣0𝑥
2 = 4𝑥2𝑡2,                                                              

𝑝2: 𝑣2𝑡 =
1

4
H1 ⇒ 𝑣2𝑡 =

1

4
[4𝑥2𝑡2] ⇒ 𝑣2 = 𝑥2

𝑡3

3
,                                                             

𝐻2 = (𝑣0𝑥 + 𝑣1𝑥 + 𝑣2𝑥)2 − (𝑣0𝑥 + 𝑣1𝑥)2 = 8𝑥2
𝑡4

3
+ 4𝑥2

𝑡6

9
,              

𝑝3: 𝑣3𝑡 =
1

4
H2 ⇒ 𝑣2𝑡 =

1

4
[8𝑥2

𝑡4

3
+ 4𝑥2

𝑡6

9
] ⇒ 𝑣2 = 𝑥2

2𝑡5

15
+ 𝑥2

𝑡7

63
,                      

⋮ 

Consequently, the resultant solution derived via HPM is  

𝑢(𝑥, 𝑡) =  lim
𝑝→1

𝑣 = 𝑣0 + 𝑣1 + 𝑣2 + ⋯ 

          = 𝑥2 (𝑡 +
𝑡3

3
+

2𝑡5

15
+

𝑡7

63
+ ⋯ ) =   𝑥2 tanh(𝑡)                                         

Example 3. Consider  the following nonlinear system PDE: 

                                                          
𝑢𝑡 + 𝑤𝑢𝑥 + 𝑢 = 1                                                                                                                         (15)
𝑤𝑡 − 𝑢𝑤𝑥 − 𝑤 = 1,    

Subject to the initial conditions 

                                                          
𝑢(𝑥, 0) = 𝑒𝑥                                                                                                                                 (16)

𝑤(𝑥, 0) = 𝑒−𝑥    

Let 𝐻(𝑣, 𝑝) = 0 represent the homotopy function in the HPM framework, we get 

 

𝐻 (𝑣, 𝑝)  = 𝑣𝑡 + 𝑝[𝑚𝑣𝑥 + 𝑣 − 1]

 
𝐻(𝑚, 𝑝)  = 𝑚𝑡 + 𝑝[−𝑣𝑚𝑥 − 𝑚 − 1]

 

 

Under the HPM framework, we propose the solution as an infinite series representation 

𝑣 = ∑  

∞

𝑚=1

𝑝𝑛𝑣𝑛 ,  𝑚 = ∑  

∞

𝑛=0

𝑝𝑛𝑚𝑛 

And nonlinear terms are analytically decomposed into the following structure 

𝑣𝑚𝑥 = ∑  

∞

𝑛=0

𝑝𝑛𝐻𝑚, 𝑚𝑣𝑥 = ∑  

∞

𝑛=0

𝑝𝑛𝐾𝑛 . 

then 
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∑  

∞

𝑛=0

𝑝𝑛𝑉𝑛𝑡 = −𝑝 [∑  

∞

𝑛=0

 𝑝𝑛𝐾𝑛 + ∑  

∞

𝑛=0

 𝑝𝑛𝑣𝑛 − 1] 

∑  

∞

𝑛=0

𝑝𝑛𝑚𝑛𝑡 = −𝑝 [− ∑  

∞

𝑛=0

 𝑝𝑛𝐻𝑛 − ∑  

∞

𝑛=0

 𝑝𝑛𝑚𝑛 − 1] 

By equating the coefficients of corresponding powers of pp in the homotopy series, the following system of equations 

is derived 

 

𝑝0: 𝑣0𝑡 = 0,        𝑣(𝑥, 0) = 𝑒𝑥

                   𝑝1: 𝑉1𝑡 = −[𝑘0 + 𝑣0 − 1],

𝑝2: 𝑉2𝑡 = −[𝑘1 + 𝑣1],

𝑝3: 𝑉3𝑡 = −[𝑘2 + 𝑣2],

𝑝0: 𝑚0𝑡 = 0, 𝑚(𝑥, 0) = 𝑒−𝑥

𝑝1: 𝑚1 = −[𝐻0 − 𝑚0 − 1]

𝑝2: 𝑚2𝑡 = −[𝐻1 − 𝑚1]

𝑝3: 𝑚3𝑡 = −[𝐻2 − 𝑚2]

                                                                       (17) 

⋮ 

where 

𝐾0 = 𝑚0𝑣0𝑥, 𝐻0 = 𝑣0𝑚0𝑥 

𝐾1 = (𝑚0 + 𝑚1)(𝑣0𝑥 + 𝑣1𝑥) − 𝑚0𝑣0𝑥, 𝐻1 = (𝑣0 + 𝑣1)(𝑚0𝑥 + 𝑚1𝑥) − 𝑣0𝑚0𝑥 

𝐾2 = (𝑚0 + 𝑚1 + 𝑚2)(𝑣0𝑥 + 𝑣1𝑥 + 𝑣2𝑥) − (𝑚0 + 𝑚1)(𝑣0𝑥 + 𝑣1𝑥),  

𝐻2 = (𝑣0 + 𝑣1 + 𝑣2)(𝑚0𝑥 + 𝑚1𝑥 + 𝑚2 𝑥) − (𝑣0 + 𝑣1)(𝑚0𝑥 + 𝑚1𝑥) 

⋮ 

Solving system (17) we obtain 

                        

𝑝0: 𝑣0 = 𝑒𝑥 ,                               𝑚0 = 𝑒−𝑥

        𝑝1: 𝑣1 = −t𝑒𝑥,                          𝑚1 = 𝑡𝑒−𝑥 ,

𝑝2: 𝑉2𝑡 =
t2𝑒𝑥

2
−

𝑡3

3
,               𝑚2 =

t2𝑒𝑥

2
−

𝑡3

3

                                                                                               (18) 

⋮ 

Accordingly, the solution constructed through HPM becomes  

𝑢(𝑥, 𝑡) = 𝑒𝑥 (1 − 𝑡 +
t2

2
−

t3

3!
+ ⋯ ) = 𝑒𝑥−𝑡 . 

𝑢(𝑥, 𝑡) = 𝑒−𝑥 (1 + 𝑡 +
t2

2
+

t3

3!
+ ⋯ ) = 𝑒𝑡−𝑥 . 

 

 

4-Conclusion 
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The Homotopy Perturbation Method (HPM) has been revisited and enhanced in this study to address nonlinear 

partial differential equations (PDEs). A new assumption for managing the nonlinear terms is proposed, 

distinguished by its simplicity and ease of implementation when compared to the traditional Adomian 

decomposition. This refinement significantly improves both the efficiency and practical applicability of HPM in 

dealing with a wide spectrum of complex mathematical models. 

The results obtained using this new assumption reveal a high level of accuracy and demonstrate the method’s 

capability in solving various forms of nonlinear equations, thereby reinforcing HPM as a powerful tool for analyzing 

nonlinear systems. Moreover, the proposed approach shows strong potential for broader application in engineering, 

physics, and applied sciences, particularly in models involving intricate nonlinear behaviors. 

This study is expected to contribute to the wider adoption of HPM by making it more flexible, accessible, and 

computationally efficient for solving nonlinear PDEs, while maintaining precision and reliability. 
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