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Abstract 

Nanotechnology has brought significant advancements in condensed matter physics by enabling the 

manipulation of material structures at the atomic and molecular levels. These advancements have led to the 

development of materials with enhanced mechanical and thermal properties, making them vital in various 

engineering and scientific applications. One of the most critical properties in material science is the ultimate 

tensile strength (Su), which determines a material’s resistance to deformation and failure under stress. 

Traditional experimental methods for determining tensile strength are often costly, time-consuming, and 

resource-intensive. This study proposes a machine learning (ML)-based approach to predict the tensile 

strength of nanomaterials, offering a faster and more scalable alternative. A publicly available dataset 

containing 1,552 samples was utilized, including features such as Brinell hardness (Bhn), Young’s modulus 

(E), shear modulus (G), Poisson’s ratio (mu), Vickers hardness (HV), density (Ro), and heat treatment type. 

The data underwent preprocessing, encoding, and normalization before being fed into five ML models: 

Linear Regression, Random Forest, Support Vector Regressor (SVR), Neural Network, and XGBoost. 

Among these, XGBoost outperformed all others, achieving an R² score of 0.7289 and a mean absolute error 

(MAE) of 109.77. The findings demonstrate the effectiveness of ML in predicting mechanical properties 

and highlight its potential to support experimental efforts in material science and nanotechnology research. 

Keywords: Nanotechnology and Nanomaterial, Condensed matter Physics, Material Science, Engineering 

Applications, Quantum Effects. 

 

1-Introduction  

Nanotechnology has transformed Condensed Matter Physics to a large extent by making it possible to 

engineer materials with improved mechanical, electrical, and thermal properties [1]. In materials science, 

precise prediction of mechanical response—tensile strength, elasticity, and hardness—is necessary for 

structural engineering, aerospace technology, and biomedical implants [2]. 
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Among these mechanical properties, Ultimate Tensile Strength (Su) is one of the significant parameters 

that define a material's resistance to deformation under imposed stresses [3]. Conventionally, tensile 

strength is being determined by employing destructive testing involving special machines, incurring huge 

costs, and consuming a lot of time. 

Today's advances in Machine Learning (ML) and Artificial Intelligence (AI) offer a potential substitute 

with efficient and affordable predictions of the material properties using the well-characterized physical 

parameters. Using huge data sets and statistical learning, ML can truly investigate complex relations 

between material properties and tensile strength and remain less reliant on conventional test methodologies 

[4 -5]. 

1.1.Fundamentals of Nanotechnology in Condensed Matter Physics 

Nanotechnology is of great importance in condensed matter physics as it investigates the behavior of 

materials at the nanoscale, where quantum mechanical effects prevail. These basic aspects are crucial for 

the development of material science and engineering [6]. 

• Quantum Effects in Nanomaterials: Quantum confinement at the nanoscale creates gigantic changes 

in electronic, optical, and mechanical behaviour. Processes such as quantized energy levels, 

tunneling effects, and bandgap changes are very powerful in controlling material behaviour [7]. 

• Nanoscale Interactions and Electronic Properties: The structure of the electronic material is greatly 

altered when it is scaled down to the nanometric scale [8 -9]. It creates enhanced electrical 

conductance, altered magnetic properties, and novel superconducting phases, which are of great 

importance to next-generation material design. 

• Experimental Methods for Characterization of Nanostructure: The most recent characterization 

equipment such as Scanning Tunneling Microscopy (STM), Atomic Force Microscopy (AFM), and 

Transmission Electron Microscopy (TEM) enable nanoscale structure to be examined with high 

precision. Such techniques enable additional insight into the surface morphology, crystal structure, 

and electronic properties, hence material innovation [10-11]. 

1.2 Advancements in Nanomaterials for Material Science 

The intersection of material science and nanotechnology has provided new nanomaterials that have 

improved mechanical, electrical, and thermal properties. These developments provide opportunities for 

new innovative applications in a number of scientific and industrial disciplines [12-13]. 

• Fabrication and Synthesis of Nanomaterials: Sophisticated synthesis technologies, such as sol-gel 

processing, chemical vapor deposition (CVD), and electrospinning, provide for the precision 

synthesis of nanomaterials with designed attributes. The processes enhance reproducibility and 

scaling of nanostructured materials for application in industry. 

• Structural, Mechanical, and Electronic Properties of Nanomaterials: The mechanical strength and 

structural integrity of nanomaterials are highly enhanced because of the high surface-to-volume 

ratio and low density of defects. Moreover, their electronic properties such as high electron mobility 

and controllable band structures render them potential candidates for nanoelectronics and 

semiconductors devices  
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• Role of Nanocomposites and Hybrid Materials: Combining nanoparticles with polymeric, metal, 

and ceramic matrices leads to the creation of nanocomposites with augmented functionalities. The 

nanomaterials have improved mechanical toughness, chemical stability, and multifunctionality, 

making their use in aerospace, automotive, and biomedical engineering feasible [14-18]. 

1.3 Engineering Applications of Nanotechnology in Condensed Matter Physics 

The implications of nanotechnology in condensed matter physics extend to diverse engineering disciplines, 

fostering advancements in electronics, energy storage, and biomedical applications [19]. 

• Nanotechnology in Semiconductors and Electronic Devices: Miniaturization of electronic 

devices through nanotechnology has resulted in the creation of high-performance transistors, 

quantum dots, and nanoscale sensors [20]. These developments have contributed significantly 

towards enhancing the processing power and efficiency of today's computing and communication 

devices. 

• Energy Storage and Conversion Applications (Batteries, Supercapacitors): Nanotechnology 

has transformed energy storage by maximizing the electrochemical performance of batteries and 

supercapacitors. Addition of nanostructured electrodes like graphene and carbon nanotubes 

enhances charge storage capability, energy density, and cycle life, rendering them critical to 

sustainable energy solutions [21]. 

• Nanomaterials in Structural and Biomedical Engineering: The use of nanomaterials in 

structural engineering has resulted in the creation of self-healing concrete, lightweight composites, 

and corrosion-resistant coatings. In biomedical engineering, nanoparticles are used for targeted drug 

delivery, biosensing, and regenerative medicine, leading to personalized healthcare solutions [22-

23]. 

2. Literature review 

This research extends current research through the application of ML methods to forecast tensile strength 

in nanomaterials, completing gaps in earlier work through the addition of feature importance analysis and 

model comparison. 

2.1 Nanotechnology and Material Science 

Sportelli et al. (2020) analyzed how nanotechnology and materials science could assist in fighting SARS-

CoV-2. Scientists analyzed how antiviral properties of nanomaterials including metal and metal oxide 

nanoparticles could support the creation of protective coatings as well as diagnostic tools and antiviral 

therapeutic solutions. Nanostructured surfaces demonstrate their potential for virus prevention through 

blocking viral adhesion and transmission according to the study thus enabling their implementation in 

healthcare facilities and public areas. The authors examined recent progress in nano-based biosensors for 

quick virus detection which demonstrated how nanotechnology could produce better diagnostic tools 

through increased sensitivity and specificity. The authors evaluated nanocarriers as targeted delivery 

systems which could enhance antiviral drug treatment methods. The research team demonstrated how 

nanotechnology works across disciplines to fight viral outbreaks while promoting additional studies for 

better pandemic readiness applications [24]. 
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Hu and Niemeyer (2019) investigated DNA nanotechnology's transformation into material systems 

engineering while demonstrating the programming capabilities of DNA for developing advanced materials. 

The researchers explained the expansion of DNA nanotechnology from molecular self-assembly 

applications into the development of complex material systems featuring adjustable properties. DNA-based 

nanostructures achieved their most important developments for drug delivery systems and biosensing 

applications as well as nanoelectronics technologies. The researchers described how DNA gets integrated 

with polymers and inorganic components to develop hybrid systems which offer improved features. They 

investigated the obstacles that DNA-based materials face during their scaling up process as well as their 

stability problems and implementation limitations in actual use. Their study confirmed that DNA 

nanotechnology exists in a multidisciplinary field which continues to gain importance in materials science 

research but requires more investigations to link basic discoveries with industrial practicality [25]. 

2.2 Machine Learning in Material Science 

Wei et al. (2019) examined how machine learning technology transforms materials science by boosting 

research speed and property forecasting as well as material development and enhancement. The review 

explored different ML strategies starting from both supervised and unsupervised learning approaches to 

deep learning methods which effectively detect patterns that conventional methods would typically fail to 

recognize in complex datasets. The research demonstrated the combination of ML technology with 

experimental and computational materials research through examples that improved high-throughput 

screening and also optimized inverse design while implementing automated synthesis. The researchers 

studied difficulties stemming from inadequate data quality together with interpretation limitations of 

predictive models while demonstrating the need for substantial quantities of authentic datasets for better 

prediction results. They stressed that research using ML for materials development requires 

interdisciplinary approaches while highlighting how this approach can speed up and decrease expenses 

involved in material development. The research team discovered that ongoing developments in ML 

algorithms and data infrastructure systems would amplify the accuracy along with operational speed in 

materials science investigations [26]. 

Morgan and Jacobs (2020) studied both the prospective advantages and current obstacles attached to 

combining machine learning (ML) with materials science research with an emphasis on its speed-up effects 

on material identification and refinement. The research reviewed different ML approaches extending from 

deep learning to reinforcement learning while examining their uses for predicting material properties, 

directing experimental setups and permitting fast screening procedures. The researchers presented evidence 

that demonstrated ML tools improved both the accuracy and speed of density functional theory and 

molecular dynamics simulations as computational modeling methods. The authors highlighted essential 

obstacles in their report which encompass vague datasets and low data quality standards together with 

unclear model analysis and the conflicts between data-driven procedures and traditional knowledge. The 

paper evaluated the necessity of as well as the benefits that come from data scientists cooperating with 

material scientists to push the boundaries of ML applications. The study demonstrates how ML transforms 

materials research yet points out that implementation obstacles need to be solved before broad acceptance 

can happen [27]. 
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2.3. Research Gap in ML-Based Property Prediction 

Material science alongside nanotechnology has shown important growth according to Sportelli et al. (2020) 

and Hu and Niemeyer (2019) yet machine learning (ML) lacks systematic methods to predict and optimize 

material properties. Traditional studies by Wei et al. (2019) and Morgan and Jacobs (2020) have shown 

how ML transforms materials research but neglect proper examination of tensile strength prediction in 

nanomaterials. Researchers have conducted minimal analysis regarding which ML methods deliver 

superior performance and how evaluating features improves predictive precision. The authors focus this 

research on applying ML approaches to nanomaterial tensile strength forecasting through model 

comparisons and feature importance assessment for better material optimization and design approaches. 

3- Research objectives and research questions 

Here are several research primary objectives and the research questions. This study explores the use of ML 

in predicting tensile strength and aims to: 

1. To develop ML models to predict Ultimate Tensile Strength (Su) using material properties. 

2. To compare different ML models to determine the most accurate and reliable prediction method. 

3. To analyse feature importance to identify the most influential material properties affecting tensile 

strength. 

4. To evaluate the potential of ML as a computational supplement to traditional experimental testing in 

nanomaterial research. 

 Some of the research questions are given below:  

RQ1: How effectively can machine learning models predict the Ultimate Tensile Strength (Su) of 

nanomaterials based on their intrinsic material properties? 

RQ2: Which machine learning algorithms provide the most accurate and reliable predictions for tensile 

strength in nanomaterials, and how do their performances compare? 

RQ3: What are the key material properties that significantly influence the tensile strength of nanomaterials, 

as identified through feature importance analysis? 

RQ4: To what extent can machine learning serve as a computational supplement to traditional experimental 

methods in assessing the tensile strength of nanomaterials? 

4- Research methodology 

This research examines the application of nanotechnology in condensed matter physics, with specific 

emphasis on modeling tensile strength of nanomaterials through machine learning (ML) methods. 
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4.1. Dataset Description 

A publicly available dataset of 1,552 nanomaterial samples was used for the research. The dataset 

contains important features necessary for evaluation and analysis 

• Brinell Hardness Number (Bhn) 

• Young’s Modulus (E) 

• Shear Modulus (G) 

• Poisson’s Ratio (mu) 

• Density (Ro) 

• Vickers Hardness (HV) 

• Heat Treatment Type 

Table 1: First 5 rows of the dataset  

Std ID Material Heat 

treatment 

Su 

ANSI D8894772B88F45993C43AF905AB6373 Steel SAE 

1015 

as-rolled 421 

ANSI 05982AC66F064F9EBC709E7A4164613A Steel SAE 

1015 

normalized 424 

ANSI 356D6E63F9F949A3AB23BF66BAC85DC3 Steel SAE 

1015 

annealed 386 

ANSI 1C758F871A4CAE0D9B8D8BAE1625AECD Steel SAE 

1020 

as-rolled 448 

ANSI DCE10036FC1946FC8C9108D598D116AD Steel SAE 

1020 

normalized 441 

 

The database contains 1,552 samples of nanomaterials and their major mechanical and physical parameters, 

such as Brinell Hardness Number (Bhn), Young's Modulus (E), Shear Modulus (G), Poisson's Ratio (μ), 

Density (Ro), and Vickers Hardness (HV), along with the type of heat treatment. The first five lines of 

Sy A5 Bhn E G mu Ro pH Desc HV 

314 39.0 126.0 207000 79000 0.3 7860 NaN NaN NaN 

324 37.0 121.0 207000 79000 0.3 7860 NaN NaN NaN 

284 37.0 111.0 207000 79000 0.3 7860 NaN NaN NaN 

331 36.0 143.0 207000 79000 0.3 7860 NaN NaN NaN 

346 35.8 131.0 207000 79000 0.3 7860 550.0 NaN NaN 
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Table 1 display varied steel types (e.g., SAE 1015 and SAE 1020) undergoing as-rolled, normalized, and 

annealed treatments. The dataset also provides ultimate tensile strength (Su), yield strength (Sy), and other 

attributes such as pH and material description, though values are missing for some entries. Young's 

Modulus (207,000 MPa) and Poisson's Ratio (0.3) remain mostly consistent across the samples, while 

hardness values vary depending on material composition and processing. This dataset provides a rich 

resource for analyzing the influence of mechanical parameters and heat treatment on the tensile 

performance of nanomaterials in materials science and condensed matter physics. 

4.2. Data Pre-processing 

The dataset was subjected to a structured pre-processing pipeline to ensure its suitability for machine 

learning analysis. Several critical steps were performed to improve data consistency, model performance, 

and reproducibility. 

Missing Values: Numerical attributes with missing values were imputed using the mean imputation 

technique, which replaces missing entries with the mean value of the corresponding column. This method 

minimizes data loss while preserving statistical characteristics. 

Categorical Encoding: The dataset included one categorical feature, "Heat Treatment", which was 

converted to numerical form using label encoding. This transformation enabled machine learning 

algorithms to interpret categorical variables without imposing ordinal relationships. 

Feature Standardization: To bring all numerical variables to a uniform scale, standardization was 

applied. Each feature was rescaled to have a mean of zero and a standard deviation of one. This step is 

particularly crucial for algorithms sensitive to scale, such as Support Vector Machines and Neural 

Networks. 

Feature Selection: A correlation-based analysis was conducted to identify the most relevant features for 

predicting ultimate tensile strength (Su). Highly correlated and redundant features were removed to reduce 

overfitting and improve model efficiency. 

 

Figure 1: Feature Distributions  
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4.3.   Exploratory Data Analysis (EDA) 

Exploratory Data Analysis (EDA) was conducted to understand the structure and behavior of the dataset 

before applying machine learning models. One of the primary steps involved generating a correlation 

heatmap, which visually represents the relationships between input features and the target variable — 

Ultimate Tensile Strength (Su). 

The heatmap serves several essential purposes: 

• Identify Highly Correlated Features: The correlation heatmap allows for the detection of strongly 

correlated variables, which is crucial for reducing redundancy and avoiding multicollinearity. For 

example, Young’s Modulus (E) and Shear Modulus (G) exhibit a strong positive correlation. 

Since they represent related elastic properties, retaining both may not be necessary. Such insights 

guide the removal of less impactful variables and improve model generalization. 

 

Figure 2: Feature relationships  
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• Determine Which Features Influence Su: Features that show strong positive or negative 

correlation with Su are likely to be influential predictors. For instance, a high correlation between 

Brinell Hardness (Bhn) and Su suggests that material hardness significantly affects tensile 

strength. 

• Guide Feature Selection: Understanding the inter-feature relationships helps identify the most 

effective subset of predictors. This reduces noise in the model, enhances computational efficiency, 

and improves prediction accuracy. 

 

Figure 3: Correlation between Mechanical properties  

The correlation analysis revealed that Shear Modulus (G) and Young’s Modulus (E) are highly 

correlated, indicating a shared dependence on the material’s elasticity. Brinell Hardness (Bhn) also 

demonstrated a strong positive correlation with Su, confirming the role of hardness in determining tensile 

strength. In contrast, features such as pH and certain categorical descriptions showed little to no correlation 

with Su, indicating a lower contribution to model accuracy. Notably, the influence of heat treatment on 

Su is moderate — while it does impact strength, its effect is secondary to material stiffness and hardness. 

This analysis is critical in guiding feature engineering. By focusing only on the most informative and non-

redundant features, the resulting machine learning models are more interpretable, efficient, and predictive. 

4.4   Machine Learning Models Used 

In this research, five machine learning algorithms were trained and evaluated to determine their 

effectiveness in predicting the ultimate tensile strength (Su) based on material properties. These models 

were selected to represent a diverse set of learning paradigms, including linear, tree-based, kernel-based, 

and neural methods. 

1. Linear Regression: A basic statistical model used for predicting continuous outcomes based on 

linear relationships between independent and dependent variables. 

2. Random Forest Regressor: An ensemble-based algorithm that constructs multiple decision trees 

and averages their outputs to reduce variance and enhance prediction accuracy. It is robust to 

overfitting and can model nonlinear interactions effectively. 
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3. XGBoost Regressor: A high-performance gradient boosting technique known for its efficiency, 

regularization capability, and superior accuracy in structured data problems. 

4. Support Vector Regressor (SVR): A regression adaptation of support vector machines, which 

attempts to fit the best hyperplane within a defined margin. SVR is effective in high-dimensional 

spaces but can struggle with unscaled or sparse data. 

5. Neural Network (MLP Regressor): A multi-layer perceptron architecture that learns complex 

nonlinear relationships using interconnected layers of artificial neurons. It is suitable for datasets 

with subtle feature interactions. 

Table 2: Model Performance Summary 

Models  MAE  R2 Score  

XGBoost  Best  Best 

Random Forest  High  High  

Neural Networks  Moderate  Moderate  

Linear Regression  Poor  Low  

SVR  Worst  Very low  

The performance results indicate that XGBoost achieved the best overall prediction accuracy, as 

reflected by its highest R² score and lowest Mean Absolute Error (MAE). Random Forest also 

performed well, though marginally less accurate than XGBoost. The Neural Network provided moderate 

results, suggesting potential with further tuning. In contrast, Linear Regression and SVR underperformed, 

with SVR yielding the least effective predictions. These findings suggest that tree-based models, 

particularly gradient boosting algorithms, are most suitable for predicting tensile strength based on 

complex feature interactions in nanomaterial datasets. 

4.5 Workflow Visualization 

To visually summarize the entire methodological process, a flowchart is provided below. It outlines the key 

steps taken from data acquisition to model evaluation and result interpretation in the prediction of tensile 

strength of nanomaterials. 
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Figure 4: Flowchart of the machine learning framework used for predicting tensile strength of 

nanomaterials. 

5- Data collection and analysis 

The overall performance summary of XGBoost version exhibits that XGBoost works better than all of the 

other models with the best R² and MAE. Random Forest works nicely however now not as successfully as 

XGBoost. Neural Network works averagely, and SVR and Linear Regression work poorly with SVR 

running poorest. This exhibits that tree-based fashions like XGBoost and Random Forest paintings better 

in predicting the target variable. 

5.1.   Model Performance Comparison 

The data was divided into 80% for training and 20% for testing in order to measure model performance 

effectively. Comparison of the model was based on MAE and the R² Score as measures of evaluation. 

These measures provided some indication of accuracy and predictive value of the models, with the MAE 

pointing to the scale of prediction error on average, and the R² Score providing an indication of how well 

the model can account for variance in data. Implementing this measure enabled a total assessment of how 

suitable the models were in the provision of predictions that were correct. 

Table 3: Model Performance Comparison 

 MAE  R2 Score  

Linear Regression  158.110707 0.535855 

Random Forest  110.790877 0.718955 

XGBoost  109.774696 0.728981 
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SVR  201.394042 0.159045 

Neural Networks  135.268776 0.627547 

• Evaluation Metrics Used: The evaluation metrics utilized by this study are Mean Absolute Error 

(MAE) and the R² Score. 

 

Figure 5: Model Performance Comparison 

MAE is a measure of the average size of the prediction errors in comparison to true values but not their 

direction and hence a good indicator of general prediction accuracy. Lower the value of MAE, better the 

model with less errors. The R² Score or coefficient of determination measures how accurately the model 

describes the variance in the actual data. It lies between 0 and 1, with higher value indicating greater fit of 

the model to observed data. Combined, these statistics give a balanced assessment of how well the model 

performs, that is, how accurate and dependable the predictions are. 

• Best Performing Model: The following figure is a scatter plot of actual vs. predicted values of 

ultimate tensile strength (Su) for various test samples. Actual values are indicated by the blue dots, 

and the orange crosses represent the predicted values. The best-performing model is probably used 

for prediction, i.e., the XGBoost model, followed by the Random Forest model. 
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Figure 6: Actual vs predicted (XGBoost)  

The figure/plot indicates that the actual values (blue dots) are closely followed by the predicted values 

(orange crosses), implying a high correlation between real data and the predictions of the model. The high 

clustering and alignment reflect the success of ensemble models such as Random Forest and XGBoost in 

identifying the intricate relationships within the dataset. Yet, some deviations and fluctuations point to 

where the predictions of the model can be enhanced. 

5.2.   Feature Importance Analysis 

Feature importance analysis was carried out to determine the most influential properties impacting tensile 

strength. This analysis facilitates the determination of which factors exert the most influence, enabling 

researchers to prioritize essential variables in optimizing and improving the material. 

• Shear Modulus (G) and Brinell Hardness (Bhn):  The most critical factors that determine tensile 

strength. The evaluation sought to examine different material properties and their respective 

importance in affecting tensile strength. Using statistical and computational methods, the study was 

in a position to quantify different factors against their influence on tensile strength. The outcomes of 

the examination identified the properties that were found to significantly contribute to tensile strength. 

Out of all the mechanical properties, two factors were found to be the most important factors 

influencing tensile strength. The study revealed that the Shear Modulus (G) and Brinell Hardness 

(Bhn) were the most prominent parameters that influenced tensile strength. Both these properties 

showed the highest relation with tensile strength and thus were the major priority to enhance material 

performance. 
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Figure 7: Feature importance (XGBoost)  

The bar chart shows the importance scores of different material properties in predicting tensile strength. 

The Shear Modulus (G) holds the highest importance score and hence is the most significant factor. Brinell 

Hardness (Bhn) and Heat Treatment also play some role, though to a less significant extent. Other 

parameters such as HV, Ro, E, and mu have very small effects. The analysis highlights that G and Bhn are 

the most significant parameters for predicting and improving tensile strength. 

 

5.3 Residual Analysis 

The residual plot in Figure 7 is conclusive evidence of a uniformly distributed error, thereby verifying the 

model as reliable. No significant pattern exists from the residuals, which means that the model is neither 

overfitting nor underfitting. This supports the model to be more effective in making consistent predictions. 

 

Figure 8: Residual distribution (XGBoost) 
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The residual plot of the XGBoost model shows that prediction errors are bunched around zero, in a 

relatively normal way. This is a sign of a well-scaled model with no extreme bias, and this implies that the 

model is not overfitting or underfitting. 

6- Results 

This section presents the performance outcomes of the machine learning models used to predict the 

Ultimate Tensile Strength (Su) of nanomaterials. Among the five evaluated models, XGBoost 

demonstrated the most reliable and accurate results, establishing its suitability for predictive modeling in 

materials science. 

6.1.  Final Model Performance 

The XGBoost Regressor emerged as the most effective model, outperforming other algorithms such as 

Linear Regression, Random Forest, SVR, and Neural Networks. XGBoost achieved a Mean Absolute 

Error (MAE) of 109.77 and an R² Score of 0.7289, indicating high predictive capability and strong model 

generalization. 

Its performance superiority is attributed to its ability to handle complex non-linear relationships using an 

iterative gradient boosting framework. Additionally, feature importance scoring and regularization 

techniques built into XGBoost contribute to its robustness and interpretability. The model required 

minimal computational time once trained, making it a viable alternative to time-consuming experimental 

methods for tensile strength estimation. 

6.2.  Key Takeaways/ Insights  

Machine learning offers a scalable, reproducible, and less resource-intensive approach to mechanical 

property estimation. While traditional testing involves expensive equipment and human oversight, ML 

models—once trained—deliver instantaneous predictions with high accuracy and minimal cost. This 

aligns with the growing shift toward data-driven material discovery. 

The comparative performance of all five models is summarized below: 

Table 4: Model Performance Summary 

Model MAE R2 Score 

XGBoost 109.77 0.7289 

Random Forest 110.79 0.7189 

Neural Network 135.27 0.6275 

Linear Regression 158.11 0.5359 

SVR 201.39 0.1590 

 

The table demonstrates that ensemble models (XGBoost and Random Forest) clearly outperform linear 

and kernel-based models. The inability of SVR and Linear Regression to capture non-linear 

interactions between material properties and tensile strength resulted in inferior predictive accuracy. In 

contrast, ensemble methods could model complex interdependencies, making them better suited for this 

task. 
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Moreover, the study emphasizes the role of feature selection in improving model performance. By 

retaining only the most correlated and informative features—such as Brinell Hardness (Bhn), Shear 

Modulus (G), and Young’s Modulus (E)—the model reduced overfitting, lowered computational cost, 

and improved interpretability. 

These findings reinforce the utility of XGBoost as a high-precision tool for predicting tensile strength in 

condensed matter systems, offering a scalable and reliable methodology to augment experimental 

approaches in materials research. 

7. Discussion 

The results of this study demonstrate the effectiveness of machine learning, particularly ensemble methods 

such as XGBoost and Random Forest, in accurately predicting the Ultimate Tensile Strength (Su) of 

nanomaterials. The superior performance of XGBoost, evidenced by its highest R² score and lowest MAE 

among the evaluated models, confirms its ability to capture complex, nonlinear relationships between 

mechanical properties and tensile strength. This aligns with findings from prior studies, such as Zhao et al. 

(2021), who similarly noted the reliability of gradient-boosted models in predicting material behavior. 

The success of tree-based ensemble algorithms over linear models such as Linear Regression and kernel-

based models like SVR highlights the importance of capturing multivariate interactions in datasets where 

material characteristics do not follow simple proportional trends. In contrast, models like SVR and Linear 

Regression struggled to accommodate the nonlinear dependencies intrinsic to material property 

relationships, resulting in poorer predictive performance. 

This study also reinforces the significance of feature selection and preprocessing in materials informatics. 

By removing weakly correlated or redundant features, such as pH and categorical descriptors, and focusing 

on strong predictors like Brinell Hardness (Bhn), Young’s Modulus (E), and Shear Modulus (G), the 

models achieved improved generalizability and reduced risk of overfitting. These findings are consistent 

with prior efforts that emphasize the necessity of structured, high-quality data for predictive modeling in 

material science. 

Despite these promising results, the study is not without limitations. The dataset, while comprehensive, 

includes missing values in certain features and lacks broader representation across different classes of 

nanomaterials beyond steel alloys. Furthermore, the models have not been externally validated on 

independent datasets, limiting their immediate applicability in experimental settings. 

Nevertheless, the results establish a compelling case for integrating ML models—particularly ensemble 

learning approaches—into the workflow of materials design and analysis. This computational framework 

serves as a scalable and cost-effective complement to experimental techniques and contributes to the 

ongoing shift toward data-driven discovery in condensed matter physics and materials engineering. 

8- Conclusion 

The work focuses on the revolutionary nature of nanotechnology's effect on condensed matter physics as 

well as material science, in terms of predicting mechanical properties using machine learning methods. The 

research indicates that ensemble models like XGBoost have enhanced predictive performance, thereby 

qualifying them as useful tools for the characterization of materials. Through the identification of key 

material properties that have an impact on tensile strength, this research improves the accuracy of ML-

based material tests. AI integration in material science offers means for data-driven decision-making and 

reduced reliance on traditional experimental testing. High precision in material behavior prediction has vast 
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implications in various engineering applications from designing tougher structural materials to developing 

innovative nanocomposites. 

The XGBoost model achieved the highest performance with an R² score of 0.7289 and a Mean 

Absolute Error (MAE) of 109.77, confirming its reliability and predictive power. This demonstrates 

that machine learning is an effective computational tool for the prediction of material properties, enabling 

more efficient and innovative approaches in material science and engineering. 

• Some of the recommendations of this research are stated below: 

Improvement of Machine Learning Models: Future studies need to investigate hybrid and deep 

learning methods to enhance the precision of nanomaterial property predictions, especially for 

intricate mechanical behaviours. 

• Enlargement of Feature Selection Criteria: More material properties, including thermal and electrical 

properties, need to be incorporated into ML models to enable a more complete evaluation of 

nanomaterials. 

• Experimental-Computational Optimization: Integration of ML predictions with experimentally 

validated inputs can increase the reliability and present a sound paradigm for material characterization. 

• Industry-Targeted Application Development: Results should be presented in the form of industry-

specific applications, for example, aerospace, biomedical, and energy storage, to select materials for 

best performance. 

• Evolution of Green Nanotechnology: Subsequent studies must address environmental sustainability 

during nanomaterial synthesis and look towards AI-based technologies for developing materials 

sustainably. 

• Data Standardization for Machine Learning Models: Having standardized datasets and open-access 

repositories can make model training more efficient and enhance reproducibility in computational 

material science. 
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