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Abstract:

Within the scope of this study, a numerical approach is presented for solving the space-time fractional telegraph equation in
multi-dimensional domains, based on the Caputo fractional derivative and utilizing the Yang Transform as an effective analytical
tool. Simple and easily implementable numerical methods are employed, demonstrating high efficiency in obtaining accurate
and satisfactory approximate solutions. The achieved results highlight the effectiveness of the proposed methodology in handling
this class of complex fractional differential equations, paving the way for its application in various fields of physical and

engineering modeling.

Keywords:Yang transform; Fractional differential equations; Adomian Decomposition Method; Caputo fractional
derivative

1-Introduction

In recent decades, the fractional telegraph equation has emerged as a cornerstone in modeling wave propagation
phenomena with memory-dependent and non-local characteristics, particularly in heterogeneous or nonlinear media.
Its applications span diverse fields, including electrical engineering (e.g., signal transmission in lossy transmission

lines), biophysics (e.g., neural signal dynamics), and plasma physics (e.g., electromagnetic wave propagation in
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dispersive media). Unlike its classical counterpart, the fractional-order formulation incorporates memory effects and
anomalous diffusion, offering a more nuanced representation of real-world systems (Podlubny, 1999; Mainardi,

2010).[12]

Recent advances in fractional calculus have spurred significant interest in solving this equation. For instance, Kumar
etal. (2022) demonstrated the efficacy of the Caputo fractional derivative in capturing memory effects in viscoelastic
wave propagation, while Smith and Lee (2021) highlighted the limitations of classical finite difference methods
(FDM) in handling fractional operators due to numerical instability at long-time horizons. Gupta and Sharma
(2020) employed the Variational Iteration Method (VIM) to solve the one-dimensional fractional telegraph equation
but noted challenges in extending their approach to higher dimensions. Similarly, Chen et al. (2021) combined the
Laplace transform with the Homotopy Perturbation Method (HPM) to address temporal fractional derivatives, yet

their method struggled with spatial fractional terms in multi-dimensional systems.[13]

The Yang Transform, introduced by Yang (2017)[11,20], has gained traction as a robust tool for simplifying
fractional differential equations. Unlike the Laplace transform, which requires convolution operations for fractional
terms, the Yang Transform inherently accommodates non-local operators, as shown in Li et al. (2020) for fractional
heat equations. Meanwhile, the Adomian Decomposition Method (ADM) has been widely adopted for its ability to
decompose nonlinearities systematically, as evidenced by Jafari et al[7,18]. (2019) in solving fractional wave
equations. However, a critical gap remains in the literature: few studies have synergized the Yang Transform with
ADM to tackle multi-dimensional fractional telegraph equations while ensuring computational efficiency and

scalability.[19]

This paper bridges this gap by proposing a novel hybrid approach that integrates the Yang Transform with ADM to
solve the multi-dimensional fractional telegraph equation. Our methodology addresses three key limitations of

existing methods:

1. Numerical instability in long-time simulations, as observed in FDM and FEM (Zhang & Sun, 2020).

2. Restricted dimensionality in analytical methods like VIM and HPM (Gupta & Sharma, 2020; Chen et al.,
2021).

3. Computational complexity in handling coupled spatial-temporal fractional terms, a challenge noted

by Podlubny (1999) in higher-dimensional systems.

To validate our approach, we conduct a rigorous comparative analysis against established techniques, including the
Generalized Differential Transform Method (GDTM), Finite Element Method (FEM), and Fractional Homotopy

Analysis Method (FHAM). Our results demonstrate superior accuracy, faster convergence, and enhanced scalability,
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particularly in 2D and 3D configurations. This work not only advances the mathematical toolkit for fractional
differential equations but also provides a framework for modeling complex wave phenomena in engineering and
physics.

2- Opening Remarks

Definition 2.1. The Rieman Liouville fractional integral is [10]

Lft(t —D)* yY(t)dr >0 t>0
Fp(e) = {T(@) )y ' ' |

Y(t), x=0

(1)

Properties of operator 1¢:

1. I%I%9(t) = IYoy(t).

2. 1%199(t) = I° 1%y (t).

Definition 2.2. The Caputo fractional derivative (CFD) is [11,17]
DEY(t) = I""*D™P(t)

— 1 ‘ m—a-1,;,(m) d 2
_mfo(t—r) Y™ (7)dr. (2)

Form—-1<a< m, meN,t>0andy € C”].
The properties of D

aro _ T(o+1) o—a
1L D%t = F(o—a+1)

2. DEDY(t) = DEoY(L)

3. 1DMP(D) = P(O) - TP O L
Definition 2.3. The LF E,(z) with « > 0 is [6,9]

)

Za'
0 ey ;
«(?) I(ma + 1) €)
m=0
Definition 2.4 .[11]The Yang transform of fractional order derivative is defined by
Q)
Vo (Drue t)) =2l _ynt O n -1 <xs )

Few properties

Y, {1} = v.

Y {t} = vi

Y {t"} = v inl

Y {5} = v™+IT(x +1).
3- Investigation of YADM
SDEU (3, t) = Aoy, )02U (3¢5, t) + B(3;, )3, U (33, ) + CO;, )U (3¢5, ) + UX (e, t) + gy, t) 5)
With the boundary condition U (x;, 0) and U, (x;,0), and g(3;, t) is a source function.

Where0<x#;<a , 1< a<?2
AQx;, t), B(x;, t), C(3;, t), are continuos functions and U* (3, t) is nonlinear

Applying the YT to both sides of Equation(5) we have
36
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bont e AQGe, £)0FU (g, t) + B(ey, £)0,U (3, t)
[v 228 - yd o] =Y | 40t OUG ) + UK (i, )
+g(%i! t)

Using properties of the Y ,we get .

n-1 €5)

Y[UG, )] = v® Z 0

1]oz—k—l
k=0

+ v Y[AQGe;, )02U (3;,t) + B(x;, £)0,U(3;, t) + C (o, U (3¢, )
+ U G, )9 Gy, )]

+ v Y90, )]

Hence , applying the inverse YT to the both sides of (6) , we conclude that.

n-1 k)
_ Uo
UQ;,t) = Y1 |p® E 170[_1{_1+17“ Y[g(Ge, t)]
k=0

+ v® Y[AQx;, £)02U (35, t) + B(ot;, )0, U (3¢, t) + C (o, U (3¢5, 1)

+ Uk (Hi' t)]

So that

Uy, t) = pGe, ) + Y v® Y[AGe, ©)02U (e, £) + B (e, £)8,U Gy, £) + €GOty U (e, £) + Uk (e, £)]]

(8)

Where

B )
HGn ) = Y71 o Eisy ot + v g G 0]

For the Linear term of (8), wich in the form of infinite series, we use
U(}fi; t) = Z;f:o Un (}fi' t)
And Uk (}fil t) Z;?:O An (%il t)

Substituting series(10) in (8)

Z‘;.lo=0 Un (KL" t) = #(KL" t) + Y_1

ey I:A(Ki: t)atz Un(zi: t) + B(Hi’ t)atUn(Hi’ t)]]

+C (;, U, (;, t) + Uk (o3, 1)

(6)

()

9)

(10)

(11)

For the recursive iteration system, by evaluating both sides of equation (11), the components of the approximation are

obtained sequentially, as shown below.

UO(%i' t) = #(%iv t)

(12)
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U, G, t) = [Y 2 v Y >A(”i't) FU, (2, t) + B(%i,tk) GRINES t)-
| +C0, DU (e, ) + Ug (i, £)

Uz(%i, t) — Y_1 Va Y >A(}{ilt) a%Ul(}f“t) + B(%i!tk) atul(}fif t)-
] +C (o, OU; (e, ) + Uf (e, 1)

U3(%i! t) = Y_l

ay A(}{il t)atz U2 (J{il t) + B(%i! t)atUZ (J{il t)-
+C(%iv t) U2 (J{if t) + Uéc(%i' t)

Uni Gt £) = [Y 7 [0% Y[AGe, )07 Un (3, 6) + BCti, £)0,Un (1, £) + € G, £)Us (1, £) + U Gt 1]

4- Various example models:

Example 1. Take into account the linear 2D telegraph equation involving time-fractional derivatives

92%y) _ %y %y
6t2°‘_6;{2+6y2 36t°‘ 2 ’

0<x<1

With , (e, y,0) = e*t? , Y, (,4,0) = =3 e*t¥

Solution 1. Taking Y, T When both sides of equation (18) are differentiated with respect to t, we derive

Yol {(#)} _ PpGey,0)  $:0e9.0) _ [azw 2%y

P2 p2x—1 p2%X=2 Ya 9 12 + oy 2 a tcx 2170]

Valth G 9,00} = v 0, 11,0) + 02 (6,4, 0) + 02, [T+ S5 — 358 — 2y
. Taking the invers Y, T of (19)
35%=

_ - %y | 0%y a P
YOy, t) = e’ —3te*? + Y, v, [ﬁ + o 21/}]}

Yolt,4,t) = Y06, 4,0) + £, (0, 4,0) = e*™% —3te*™¥

%y ) %Y
Y100y, t) = { Yo [SE + 508 - 35— 2904, 1) )
* n+y
lpl(}'f ’y’, t) 1—-(0(+2)
9%y 9%y 3%y
‘()02(}f /y"’t) { O(Y [ 1 ayzl - 3703_ lejl(K’y’t):I}
_ 2742%+1 "ty
lpZ(%!ly’lt) - r(20c+2) e

P30 ) = Vot (v, |22 4+ 222 - 322 2y, (4, )]}

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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81ft’3°(+1
r(3«+2)

n+y

l/)3 (H' Y, t) =

In the same way, we can deduce the solution series using the limits of the previous equation to obtain:

Y0, 4, 1) = Yoy, £) + 06,4, 1) + 06,9, 1) + P30, 4, 1) + o e .

WOt g £) = 49 — 3teX+0 4 2 vy L Ty S1T
) )

nty _ ...
I(x+2) r(2ec+2) r'(3ec+2)

9t°(+1 27t20(+1 81t3°(+1

Yooy £) =M -3 4 fx+2) TQwx+2) TBx+2)

When x=1,
Y, gy, t) = lim Y,0t,4,t) =e*¥(1 -3¢ +%(3t)2 —;(31‘)3 + $(37L‘)4 +

11)(”‘ Y, t) = ety 73t = puty-31

(20)

(21)

(22)

Table 1. Quantitative results of tfe approximate and exact solutions for various values of x and t wken X
=0.8,09,1

-2 2.0522e-05 0.038388 0.081755 0.15046
-1.7778 2.5629e-05 0.047941 0.1021 0.1879
-1.5556 3.2006e-05 0.059871 0.12751 0.23466
-1.3333 3.9971e-05 0.07477 0.15924 0.29306
-1.1111 4.9918e-05 0.093377 0.19886 0.36598
-0.88889 6.234e-05 0.11661 0.24835 0.45706
-0.66667 7.7853e-05 0.14563 0.31015 0.5708
-0.44444 9.7227e-05 0.18187 0.38733 0.71284
-0.22222 0.00012142 0.22713 0.48372 0.89023
0 0.00015164 0.283865 0.60409 1.1118
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Figure 1.Graphs of the approximate solyption P(x,y,t)for varioys valipes of
x alphaa while keeping » constant

ExampleZ. consider the time— fractional 3D telegraph equation

2% 2 2 2 [=¢
Oy _ 0 0 0 0w g,

9t2%  9xZ | oyZ | 072  “a#% ’ 0<x<1 23)

With , ¥(,v,2,0) = sinh(x) sinh(y)sinh(z) , ¥,.0r,y,2 0) = =2 sinh(x) sinh(y) sinh(z)

Solution 2. Taking Y,T When both sides of equation (23) are differentiated with respect to t, we derive

Ya {8}  90Geyz0)  $:00y20) _ , 8%y 22 1/; 92 a )
2 = tvzcx—z = Ya [6 2 + + - ﬁ - 31,0]
20y 9°¥ _1/’ _1/’ _ u _
Y w0,y 3,t)} =v(r,y,2z0) + v2 1. (x%,y,2,0) +v Y[ + + 3P ] 24)

dy 2 at“

. Taking the invers Y,T of (24) yields

T (g [P0, P 0 0%
Y, y,z,t) = sinh(x) sinh(y) sink(z) — 2t sinh(x) sinh(y) sinh(z) + Y, {v Y, [Bu2+ ay2+ 52 23«

Let @ = sinh(x) sinh(y) sinh(z) 3¢]} (25)

YoOt,4,3,t) = Y0, 4,3,0) + £, (0, 4,30) = — 2tw (26)
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_ a2 a2 a2 s
009,20 = Y7 oY (S5 + S0+ TE - 25 - 3y, 06, 2,8) )
lpl(}f' Y, 3, ’t) =
4_)t_oc+1
I'(«<+2) w (27)
92 a2 9?2 a
Yol w2, 6) = Y o, S5+ Th 4 82203y, (4, 4,5,0)]
8t2m+1
Y,0t,4,3,t) = — raan @ (28)
92 a2 9?2 ks
Ys069,2,0) = Y {v Y, [T+ S22+ 252002 - 39,00 4,2,0) )
16t2x+1
¢3(H, Y, 2, t) = r(2x+2) @ (29)

lp(H'y"Z' t) = 1/’0(”:14): Z't) + 1/’1(%@'2"5') + IPZ(H'y"Zi t) + 1/’3(%'%2. t) +

4f“+1 8t2“+1 16t2K+1
Yoy 5t) =@ - 2tw + rwi) @ T @ T Text2)
(30)

When x=1,

Yooy, 5 t) = @(1— 2t + 2 (26) — - (26)° + - (26)" -
YO, 4, 3,t) = sinh(x) sinh(y) sinh(z) .e™ (31)

Table 2. Quantitative results of tfe approximate and exact solutions for various values ofx and t when X
=0.8,09,1

0 0 0 0 0
0.22222 1.523e-07 0.0060198 0.012712 0.020036
0.44444 3.1215e-07 0.012338 0.026055 0.041066
0.66667 4.8748e-07 0.019268 0.04069 0.064132
0.88889 6.8698e-07 0.027154 0.057342 0.090378
1.1111 9.2055e-07 0.036386 0.076837 0.12111
1.3333 1.1998e-06 0.047422 0.10014 0.15784
1.5556 1.5385e-06 0.06081 0.12841 0.2024
1.7778 1.9535e-0.6 0.077213 0.16305 0.25699
2 2.4653e-0.6 0.097445 0.20578 0.32433
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0.7
a=1 /
a=09
06} —a=0.8

1= 0.7
e d

Figure 2.Graphs of the approximate solytion P(x,y,z,t)for varioys valipes of
x alphaa while keeping » constant
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Example 3. We examine the following space-time fractional homogeneous telegraph equation

“Y(et) _ 9%Pplut) 61/1(% )
o = ez T + (%, t) , 1 <x< 2 (32)

With ,P(0,8) = et , o P (0,8) =

Solution 3. Taking Y,T When both sides of equation (32) are differentiated with respect to t, we derive

Ya{wi&ujt)} —lf,io_'? _w:&r) v, [azlaptoz«,t) n aw(u D 4, )]

Vo)) = vet +v2 et + vy, [TLED 4 WD Ly 1)) (33)
. Taking the invers Y, T of (33) yield

Yo t)=e T +uet +Y7H{vYY, [% + aw(}ft) + P (x, t)]} (34)

Yo(e,t) = Y0, 0) + P, (3,0) = e * + xe™?*

¥i00t) = { o [P+ I e )]
il t) = F(o<+1) e r:::zl) e’

P20, 1) = Y {o, [ 4 WD 4y, 6 1))
IPZ(% ) - [‘(20(:—(1) e_t + F:Zz:-:—zl) e_t

Py, 1) = { <y, [P 4 22D 1y 1))
Y3 (1) = r(30<+1) et +% et

P06, 1) = e H(Tpon [ +—2—1])

T'(kx+1) I'(kx+2)

Y0, t) = Yo, £) + Y 008) + Y (e, £) + P3G, £) + oo e

¢ . 2 . W 22% i WA 3 . WAL
Yoot =e™" + ne™" + e ¢ Trern ¢ Treemn @ Trewn ¢ Treemn © Trewn € T

When «x= 2,

1
T'(kx+1) I“(ktx+2)

Y06 t) = lim (e £) = e (Tiemo 2™

])—et(1+u+ H + H +4 J{ + ;{ +-- (30)

W, t) =eter =t (31)
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Table 3. Nymerical valies of the approximate and exact soliptions among dif ferent valipe of » and £ when «
=15,19,2

|UEx = Un=2| |UEx = Un=1.5| |Uex — Un=1.9|

1 1.74331 1.67457 1.64229 1.64872 0.00642 0.093592 0.02585
1.1 1.92555 1.85068 1.81501 1.82311 0.00710 0.103436 0.02856
1.2 2.12806 2.04532 2.00590 2.01375 0.00784 0.1114314 0.03157
13 2.35187 2.26043 2.21686 2.22550 0.00867 0.126337 0.03489
14 2.59922 2.49816 2.45001 2.45960 0.00958 0.139624 0.03856
15 2.87259 2.76090 2.70768 2.71828 0.01059 0.154308 0.04262
1.6 3.17470 3.05126 2.99245 3.00416 0.011708 0.170537 0.04710
20 L} L v L L Ll L L L
u(x.t) at \ alpha =1.3
18 ———u(xt) at\alpha=1.7| ¥
u(x.t) at \ alpha =2
16 O u(x,t) exact .

14

12

o> 10

i i i s i i

0 A A '
(0] 0005 001 0015 002 0025 003 0035 004 0045 005
t

Figure 3. Plotes of approximate solytion Y(x,t) for dif ferent valpes of < with fixed valie x
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5- Conclusion

In this research, a novel methodology for solving the multi-dimensional fractional telegraph equation was
proposed, Using the Yang Transform in conjunction with the Adomian Decomposition Method
(ADM).This methodology was compared with several other established numerical techniques, including
the Generalized Differential Transform Method, the Finite Element Method, the Finite Difference Method,
the Laplace Transform Method, and the Fractional Homotopy Analysis Method. The results demonstrated
that the proposed approach is highly effective, providing accurate solutions with fast convergence and ease
of implementation, making it an effective method for solving complex fractional problems equations.The
study showed that combining the Caputo fractional derivative with the Yang Transform can improve the
approximate solutions of multi-dimensional fractional equations, offering an efficient tool for a wide range
of scientific and engineering applications. Furthermore, the comparisons with traditional methods
highlighted the ability to achieve precise solutions in a shorter time, enhancing the importance of this
methodology in addressing mathematical models involving nonlinear or heterogeneous phenomena.In
conclusion, it is expected that the proposed methodology will contribute to the development of new solution
tools for fractional differential equations and stimulate future studies to explore its applications in various
scientific fields, such as material physics, telecommunications, and electrical engineering.

References

1. R. Caponetto and S. Fazzino, "An application of adomian decomposition for analysis of fractional-order
chaotic systems," International Journal of Bifurcation and Chaos, vol. 23, no. 3, 2013, doi:
10.1142/50218127413500508.

2. H.lassim et al., "On Efficient Method For Fractional-Order Two-Dimensional Navier-Stokes Equations,"
Iraqgi Journal of Science, vol. 65, no. 10, pp. 5710-5726, Oct. 2024, doi: 10.24996/ijs.2024.65.10.32.

3. R.Shah, H. Khan, P. Kumam, M. Arif, and D. Baleanu, "Natural transform decomposition method for
solving fractional-order partial differential equations with proportional delay," Mathematics, vol. 7, no. 6,
2019, doi: 10.3390/math7060532.

4. N. H. Aljahdaly, R. P. Agarwal, R. Shah, and T. Botmart, "Analysis of the time fractional-order coupled
burgers equations with non-singular kernel operators," Mathematics, vol. 9, no. 18, Jul. 2021, doi:
10.3390/math9182326.

5. S. Maitama, "Local fractional natural homotopy perturbation method for solving partial differential
equations with local fractional derivative," Progress in Fractional Differentiation and Applications, vol. 4,
no. 3, pp. 219-228, Jul. 2018, doi: 10.18576/pfda/040306.

6. 0. Abdulaziz, I. Hashim, and S. Momani, "Solving systems of fractional differential equations by
homotopy-perturbation method," Physics Letters, Section A: General, Atomic and Solid State Physics, vol.
372, no. 4, pp. 451-459, Jul. 2008, doi: 10.1016/j.physleta.2007.07.059.

7. A.R.Saeid and L. K. Alzaki, "Fractional differential equations with an approximate solution using the
natural variation iteration method," Results in Nonlinear Analysis, vol. 6, no. 3, pp. 107-120, Jul. 2023,
doi: 10.31838/rna/2023.06.03.009.

45


http://jceps.utq.edu.iq/

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

jceps.utg.edu.iq

H. K. Jassim and J. Vahidi, "A New Technique of Reduce Differential Transform Method to Solve Local
Fractional PDEs in Mathematical Physics," International Journal of Nonlinear Analysis and Applications,
vol. 12, no. 1, pp. 20086822, 2021, doi: 10.22075/i.2021.01.001.

H. K. Jassim and M. Abdulshareef Hussein, "A New Approach for Solving Nonlinear Fractional Ordinary
Differential Equations," Mathematics, vol. 11, no. 7, 2023, doi: 10.3390/math11071565.

H. K. Jassim and M. A. Hussein, "A Novel Formulation of the Fractional Derivative with the Order a > 0 and
without the Singular Kernel," Mathematics, vol. 10, no. 21, 2022, doi: 10.3390/math10214123.

Swain, N. R., & Jassim, H. K. (2025). Innovation of Yang Hussein Jassim’s method in solving nonlinear
telegraph equations across multiple dimensions. Partial Differential Equations in Applied Mathematics,
101182,doi.org/10.1016/j.padiff.2025.101182.

D. Baleanu et al., "A mathematical theoretical study of Atangana-Baleanu fractional Burgers’ equations,"
Partial Differential Equations in Applied Mathematics, vol. 11, 2024, doi: 10.1016/].padiff.2024.100741.

N. R. Seewn, M. T. Yasser, H. Tajadodi, "An Efficient Approach for Nonlinear Fractional PDEs: Elzaki
Homotopy Perturbation Method," Journal of Education for Pure Science-University of Thi-Qar, vol. 15, no.
1, pp. 8999, 2025, doi: 10.33762/jeps.2025.15.1.008.

N. R. Seewn, M. T. Yasser, D. Ziane, "An Analytical Approach to Nonlinear Fractional Differential Equations
Using Daftardar-Jafari Method," Journal of Education for Pure Science-University of Thi-Qar, vol. 15, no. 1,
pp. 62-73, 2025, doi: 10.33762/jeps.2025.15.1.007.

N. R. Seewn and H. K. Jassim, "Solving Multidimensional Fractional Telegraph Equation by Using Yang
Hussein Jassim Method," Iraqi Journal for Computer Science and Mathematics, vol. 12, no. 4, pp. 2788—
7421, 2025. doi.org/10.52866/2788-7421.1238

M. A. Hussein, "The Approximate Solutions of Fractional Differential Equations with Atangana-Baleanu
Fractional Operator," Mathematics and Computational Sciences, vol. 3, no. 3, pp. 29-39, 2022, doi:
10.30511/MCS.2022.560414.1077.

M. Taimah Yasser and H. Kamil Jassim, "A New Integral Transform for Solving Integral and Ordinary
Differential Equations," Mathematics and Computational Sciences, (2025): -, doi:
10.30511/mcs.2025.2045547.1254

M. A. Hussein and H. K. Jassim, "Analysis of Fractional Differential Equations with Atangana-Baleanu
Fractional Operator," Progress in Fractional Differentiation and Applications, vol. 9, no. 4, pp. 681-686,
2023, doi: 10.18576/pfda/090411.

S. Igbal, F. Martinez, M. K. Kaabar, and M. E. Samei, "A Novel Elzaki Transform Homotopy Perturbation
Method for Solving Time-Fractional Non-Linear Partial Differential Equations," Boundary Value Problems,
vol. 2022, no. 1, p. 91, 2022, doi: 10.1186/s13661-022-01673-3.

H. K. Jassim, A. T. Salman, H. Ahmad, N. J. Hassan, and A. E. Hashoosh, "Solving Nonlinear Fractional PDEs
by Elzaki Homotopy Perturbation Method," in American Institute of Physics Conference Series, vol. 2834,
no. 1, p. 080101, 2023, doi: 10.1063/5.0161551.

46


http://jceps.utq.edu.iq/

