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Abstract:

In this work, strongly radical g-supplemented modules are defined and some properties of these modules are
investigated. This concept is natural generalization of the concept of g-supplemented modules. It is proved that
every srgs-module is g-semilocal. We study a weak g-supplement and proved weak g-supplemented and srgs-

modules are independent from each other. We show that if M is an srgs-module then M = T(M) + Radgy(M).

Keywords: g-supplemented modules, strongly radical supplement modules, strongly radical g-supplemented
modules, g-semilocal modules .

1-Introduction

In addition to all of the modules being unital left modules, all of the rings in this work will be associative rings
with identity. Let M be an R -module and R be a ring. It is implied that H is a submodule of M by the notation H <
M. Rad(M) and Soc(M) shall stand for the radical of M and the socle of M, respectively. If X N H # 0 for any
non-zero submodules H < M, then the submodule X < M is named essential in M , symbolized by X 2 M. As a
dual concept of an essential submodule, a submodule H of M is named small in M , indicated by H K M, if M #
H + W for every proper submodule W of M, then H < M [2]. Rad(M) is the sum of all small submodules of M or
the intersection of all maximal submodules of M (see [6, 2.7], [1]). If every proper submodule of a module M is

small in M, it is named hollow; if M is hollow and finitely generated, it is called local, see [2].
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Let N and L be submodules of M. If L is minimal with respect to M =N+ L, then L is said to be a
supplement of N in M , or N is said to have a supplement L in M. Ifandonlyif M = N + Land NN L «< L, then
a submodule L of M is a supplement of N in M . If there is a supplement in M for every submodule N of M , then
M is named supplemented (see [13], [6] and [1]).

A submodule N of M has ample supplements in M if each submodule X of M with M = N + X contains a
supplement of N in M. M is named amply supplemented if all submodule in M has ample supplements in M. Hollow
modules and semisimple modules are (amply) supplemented see [13, Section 41]. Zdschinger [16] has obtained
detailed information about supplemented and related modules and referred to the module M as a radical
supplemented module after studying it in such a way that Rad(M) has a supplement in M. As a proper
generalization A module M is said to be strongly radical supplemented module (shortly srs-module) by Biiyiikasik
and Tirkmen [5] if each submodule that contains the radical Rad(M) has a supplement. Similar to [5], in this
article we define the concept of strongly radical g-supplemented modules, or simply srgs-modules, will be
introduced and studied in this direction.

Zhou [14] introduced §-small submodules, extended small submodules of a module M as follows. An R-module
M is called singular if there exists R-modules A < B such that M = B/A . A submodule H < M is named §-small
in M (symbolized by H <s M) if whenever M = H + X with % singular, implies M = X. Obviously, any small
submodule is §-small in M.

A submodule H in M is named a §-supplement to N in M if M = N + H and N N H is §-small in H (as a result
in M), and M is named d-supplemented in case every submodule of M has a §-supplement according to [7]. If for
every K S M with M = U + K we have K = M, then a submodule U < M is called generalized small (abbreviated
g-small); this is indicated by U <y M [2] (from [15], it's named an e-small submodule of M and showed by
U K M). K is named a generalized maximal submodule of M if it is both an essential and maximal submodule of
M. The generalized radical of M, represented by Radg(M) , is the intersection of all generalized maximal
submodules of M; from [15], it is represented by Rad, (M) . If M have no generalized maximal submodules, after
that the generalized radical of M is stated by Radg (M) = M. Let N and L be submodules of M. If M = N + L and
M = N + K with K 9 L implies that K = L, or equivalently, M = N + L and N N L <, L, then L is called a g-
supplement of N in M. If each submodule in M contains a g-supplement, then M is named a g-supplemented
module (see [7] and [11, Definition 2], where it is referred to as e-supplemented). Observe that a §-supplemented
module is g-supplemented. In this paper , we call a module M is strongly radical g-supplemented (or briefly srgs-
module) if every submodule of M containing the radical Rad (M) has a g-supplement in M. The remaining
definitions in this paper are found in [4, 6, 13].

In Section 2 of this paper, we define the concept of strongly radical g-supplemented modules. Also, we give
some properties of these module. We prove that, All factor modules and srgs-module homomorphic images are

srgs-modules .
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Section 3 devoted on srgs-modules over Dedekind domains. Here, we prove that if R is Dedekind domain and
M is a srgs-module over R, then every g-supplement of W < M is coatomic.
Also, in Section 3, we proved that if R is nonlocal Dedekind domain and M is an srgs-module then M =

T(M) + Radg(M).

Lemma 1.1. (see [15] and [9]). For an R-module M and for W, H < M, the following conditions hold.
(1) If W<HandH <gM,thenW <; M.

(i1) If W <z H,then W is a g-small submodule of every submodule of M which contains H.
(i)  If f:M — H is an R-module homomorphism and W < M, then f(W) < H.
(iv) If W<KzXandH <g K for X, K < M,then W + H <z X +K.

Corollary 1.2. (1) Let M be an R-module and W < H < M. If H &g M, then% g %

wW+X

(2) Let M be an R-module, W <z M and X < M. Then —— &, Ly
X X

Lemma 1.3. [15, Lemma 5]. Let M be an R-module. Then Rad, (M) = ZX«gMX.

Lemma 1.4. The following assertions are hold for an R-module M.

@) If M is an R-module, then mR <z M for every m € Radg (M).

(i1) If H <M, thenRad, H < Radg (M).

(i)  If W,X <M, then Radg (W) + Radg (X) < Radg (W + X).

(iv) If f:M — H is an -module homomorphism, then f (Radg M ) < Rad, (H).

(v)  If X < M, then 2240

M
< Rad, (¥)-
(Vl) Let M =®i€1 Mi‘ Then Radg (M) =®i€1 Radg (Ml)
Proof: (1), (2), (3), (4), (5) follows from Lema 1.1 and Lema 1.3 (we use [4, Lem. 5.19] as essential criteria for a

module), in which (6) follows from (1) and (2) see [2]. O

Definition 1.5. [15] Suppose M is a module. Define
Radg(M) =n{H 2 M | H is maximal in M}. See besides [2].

2- Strongly Radical g-Supplemented Modules

In this section, we defined and study the concept of strongly radical g-supplemented modules (for short, srgs-
module) . The main result here state : every factor module of srgs-module is srgs-module. Also, if R is a ring, we

have zR is a srgs-module iff for any finitely generated R-module is a srgs-module.

Definition 2.1. A module M is said to be strongly radical g-supplemented module (or briefly srgs-module) if every
submodule N of M with Rad(M) < N has a g-supplement in M. In other words for any N < M with Rad(M) < N,
there exists L < M such that N + L = M and N N L <, L.
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F
F

N,x; € M(F),x € I}. Observe that under component-wise operations, R is a ring. Here, Rad (R) = Radg (R) =

0 F
0 0

supplemented but zR is §-supplemented so zR is g-supplemented. Hence, rR a srgs-module.

Example 2.2. (1) [14, Example 4.3] Let F be a field, consider I = (g ) and R = {(x1, ..., X, X, X, ... )i N E

{(x1, 0, X, %, x, ... ):n €N, x; € My(F),x €]}, where | = ( ).R is not semiregular. Hence z R is not

(2) [6, Example 20.12] Consider Q as a Z-module. Since Rad, (Q) = Rad (Q) = Q, Q is a srgs-module. However,

since Q is not supplemented and every non-zero submodule of Q is essential in Q, Q is not g-supplemented .

(3) (see [7, Example 2.14] and [6, Example 17.10]) Let R=Z and M = % = @21 M; with each M; = Z,~ =

{r € Q:p"r € Z for some n}, where p is a prime number. Then Rad (M) = Radg (M) =; Radgy (M;) =®; M; =
M is essential in M. But since the p-component of M is M that is not Artinian, M is not supplemented by [13, p.
370]. Since M is singular, M is not g-supplemented.

(4) [14, Example 4.1] Let F be a field and F; = F for all i € N. Consider R =<®2, F;, 11-[;21,,[_ >, which is an F-
subalgebra of [[;2, F; generated by @;2, F; and 11-[;721 r-See that R is not semisimple, and the Jacobson radical,

J(R) = 0. Therefroe, R is not semilocal besides so zR is not a srs-module. R is a srgs-module [see therom 2.19

below ].

Proposition 2.3. Every factor module and homomorphic image of a srgs-module are srgs-modules.

Rad (M+X)

Proof: Let’s X < H < M with Rad (%) < % . Since, < Rad (%), we have Rad(M) < H. By, assumption,

H has g-supplement W in M. Thus we have H + W = M and HNW &z W. Now it is easy to see that %+

W+X _ M H _W+X _ (HOW)+X w

+X W+X . H. M o
——=—and —N & . Therefore, —— is a g-supplement of — in— . The remain is clear. O
X X X X X g X X X X

Lemma 2.4. Let M be an R-module and let M; and H be submodules of M with Rad(M) < H. If M; is a srgs-
module and M; + H has a g-supplement in M, then H has a g-supplement.

Proof: Let X be a g-supplement of My + H in M. Then X + (M; + H) = M with X n (M; + H) <g X. Since,
Rad (M;) < Rad (M) < H, we have Rad(M;) < (X + H) N M;. Then (X + H) N M; contains a g-supplement
(say) W in My, because M, is an srgs-module. Thus, M = (X + H)NM; + W)+ H+X=(X+H)Nn M)+
W+H+X)=W+H+X)=H+ W +X). Since H+W<H+M;, Xn(H+W)<XnM;+H) <L X,
hence HN(W+X)<(H+X)NW+H+W)NX L W+ X.So, W + X is a g-supplement of H. o

Proposition 2.5. Let M = M; + M,, where M; and M, are srgs-modules. Then M is a srgs-module.

Proof: Presume H < M with Rad (M) < H. According to by Lemma 2.4, M; + H contains g-supplement in M,
but M; + M, + H has the trivial g-supplement 0 in M. By the lemma 1.1 again, one has a g-supplement for H in
M. o
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Corollary 2.6. Every finite sum of srgs-modules is a srgs-module.

Assume that M is an R-module. Remember that if H is a homomorphic image of a direct sum of copies of M,

then the R-module H is said to be M-generated.

Lemma 2.7. Let M be a srgs-module. Then every finitely M-generated module is srgs-module.

Proof: Clear from Proposition 2.3 and Corollary 2.6. O

In [8], A module M is named semilocal if is a semisimple module.

M
Rad (M)

M
Radg (M)

Definition 2.8. [9] A module M is called g-semilocal if is a semisimple module.

Proposition 2.9. Every srgs-module is g-semilocal.

be a submodule of M

, N
Proof: Let’s Radg (D) Radg 01

Clearly, Rad(M) < Radg (M) < N. Since M is a srgs-module,

there exists a submodule L in M suchthat M = N+ Land N N L Kg L. Since, N N L Kg L, by Lemma 1.1(4), N N

M _ N+L _ N L+Radg (M) N (L+Radg (M))
>Radg (M)  Radg (M) Radg(M) = Radg (M) Radg (M) Radg (M)

L < Radg (M). Hence we have

Radg (M)+(NNL) _ Radg (M)
Radg (M)  Radg (M)

= 0. As aresult, M is g-semilocal. O

Corollary 2.10. Let M be a srgs-module. Then M = M; © M,, where M, is semisimple, Rad, (M) 2 M, and

M,
Radg (M)

is semisimple.
Proof: Follows from Proposition 2.9 and [7, Proposition 2.1 ]. O

Definition 2.11. [9] A submodule L < M is named a weak g-supplement of N<M if M =N+ L and NN
L g M. The module M is named weakly g-supplemented if every submodule of M has a weak g-supplement in M.

Example 2.12. (1) [12, Example 2.1] Let R be a local Dedekind domain, or DVR and K be R’s quotient field. Then,
as can be seen in [4, Exercise 18. (2)], the left R-module W is injective. Let M =@; W, where I is an infinite index

set, be a left R-module. Since R is noetherian, M is injective and Radg (M) = Rad (M) = M. Therefore M is a srgs-
modul but it is not weakly g-supplemented.

(2) [9, Example 1] Let p and q be prime numbers and let R = Z, ; = {% EQ:pthqgt b} be the ring . Then R is
a commutative domain with exactly two maximal ideals pR and qR and every non-zero ideal is essential in R.

That, R is weakly g-supplementd but is not a srgs-module.

Above We have seen that the concept of weakly g-supplemented modules and srgs-modules are quite

independent from each other. However we have the following result.

Proposition 2.13. Presume M is a srgs-module with Rad, (M) <z M. Then M is weakly g-supplemented.
Proof: Follows from Proposition 2.9 & [9, Lemma 13]. O
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Note that Z-module M = Q @ ple for any prime p, is srgs-module through Proposition 2.3 but not a g-

supplemented module. Thus, we try to explore conditions for which a srgs-module will be a g-supplemented module.

As can be seen from (see [11, Lemma 2.4]) any srgs-module M is g-supplementd if Radg (M) is semisimple.

Actually we posses the following:

Proposition 2.14. Suppose M is a srgs-module and Rad (M) is a g-supplemented submodule. Then M is g-
supplemented.

Proof: Let’s N be a submodule of M. Presumably, Rad (M + N) has a g-supplement U of M. Another time
Rad (M) is g-supplementd, hence (U + N) N Rad (M) has a g-supplement Y in Rad (M). So U + Y is the required
g-supplement of N in M. O

The outcomes that showed up for amply g-supplemented modules in [10, Theorem 5] generalizes to srgs-

modules.

Corollary 2.15. Let’s M be finitely generated. Then M is Artinian iff M is a srgs-module satisfying DCC on g-

small submodules.
Currently we have the following using the same method as in proof (1) = (2) of [14, Lemma 1.2].

Lemma 2.16. Let A and B be two submodules of a module M with M = A + B. Then A @ H is essential in M for
some submodule H of B.
Proof: By Zorn's Lemma, for the property A N H = 0 ,there is always a submodule H of B maximal. Let 0 #
m € M. We already presume m € H. By the maximality of H, we've AN (H + Rm) # 0. Take,0 #a =h +
rm € A, where h € Handr € R. Thenrm =a—h € A+ H. Since AN H = 0, we have rm # 0. Consequently,
(ADH)NRm+0. o

Observe that §(R) = Radg (R): = the intersectoin of all essential maximal left ideals of R (see [14, Theorem

R R

5(R)  Radg(R) > °

1.6]). Following [14, Definition 3.1 and Theorem 3.6]), a ring R is named §-semiperfect if

semisimple ring and idempotents lift modulo §(R) = Radg (R). We have the next definition.

R

Definition 2.17. A ring R is named g-semiperfect if Radg (R)

is a semisimple and idempotents lift modulo Rad, (R).
We add a note here before declaring the next theorem.

Remark 2.18. For any two left ideals I and J of a ring R with I < J such that % is a singular module, so I not

required to be essential in J.

For example, consider R = Z @ %. Then =0@ 0and /] =0P % are left ideals of R with I < J and % is

singular R-module but [ is not essential in J.
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Theorem 2.19. Suppose that R is a ring with Radg (R) < R and so that if any two left ideals I < J of R satisfy
the property that if % singular then I 2 J. Then zR is a srgs-module if and only if R is a g-semiperfect ring.

Proof: Through the use of [7, Theorem 3.3], we only show that every left ideal of R has a g-supplement in zR. Let |
be a left ideal of R. Since #R is a srgs-module, we have I + Radg(R) + W = R with (I + Radg(R)) N W Kz W for

some left ideal W of R. Now by Lemma 2.15 we can find a submodule H of Radg(R) such that (1 + W)NH =0
and (I + W) @ H essential in R, Thus, R =1+ (W @ H) + Rady(R) implies that R =1+ (W @ H) (since,
Rady(R) <g R) and I N (W @ H) Ky (W @ H). Therefore, W + H is the required g-supplement of I in R. The

other direction is obvious as in [14, Theorem 3.6]. o

Remark 2.20. Consider the ring made up of integers localized away from the ideal 6Z (of Z ): R = Zg) =

{% €EQ:abeZged(b6)= 1} (see [4, Exercise 27.(4)]). Since ](LR) =~ % has four idempotents and R has only the

trivial idempotents, this ring is a classic example of a ring where idempotents do not lift modulo the Jacobson
radical (represented by J(R)). It can be seen that although zR is not a srgs-module, Radg(R) =38(R) =J(R) =

R

6R, Radg (R) «<g R and Rad, (%)

is semisimple. O

Recall that for a ring R the left socle of R, denoted by Soc (R), is defined as the sum of all its minimal right
ideals and can be shown to coincide with the intersection of all the essential right ideals of R. Moreover Soc (R) is a

two sided ideal of R (see [4, Proposition 9.7]). Following [14, Definition 3.1 and Theorem 3.8]), a ring R is called &-

R
Soc (R)

perfect if is left perfect and idempotents lift modulo Radg(R).

Theorem 2.21. Let A be a countable set, R a ring such that §(@;ep R) <g Diea R and so that for any two left

ideals I < J of R if % singular then I 2 J. Then, the statements that follow are equivalent:
(1) R is a §-perfect ring.
(i1) Every left R-module is §-supplemented.
(i)  Every left R-module is g-supplemented.
(iv) Every left R-module is storngly radical g-supplemented (srgs-module).
Proof: (1) © (2) follows from [7, Theorem 3.4].
(2) = (3) is clear form the reality that if H is a §-small submodule of M, then H is a g-small submodule of M.
(3) = (4) is clear. So, it remains to see (4) = (1). By Theorem 2.19 R is §-semiperfect. By [14, Theorems 3.7 and

3.8] we only need to show that Rad ( SOCR(R)) (= sjéigz) by [14, Corollary 1.7]) is left K-nilpotent. For this we shall

use the technique of [4, Lemma 28.1]. Let F =@y R be a free left R-module with basis x;, x5, ..., X, ...,i € N, and
G the submodule of F spanned by y; = x; — x;,.1a;, i € N, where a4, a,,as, ..., is a sequence of elements form
8(R) = Radg (R). Then, F =G + §(F). By hypothesis, §(F) < F and hence by Lemma 2.16, F = G @ B for

some submodule B of §(F). By [4, Lemma 28.2], there exists n € N such that Ra,,.1a,*a; = Ra,a,_1 - a;.
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Therefore, ra, 41a,an_1 - A1 = ApQy_q -+ a4 for somer in R, and so (1 —ra,,q)a,an_q - a; = 0. Therefore,

R
Soc (R)

apa,_q1 - a1 € Soc (R). Thus, Rad ( ) is left K-nilpotent and R is left §-perfect. o

3- srgs-Modules over Dedekind Domains

In this section, we study some properties and results on the srgs-modules over Dedekind domains.

Take R is an integral domain. The definition of torsion submodule of R-module M is

T(M) = {m € M:mr = 0 for some non-zero r € R},
if T(M) = M , then a module M (over an integral domain) is named a torsion module.
As seen by the example below, over a nonlocal domain every torsion module need not be srgs-module.
Example 3.1. Let Z be the ring of integers and let p be a prime in Z : Consider the Z-module M =@,,>1 Zpn Where

Lpn = Then M is a torsion module. To see that M is not a srgs-module, consider the submodule pM of M.

z
p"L’
Since le is a semisimple module, we’ve Rad (M) < pM. Now, it can be demonstrated that pM does not have a g-
supplement in M, i.e., M is not a srgs-module, using the same method as in [5, Example 2.2].

Definition 3.2. [13, 16.6] A module M over an integral domain R is divisible if M = rM for all non-zero r € R.
Definition 3.3. [3] A module M over an arbitrary ring is coatomic if every proper submodule of M is contained in a
maximal submodule of M.

Remark 3.4. [3] A module M is coatomic if and only if for all submodule H of M, Rad (%) = % implies H = M.

Lemma 3.5. Let R be a Dedekind domain and M an R-module. If H Kg M, then H is coatomic.

Proof: Let H be a g-small submodule of M and take X < H with Rad (%) = % Then (%) P = % for every maximal

ideal P of R. % is divisible since R is a Dedekind domain, making it an injective R-module. Consequently %@

% = %for some W < M. Then H + W = M which further implies that H' @ W = M for some H' < H (by Lemma

2.15)and H = H' @ X. But, by [14, Proposition 2.3] H + W = M implies that % is semisimple and hence ; =H'

is semisimple. Therefore Rad (%) = 0, consequently H = X. Thus H is coatomic. O

Lemma 3.6. Let M be a sgrs-module over a Dedekind domain and N be a submodule of M with Radg (M) < N.

Then, every g-supplement of N is coatomic.

Proof: By Proposition 2.8, is semisimple. So, Vs semisimple as a factor module of . Presume L 1s

Radg (M) Radg (M)

g-supplement of N in M. Then, M = N + L and N N L < L. Now in the following exact sequence 0 — NN L —

L — - —0both Nn L, by Lemma 3.5 and L (E M) are coatomic. By [15, Lemma 1.5 (a)], L is coatomic. O
NNL NNL\™ N

Reduced groups are abelian groups ( Z-modules) that have no divisible subgroups other than 0 . Denote
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P(M): = Z {X < M: L has no maximal submodules }.

Let R be a Dedekind domain. Then an R-module M has no non-zero divisible submodules iff P(M) = 0.
According to Zoschinger [16], if P(M) = 0 ,then an R-module M for for any ring R is a reduced module.

The following proposition is an analogue of [5, Proposition 3.2].

Proposition 3.7. Let R be a nonlocal domain and let M be a reduced R-module. If M is a srgs-module, then M =
T(M) + Radg(M).

Proof: Presume T(M) + Radg (M) # M. Since, Radg (M)  T(M) + Radg (M), there exist X < M such that
T(M)+Radg (M) +X =M and X N (T(M) + Rad, (M)) Kg X. Now M being reduced we have a maximal
submodule W of X such that W’ = T(M) + Radg (M) + W is a maximal submodule of M. (To see W' maximal in
M, write U = T(M) + Radg (M) and consider Wy < M , since U + W < Wy < M. Then W being maximal in X,
we have either X N W, =W or X N Wy = X. But X N Wy, = W implies that W, = U + W and X N W, = X implies
that Wy, = M, as required). So W' has a g-supplement L in M. Now W' being maximal, one can locate a cyclic
submodul Ly of L such that W'+ Ly = M, and so Ly = ? for some nonzero I < R. Therefore, L, is a torsion
submodule of M, and so Lo, < T(M). Hence, we have = W' + Ly = T(M) + Radg (M) + W + Ly = T(M) +
Radg (M) + W = W', a contradiction. So, M = T(M) + Radg (M). O

The following three results appeared in a similar fashion in [11, Propositions 3.3, 3.4, and 3.5].

Proposition 3.8. Let R be a domain and M an R-module. Presume M = T(M) + Rad(M) and T(M) is g-
supplemented. Then M is a srgs-module.

Proof: Let’s H be a submodule of M since Rad M € H. Then H=H NT(M) + Rad (M) = T(H) + Rad M. Let
X be a g-supplement of T(H) in T(M). Then T(H) + X =T(M) and T(H) N X <z X. Hence, M =T(M) +
RadM =T(H)+X+RadM S H+ X, and so M = H + X. Since X is a torsion one, we have HNX = T(H) N

X. Therefore, X is a g-supplement of H of M. O

Let R be a Dedekind domaina and let M be an R-module and let R. ,The divisible part of M is P(M), since R is
a Dedekind domain. By [6, Lemma 4.4], P(M) is (divisible) injective, and hence there exists a submodule H of M
such that M = P(M)@® H. Here, H is called the reduced part of M. Note that P(M) S Rad M. By [5, Corollary 2.2],

we know that P(M) is an srs-module. By using these fact , we obtain the next result:

Proposition 3.9. Presume R is a Dedekind domain and M an R-module. Then M is an srgs-module iff the reduced
part H of M is an srgs-module.

Proof: By Prop. 2.3, H ia an srgs-module as a homomorphic image of M. The converse follows from Propo. 2.5. O

Proposition 3.10. Presume R is a nonlocal Dedekind domain and M a srgs-module. Then M = T (M) + Rady(M).
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Proof: Let M = P(M)®H with H reduced. Then H is an srgs-module as a direct summand of M. By Proposition 3.7,
we have H = T(H) + Radg(H) . Thus M = P(M)®H = P(M) + T(H) + Radg (H) S T(M) + Radg(M). As a
result, M = T(M) + Radg(M). O
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