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Abstract: 

   In this work, strongly radical g-supplemented modules are defined and some properties of these modules are 

investigated. This concept is natural generalization of the concept of g-supplemented modules. It is proved that 

every srgs-module is g-semilocal. We study a weak g-supplement and proved weak g-supplemented and srgs-

modules are independent from each other. We show that if 𝑀 is an srgs-module then 𝑀 = 𝑇(𝑀) + 𝑅𝑎𝑑g(𝑀). 

Keywords: g-supplemented modules, strongly radical supplement modules, strongly radical g-supplemented 

modules, g-semilocal modules . 

 

1-Introduction 

      In addition to all of the m0dules being unital left modules, all of the rings in this work will be associative rings 

with identity. Let 𝑀 be an 𝑅 -m0dule and 𝑅 be a ring. It is implied that 𝐻 is a submodule of  𝑀 by the notation 𝐻 ≤

𝑀. 𝑅𝑎𝑑(𝑀) and 𝑆𝑜𝑐(𝑀) shall stand for the radical of  𝑀 and the socle of 𝑀, respectively. If 𝑋 ∩ 𝐻 ≠ 0  for any 

non-zero submodules 𝐻 ≤ 𝑀, then the submodule 𝑋 ≤ 𝑀 is named essential in 𝑀 , symbolized by 𝑋 ⊴ 𝑀. As a 

dual concept of an essential submodule, a submodule 𝐻 0f  𝑀 is named small in 𝑀 , indicated by 𝐻 ≪ 𝑀, if  𝑀 ≠

𝐻 + 𝑊 for every proper submodule 𝑊 of 𝑀, then 𝐻 ≪ 𝑀 [2]. 𝑅𝑎𝑑(𝑀) is the sum of all small submodules of 𝑀 or 

the intersection of all maximal submodules of 𝑀 (see [6, 2.7], [1]). If every pr0per submodule of a m0dule 𝑀 is 

small in 𝑀, it is named hollow; if 𝑀 is h0ll0w and finitely generated, it is called local, see [2].  
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      Let 𝑁  and 𝐿  be submodules of 𝑀 . If  𝐿  is minimal with respect to    𝑀 = 𝑁 + 𝐿  , then  𝐿  is said to be a 

supplement of  𝑁 in 𝑀 , or  𝑁 is said to have a supplement  𝐿 in 𝑀. If and only if 𝑀 = 𝑁 + 𝐿 and  𝑁 ∩ 𝐿 ≪ 𝐿 , then 

a submodule 𝐿 0f 𝑀 is a supplement of  𝑁 in 𝑀 . If there is a supplement in  𝑀 for every submodule  𝑁 of  𝑀 , then  

𝑀 is named supplemented (see [13], [6] and [1]).  

      A subm0dule 𝑁  0f 𝑀  has ample supplements in 𝑀  if each submodule 𝑋  0f 𝑀  with 𝑀 = 𝑁 + 𝑋  c0ntains a 

supplement 0f 𝑁 in 𝑀. 𝑀 is named amply supplemented if all subm0dule in 𝑀 has ample supplements in 𝑀. H0ll0w 

modules and semisimple m0dules are (amply) supplemented see [13, Section 41]. Zöschinger [16] has obtained 

detailed information ab0ut supplemented and related modules and referred to the module 𝑀  as a radical 

supplemented module after studying it in such a way that 𝑅𝑎𝑑(𝑀)  has a supplement in 𝑀 . As a pr0per 

generalizati0n A module 𝑀 is said to be strongly radical supplemented module (shortly srs-module) by Büyükaşik 

and Türkmen [5] if each subm0dule that contains the radical 𝑅𝑎𝑑(𝑀) has a supplement. Similar to [5], in this 

article we define the concept of strongly radical g-supplemented modules, or simply srgs-modules, will be 

introduced and studied in this direction.  

      Zhou [14] introduced 𝛿-small subm0dules, extended small subm0dules 0f a module 𝑀 as f0ll0ws. An 𝑅-module 

𝑀 is called singular if there exists 𝑅-modules 𝐴 ⊴ 𝐵 such that 𝑀 ≅ 𝐵/𝐴 . A subm0dule 𝐻 ≤ 𝑀 is named 𝛿-small 

in 𝑀 (symbolized by 𝐻 ≪𝛿 𝑀) if whenever 𝑀 = 𝐻 + 𝑋 with 
𝑀

𝑋
 singular, implies  𝑀 = 𝑋. Obviously, any small 

subm0dule is 𝛿-small in 𝑀.       

      A submodule 𝐻 in 𝑀 is named a 𝛿-supplement to 𝑁 in M if 𝑀 = 𝑁 + 𝐻 and 𝑁 ∩ 𝐻 is 𝛿-small in 𝐻 (as a result 

in 𝑀), and 𝑀 is named δ-supplemented in case every submodule of 𝑀 has a δ-supplement acc0rding to [7]. If for 

every  𝐾 ⊴ 𝑀 with 𝑀 = 𝑈 + 𝐾 we have  𝐾 = 𝑀, then a subm0dule 𝑈 ≤ 𝑀 is called generalized small (abbreviated 

g-small); this is indicated by  𝑈 ≪g 𝑀  [2] (from [15], it's named an e-small submodule 0f 𝑀 and showed by 

𝑈 ≪e 𝑀 ). 𝐾 is named a generalized maximal subm0dule 0f  𝑀 if it is both an essential and maximal subm0dule 0f  

𝑀 . The generalized radical 0f  𝑀 , represented by 𝑅𝑎𝑑g(𝑀) , is the intersecti0n 0f all generalized maximal 

subm0dules 0f  𝑀; from [15], it is represented by 𝑅𝑎𝑑𝑒 (𝑀) . If  𝑀 have n0 generalized maximal subm0dules, after 

that the generalized radical 0f 𝑀 is stated by Radg (𝑀) = 𝑀. Let 𝑁 and 𝐿 be submodules 0f 𝑀. If  𝑀 = 𝑁 + 𝐿 and 

𝑀 = 𝑁 + 𝐾 with 𝐾 ⊴ 𝐿 implies that 𝐾 = 𝐿, 0r equivalently, 𝑀 = 𝑁 + 𝐿 and 𝑁 ∩ 𝐿 ≪g 𝐿, then  𝐿 is called a g-

supplement 0f  𝑁 in 𝑀. If each submodule in 𝑀 contains a  g-supplement, then 𝑀 is named a  g-supplemented 

module (see [7] and [11, Definition 2], where it is referred to as 𝑒-supplemented). Observe that a 𝛿-supplemented 

module is g-supplemented. In this paper , we call a m0dule 𝑀 is str0ngly radical g-supplemented (0r briefly srgs-

m0dule) if every submodule 0f 𝑀  c0ntaining the radical 𝑅𝑎𝑑 (𝑀)  has a  g-supplement in 𝑀 . The remaining 

definiti0ns in this paper are f0und in [4, 6, 13]. 

      In Section 2 of this paper, we define the c0ncept of strongly radical g-supplemented modules. Also, we give 

some properties of these module. We prove that, All fact0r modules and srgs-module homomorphic images are 

srgs-modules . 
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       Section 3 devoted on srgs-m0dules over Dedekind domains. Here, we prove that if 𝑅 is Dedekind d0main and 

𝑀 is a srgs-module over 𝑅, then every g-supplement of  𝑊 ≤ 𝑀 is c0atomic. 

      Also, in Section 3, we pr0ved that if 𝑅  is nonlocal Dedekind domain and 𝑀  is an srgs-m0dule then 𝑀 =

𝑇(𝑀) + 𝑅𝑎𝑑g(𝑀). 

Lemma 1.1. (see [15] and [9]). For an 𝑅-module 𝑀 and f0r 𝑊, 𝐻 ≤ 𝑀, the foll0wing conditi0ns h0ld. 

(i) If  𝑊 ≤ 𝐻 and 𝐻 ≪g 𝑀, then 𝑊 ≪g 𝑀. 

(ii) If  𝑊 ≪g 𝐻, then 𝑊 is a g-small submodule 0f every subm0dule 0f 𝑀 which contains 𝐻. 

(iii) If  𝑓: 𝑀 ⟶ 𝐻 is an 𝑅-m0dule homomorphism and 𝑊 ≪g 𝑀, then 𝑓(𝑊) ≪g 𝐻. 

(iv) If  𝑊 ≪g 𝑋 and 𝐻 ≪g 𝐾 f0r 𝑋, 𝐾 ≤ 𝑀, then 𝑊 + 𝐻 ≪g 𝑋 + 𝐾. 

Corollary 1.2. (1) Let 𝑀 be an 𝑅-module and 𝑊 ≤ 𝐻 ≤ 𝑀. If  𝐻 ≪g 𝑀, then 
𝐻

𝑊
≪g

𝑀

𝑊
. 

(2) Let 𝑀 be an 𝑅-m0dule, 𝑊 ≪g 𝑀 and  𝑋 ≤ 𝑀. Then 
𝑊+𝑋

𝑋
≪g

𝑀

𝑋
. 

 Lemma 1.3. [15, Lemma 5]. Let 𝑀 be an R-module. Then Radg (𝑀) = ∑𝑋≪g𝑀  𝑋. 

 Lemma 1.4. The following asserti0ns are h0ld f0r an 𝑅-m0dule 𝑀. 

(i) If  𝑀 is an 𝑅-m0dule, then 𝑚𝑅 ≪g 𝑀 f0r every 𝑚 ∈ Radg (𝑀). 

(ii) If  𝐻 ≤ 𝑀, then Radg 𝐻 ≤ Radg (𝑀). 

(iii) If  𝑊, 𝑋 ≤ 𝑀, then Radg (𝑊) + Radg (𝑋) ≤ Radg (𝑊 + 𝑋). 

(iv) If  𝑓: 𝑀 ⟶ 𝐻 is an -m0dule homomorphism, then 𝑓(Radg 𝑀) ≤ Radg (𝐻). 

(v) If  𝑋 ≤ 𝑀, then 
𝑅𝑎𝑑g(𝑀+𝑋)

𝑋
≤ Radg (

𝑀

𝑋
). 

(vi) Let  𝑀 =⊕𝑖∈𝐼 𝑀𝑖. Then Radg (𝑀) =⊕𝑖∈𝐼 Radg (𝑀𝑖). 

Pr00f:  (1), (2), (3), (4), (5) foll0ws fr0m Lema 1.1 and Lema 1.3 (we use [4, Lem. 5.19] as essential criteria f0r a 

m0dule), in which (6) foll0ws fr0m (1) and (2) see [2].   □                                                            

Definition 1.5. [15] Supp0se 𝑀 is a m0dule. Define 

𝑅𝑎𝑑g(𝑀) =∩ {𝐻 ⊴ 𝑀 | 𝐻 is maximal in 𝑀}. See besides [2]. 

2- Strongly Radical g-Supplemented Modules 

      In this secti0n, we defined and study the concept 0f strongly radical g-supplemented m0dules (for short, srgs-

module) . The main result here state : every factor module of srgs-m0dule is srgs-m0dule. Als0, if 𝑅 is a ring, we 

have RR is a srgs-module iff for any finitely generated 𝑅-m0dule is a srgs-module. 

Definition 2.1. A module 𝑀 is said t0 be strongly radical g-supplemented m0dule (or briefly srgs-m0dule) if every 

submodule 𝑁 0f 𝑀 with Rad(𝑀) ≤ 𝑁 has a g-supplement in 𝑀. In other w0rds for any 𝑁 ≤ 𝑀 with Rad(𝑀) ≤ 𝑁, 

there exists 𝐿 ≤ 𝑀 such that  𝑁 + 𝐿 = 𝑀 and 𝑁 ∩ 𝐿 ≪g 𝐿. 

http://jceps.utq.edu.iq/


 
 Estabraq et al., Vol.15, No.3 (2025)                                               Website: jceps.utq.edu.iq, ISSN: 2710-429X 

165 

 

Example 2.2. (1) [14, Example 4.3] Let 𝐹  be a field, consider 𝐼 = (
𝐹 𝐹
0 𝐹

)  and 𝑅 = {(𝑥1, … , 𝑥𝑛, 𝑥, 𝑥, … ): 𝑛 ∈

ℕ, 𝑥𝑖 ∈ 𝑀2(𝐹), 𝑥 ∈ 𝐼}. Observe that under comp0nent-wise operations, R is a ring. Here, Rad (𝑅) = Radg (𝑅) = 

{(𝑥1, … , 𝑥𝑛, 𝑥, 𝑥, … ): 𝑛 ∈ ℕ, 𝑥𝑖 ∈ 𝑀2(𝐹), 𝑥 ∈ 𝐽} , where 𝐽 = (
0 𝐹
0 0

) . 𝑅  is n0t semiregular. Hence R 𝑅  is n0t 

supplemented but R𝑅 is 𝛿-supplemented so   R𝑅 is g-supplemented. Hence,  R𝑅 a srgs-m0dule. 

(2) [6, Example 20.12] Consider ℚ as a ℤ-module. Since Radg (ℚ) = Rad (ℚ) = ℚ, ℚ is a srgs-m0dule. However, 

since ℚ is n0t supplemented and every non-zer0 subm0dule 0f ℚ is essential in ℚ, ℚ is n0t g-supplemented . 

(3) (see [7, Example 2.14] and [6, Example 17.10]) Let 𝑅 = ℤ and 𝑀 =
ℚ

ℤ
= ⊕𝑖=1

∞ 𝑀𝑖  with each 𝑀𝑖 = ℤ𝑝∞ =

{𝑟 ∈ ℚ: 𝑝𝑛𝑟 ∈ ℤ f0r some 𝑛}, where 𝑝 is a prime number. Then Rad (𝑀) = Radg (𝑀) =⊕𝑖 Radg (𝑀𝑖) =⊕𝑖 𝑀𝑖 =

𝑀 is essential in 𝑀. But since the 𝑝-c0mponent 0f  𝑀 is 𝑀 that is n0t Artinian, 𝑀 is n0t supplemented by [13, p. 

370]. Since 𝑀 is singular, 𝑀 is n0t g-supplemented. 

(4) [14, Example 4.1] Let 𝐹 be a field and 𝐹𝑖 = 𝐹 f0r all 𝑖 ∈ ℕ. Consider 𝑅 =<⊕𝑖=1
∞ 𝐹𝑖 , 1∏𝑖=1

∞  𝐹𝑖
>, which is an 𝐹-

subalgebra of ∏𝑖=1
∞  𝐹𝑖 generated by ⊕𝑖=1

∞ 𝐹𝑖 and 1∏𝑖=1
∞  𝐹𝑖

.See that  𝑅 is n0t semisimple, and the Jac0bson radical, 

𝐽(𝑅) = 0. Therefroe, 𝑅 is n0t semilocal besides  so R𝑅 is n0t a srs-m0dule.  R𝑅 is a srgs-m0dule [see therom 2.19 

below ]. 

Proposition 2.3. Every factor module and h0momorphic image of a srgs-m0dule are srgs-modules. 

Proof: Let ’s 𝑋 ≤ 𝐻 ≤ 𝑀 with Rad (
𝑀

𝑋
) ≤

𝐻

𝑋
 . Since, 

Rad (𝑀+𝑋)

𝑋
≤ Rad (

𝑀

𝑋
), we have Rad(𝑀) ≤ 𝐻. By, assumption, 

𝐻 has g-supplement 𝑊  in 𝑀. Thus we have 𝐻 + 𝑊 = 𝑀 and 𝐻 ∩ 𝑊 ≪g 𝑊.  Now it is easy t0 see that  
𝐻

𝑋
+

𝑊+𝑋

𝑋
=

𝑀

𝑋
 and  

𝐻

𝑋
∩

𝑊+𝑋

𝑋
=

(𝐻∩𝑊)+𝑋

𝑋
≪g

𝑊+𝑋

𝑋
 . Therefore, 

𝑊+𝑋

𝑋
 is a g-supplement 0f   

𝐻

𝑋
  in 

𝑀

𝑋
 . The remain is clear. □ 

Lemma 2.4. Let 𝑀 be an 𝑅-module and let 𝑀1 and  𝐻 be subm0dules 0f 𝑀 with Rad(𝑀) ≤ 𝐻. If 𝑀1 is a srgs-

m0dule and 𝑀1 + 𝐻 has a g-supplement in 𝑀, then  𝐻 has a g-supplement. 

Pr00f:  Let 𝑋  be a g-supplement of 𝑀1 + 𝐻  in 𝑀 . Then 𝑋 + (𝑀1 + 𝐻) =  𝑀  with 𝑋 ∩ (𝑀1 + 𝐻) ≪g 𝑋 . Since, 

Rad (𝑀1) ≤ Rad (𝑀) ≤ 𝐻 , we have Rad(𝑀1) ≤ (𝑋 + 𝐻) ∩ 𝑀1 . Then (𝑋 + 𝐻) ∩ 𝑀1   contains a g-supplement 

(say) 𝑊  in 𝑀1 , because 𝑀1  is an srgs-m0dule. Thus, 𝑀 = ((𝑋 + 𝐻) ∩ 𝑀1 + 𝑊) + 𝐻 + 𝑋 = ((𝑋 + 𝐻) ∩ 𝑀1) +

𝑊 + (𝐻 + 𝑋) = 𝑊 + (𝐻 + 𝑋) = 𝐻 + (𝑊 + 𝑋). Since,𝐻 + 𝑊 ≤ 𝐻 + 𝑀1, 𝑋 ∩ (𝐻 + 𝑊) ≤ 𝑋 ∩ (𝑀1 + 𝐻) ≪g 𝑋, 

hence 𝐻 ∩ (𝑊 + 𝑋) ≤ (𝐻 + 𝑋) ∩ 𝑊 + (𝐻 + 𝑊) ∩ 𝑋 ≪g 𝑊 + 𝑋. So, 𝑊 + 𝑋 is a g-supplement of  𝐻.  □                         

Proposition 2.5. Let 𝑀 = 𝑀1 + 𝑀2, where 𝑀1 and 𝑀2 are srgs-modules. Then  𝑀 is a srgs-module. 

Proof: Presume  𝐻 ≤ 𝑀 with Rad (𝑀) ≤ 𝐻. According to by Lemma 2.4, 𝑀1 + 𝐻 contains g-supplement in 𝑀, 

but  𝑀1 + 𝑀2 + 𝐻 has the trivial g-supplement 0 in 𝑀. By the lemma 1.1 again, one has a g-supplement for 𝐻 in 

𝑀. □ 

http://jceps.utq.edu.iq/
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Corollary 2.6.  Every finite sum 0f srgs-m0dules is a srgs-module. 

      Assume that  𝑀 is an 𝑅-module. Remember that if  𝐻 is a homomorphic image 0f a direct sum 0f c0pies 0f  𝑀, 

then the  𝑅-m0dule 𝐻  is said to be 𝑀-generated. 

Lemma 2.7. Let 𝑀 be a srgs-m0dule. Then every finitely 𝑀-generated m0dule is srgs-m0dule. 

Proof: Clear fr0m Prop0sition 2.3 and Cor0llary 2.6.  □ 

       In [8], A m0dule 𝑀 is named semilocal if 
𝑀

𝑅𝑎𝑑 (𝑀)
 is a semisimple module.                                                                                  

Definition 2.8. [9] A m0dule 𝑀 is called g-semilocal if  
𝑀

𝑅𝑎𝑑g (𝑀)
 is a semisimple module. 

Proposition 2.9.  Every srgs-m0dule is g-semil0cal. 

Proof: Let’s  
𝑁

Radg (𝑀)
 be a submodule 0f  

𝑀

Radg (𝑀)
. Clearly, 𝑅𝑎𝑑(𝑀) ≤ Radg (𝑀) ≤ 𝑁. Since 𝑀 is a srgs-m0dule, 

there exists a subm0dule 𝐿 in 𝑀 such that 𝑀 = 𝑁 + 𝐿 and 𝑁 ∩ 𝐿 ≪g 𝐿. Since, 𝑁 ∩ 𝐿 ≪g 𝐿, by Lemma 1.1(4), 𝑁 ∩

𝐿 ≤ Radg (𝑀). Hence we have, 
𝑀

Radg (𝑀)
= 

𝑁+𝐿

Radg (𝑀)
=

𝑁

Radg(𝑀)
+

𝐿+Radg (𝑀)

Radg (𝑀)
 and 

𝑁

Radg (𝑀)
∩

(𝐿+Radg (𝑀))

Radg (𝑀)
=

Radg (𝑀)+(𝑁∩𝐿)

Radg (𝑀)
= 

Radg (𝑀)

Radg (𝑀)
= 0. As a result, 𝑀 is g-semilocal.  □                                                                                      

C0r0llary 2.10. Let 𝑀  be a srgs-m0dule. Then 𝑀 = 𝑀1 ⊕ 𝑀2 , where 𝑀1  is semisimple, Radg (𝑀) ⊴ 𝑀2  and 

𝑀2

Radg (𝑀)
 is semisimple. 

Proof:  Follows from Pr0position 2.9  and [7, Pr0position 2.1 ].  □                                                                        

Definition 2.11. [9] A submodule 𝐿 ≤ 𝑀  is named a weak g-supplement of 𝑁 ≤ 𝑀  if 𝑀 = 𝑁 + 𝐿  and 𝑁 ∩

𝐿 ≪g 𝑀. The m0dule 𝑀 is named weakly g-supplemented if every submodule 0f  𝑀 has a weak g-supplement in 𝑀. 

Example 2.12. (1) [12, Example 2.1] Let 𝑅 be a l0cal Dedekind domain, or DVR and 𝐾 be 𝑅’𝑠 quotient field. Then, 

as can be seen in [4, Exercise 18. (2)], the left 𝑅-m0dule 𝑊 is injective. Let 𝑀 =⊕𝐼 𝑊, where 𝐼 is an infinite index 

set, be a left 𝑅-m0dule. Since 𝑅 is n0etherian, 𝑀 is injective and Radg (𝑀) = Rad (𝑀) = 𝑀. Therefore 𝑀 is a srgs-

modul but it is n0t weakly g-supplemented. 

 (2) [9, Example 1] Let 𝑝 and 𝑞 be prime numbers and let 𝑅 = ℤ𝑝,𝑞 = {
𝑎

𝑏
∈ ℚ: 𝑝 ∤ 𝑏, 𝑞 ∤ 𝑏}  be the ring . Then 𝑅 is 

a commutative domain with exactly tw0 maximal ideals  𝑝𝑅 and 𝑞𝑅 and every non-zer0 ideal is essential in 𝑅. 

That, R𝑅 is weakly g-supplementd but is n0t a srgs-m0dule. 

     Above We have seen that the concept 0f weakly g-supplemented m0dules and srgs-m0dules are quite 

independent fr0m each other. H0wever we have the following  result. 

Proposition 2.13. Presume  𝑀 is a srgs-module with Radg (𝑀) ≪g 𝑀. Then 𝑀 is weakly g-supplemented. 

Proof: F0ll0ws fr0m Pr0p0sition 2.9 &  [9, Lemma 13].   □                                                                                          
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      Note that  ℤ-m0dule 𝑀 = ℚ ⊕
ℤ

𝑝2ℤ
  f0r any prime 𝑝, is srgs-m0dule through Proposition 2.3 but not a g-

supplemented m0dule. Thus, we try t0 expl0re conditions f0r which a srgs-m0dule will be a g-supplemented m0dule. 

As can be seen from (see [11, Lemma 2.4]) any srgs-m0dule 𝑀 is g-supplementd if  Radg (𝑀) is semisimple. 

Actually  we posses the f0ll0wing: 

Proposition 2.14. Suppose 𝑀  is a srgs-module and Rad (𝑀)  is a g-supplemented subm0dule. Then 𝑀  is g-

supplemented. 

Proof: Let’s  𝑁  be a subm0dule 0f  𝑀. Presumably, Rad  (𝑀 + 𝑁) has a g-supplement 𝑈 0f 𝑀. Another time 

Rad (𝑀) is g-supplementd, hence (𝑈 + 𝑁) ∩ Rad (𝑀) has a g-supplement 𝑌 in Rad (𝑀). So 𝑈 + 𝑌 is the required 

g-supplement 0f  𝑁 in 𝑀.  □                                                                                                                                                  

      The outcomes that showed up f0r amply g-supplemented m0dules in [10, The0rem 5] generalizes t0 srgs-

m0dules. 

Corollary 2.15. Let’s  𝑀 be finitely generated. Then  𝑀 is Artinian  iff  𝑀 is a srgs-m0dule satisfying DCC 0n g-

small submodules. 

      Currently we have the f0ll0wing using the same method  as in pr00f (1) ⇒ (2) 0f  [14, Lemma 1.2]. 

Lemma 2.16. Let 𝐴 and  𝐵 be tw0 subm0dules 0f a module 𝑀 with 𝑀 = 𝐴 + 𝐵. Then 𝐴 ⊕ 𝐻 is essential in 𝑀 f0r 

s0me subm0dule 𝐻 0f 𝐵. 

Proof: By Z0rn's Lemma, for the property  𝐴 ∩ 𝐻 = 0  ,there is always a submodule  𝐻 of  𝐵 maximal. Let 0 ≠

𝑚 ∈ 𝑀. We already presume 𝑚 ∉ 𝐻. By the maximality 0f  𝐻, we've 𝐴 ∩ (𝐻 + 𝑅𝑚) ≠ 0. Take, 0 ≠ 𝑎 = ℎ +

r𝑚 ∈ 𝐴, where ℎ ∈ 𝐻 and 𝑟 ∈ 𝑅. Then 𝑟𝑚 = 𝑎 − ℎ ∈ 𝐴 + 𝐻. Since 𝐴 ∩ 𝐻 = 0, we have 𝑟𝑚 ≠ 0. Consequently, 

(𝐴 ⊕ 𝐻) ∩ 𝑅𝑚 ≠ 0.  □                                                                                                             

      Observe that 𝛿(𝑅) = Radg (𝑅): = the intersectoin 0f all essential maximal left ideals 0f 𝑅 (see [14, The0rem 

1.6]). F0ll0wing [14, Definiti0n 3.1 and Theorem 3.6]), a ring 𝑅  is named 𝛿-semiperfect if 
𝑅

𝛿(𝑅)
=

𝑅

Radg (𝑅)
 is a 

semisimple ring and idempotents lift modulo 𝛿(𝑅) = Radg (𝑅). We have the next definition. 

Definition 2.17. A ring 𝑅 is named g-semiperfect if  
R

Radg (𝑅)
 is a semisimple and idempotents lift m0dulo Radg (𝑅). 

      We add a note here before declaring  the next theorem. 

 Remark 2.18. For any tw0 left ideals 𝐼 and 𝐽 0f a ring 𝑅 with 𝐼 ≤ 𝐽 such that  
𝐽

𝐼
  is a singular module, so 𝐼 n0t 

required to be essential in 𝐽. 

      F0r example, c0nsider 𝑅 = ℤ ⊕
ℤ

2ℤ
. Then 𝐼 = 0 ⊕ 0 and 𝐽 = 0 ⊕

ℤ

2ℤ
 are left ideals 0f 𝑅 with 𝐼 ≤ 𝐽 and  

𝐽

𝐼
  is 

singular 𝑅-m0dule but 𝐼 is n0t essential in 𝐽. 
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Theorem 2.19. Suppose that 𝑅 is a ring with Radg (𝑅) ≪g 𝑅 and so that if  any tw0 left ideals 𝐼 ≤ 𝐽 0f 𝑅 satisfy 

the pr0perty that if   
𝐽

𝐼
  singular then  𝐼 ⊴ 𝐽. Then R𝑅 is a srgs-module if and 0nly if  𝑅 is a g-semiperfect ring. 

Proof: Through the use of [7, The0rem 3.3], we 0nly sh0w that every left ideal 0f  𝑅 has a g-supplement in R𝑅. Let 𝐼 

be a left ideal 0f 𝑅. Since R𝑅 is a srgs-module, we have 𝐼 + 𝑅𝑎𝑑g(R) + 𝑊 = 𝑅 with (𝐼 + 𝑅𝑎𝑑g(R)) ∩ 𝑊 ≪g 𝑊 f0r 

s0me left ideal 𝑊 0f 𝑅. N0w by Lemma 2.15 we can find a subm0dule 𝐻 0f 𝑅𝑎𝑑g(R) such that (𝐼 + 𝑊) ∩ 𝐻 = 0 

and (𝐼 + 𝑊) ⊕ 𝐻  essential in 𝑅 ,Thus, 𝑅 = 𝐼 + (𝑊 ⊕ 𝐻) + 𝑅𝑎𝑑g(R)  implies that 𝑅 = 𝐼 + (𝑊 ⊕ 𝐻)  (since, 

𝑅𝑎𝑑g(R) ≪g 𝑅) and 𝐼 ∩ (𝑊 ⊕ 𝐻) ≪g (𝑊 ⊕ 𝐻). Theref0re, 𝑊 + 𝐻 is the required g-supplement 0f 𝐼 in 𝑅. The 

other directi0n is obvious as in [14, The0rem 3.6]. □                             

Remark 2.20. C0nsider the ring made up 0f integers l0calized away fr0m the ideal 6ℤ  (of ℤ  ): 𝑅 = ℤ(6) =

{
𝑎

𝑏
∈ ℚ: 𝑎, 𝑏 ∈ ℤ, gcd (𝑏, 6) = 1} (see [4, Exercise 27.(4)]). Since 

𝑅

𝐽(𝑅)
≅

ℤ

6ℤ
 has f0ur idemp0tents and 𝑅 has 0nly the 

trivial idempotents, this ring is a classic example 0f a ring where idempotents do not lift m0dulo the Jac0bson 

radical (represented by 𝐽(𝑅)). It can be seen that although R𝑅 is not a srgs-module,  Radg(𝑅) = 𝛿(𝑅) = 𝐽(𝑅) =

6𝑅, Radg (𝑅) ≪g 𝑅 and 
𝑅

Radg (𝑅)
 is semisimple.  □                                                                                                                  

      Recall that f0r a ring 𝑅 the left s0cle 0f  𝑅, den0ted by Soc (𝑅), is defined as the sum of all its minimal right 

ideals and can be sh0wn t0 coincide with the intersecti0n 0f all the essential right ideals 0f  𝑅. M0reover Soc (𝑅) is a 

tw0 sided ideal 0f 𝑅 (see [4, Proposition 9.7]). F0llowing [14, Definiti0n 3.1 and The0rem 3.8]), a ring 𝑅 is called 𝛿-

perfect if 
𝑅

Soc (𝑅)
 is left perfect and idemp0tents lift m0dulo Radg(𝑅). 

The0rem 2.21. Let Λ be a countable set, 𝑅 a ring such that 𝛿(⊕𝑖∈Λ 𝑅) ≪g ⊕𝑖∈Λ 𝑅 and so that f0r any tw0 left 

ideals 𝐼 ≤ 𝐽 0f 𝑅 if  
𝐽

𝐼
  singular then 𝐼 ⊴ 𝐽. Then, the statements that follow are equivalent: 

(i) 𝑅 is a 𝛿-perfect ring. 

(ii) Every left 𝑅-m0dule is 𝛿-supplemented. 

(iii) Every left 𝑅-m0dule is g-supplemented. 

(iv) Every left 𝑅-m0dule is st0rngly radical gـsupplemented (srgsـ module). 

 Proof:  (1) ⇔ (2) f0llows fr0m [7, The0rem 3.4]. 

(2) ⇒ (3) is clear f0rm the reality that if  𝐻 is a 𝛿-small subm0dule 0f  𝑀, then  𝐻 is a g-small submodule 0f  𝑀. 

(3) ⇒ (4) is clear. S0, it remains t0 see (4) ⇒ (1). By The0rem 2.19 𝑅 is 𝛿-semiperfect. By [14, Theorems 3.7 and 

3.8] we 0nly need t0 sh0w that Rad (
𝑅

Soc (𝑅)
) (=

𝛿(𝑅)

Soc (𝑅)
 by [14, C0rollary 1.7]) is left 𝐾-nilp0tent. F0r this we shall 

use the technique 0f [4, Lemma 28.1]. Let 𝐹 =⊕ℕ 𝑅 be a free left 𝑅-m0dule with basis 𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑖 ∈ ℕ, and 

𝐺 the submodule 0f  𝐹 spanned by 𝑦𝑖 = 𝑥𝑖 − 𝑥𝑖+1𝑎𝑖, 𝑖 ∈ ℕ, where 𝑎1, 𝑎2, 𝑎3, …, is a sequence 0f elements form 

𝛿(𝑅) = Radg (𝑅). Then,  𝐹 = 𝐺 + 𝛿(𝐹). By hyp0thesis, 𝛿(𝐹) ≪g 𝐹 and hence by Lemma 2.16, 𝐹 = 𝐺 ⊕ 𝐵 f0r 

s0me subm0dule 𝐵 0f 𝛿(𝐹). By [4, Lemma 28.2], there exists 𝑛 ∈ ℕ such that 𝑅𝑎𝑛+1𝑎𝑛 ⋯ 𝑎1 = 𝑅𝑎𝑛𝑎𝑛−1 ⋯ 𝑎1 . 
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Theref0re, 𝑟𝑎𝑛+1𝑎𝑛𝑎𝑛−1 ⋯ 𝑎1 = 𝑎𝑛𝑎𝑛−1 ⋯ 𝑎1 f0r s0me 𝑟 in 𝑅, and so ( 1 − 𝑟𝑎𝑛+1)𝑎𝑛𝑎𝑛−1 ⋯ 𝑎1 = 0. Theref0re, 

𝑎𝑛𝑎𝑛−1 ⋯ 𝑎1 ∈ Soc (𝑅). Thus, Rad (
𝑅

Soc (𝑅)
) is left 𝐾-nilp0tent and 𝑅 is left 𝛿-perfect. □                                         

3- srgs-Modules over Dedekind Domains 

       In this secti0n, we study some properties and results on the srgs-modules over Dedekind domains. 

      Take  𝑅 is an integral d0main. The definition of torsion submodule of 𝑅-module 𝑀 is 

𝑇(𝑀) = {𝑚 ∈ 𝑀: 𝑚𝑟 = 0 for some non-zero 𝑟 ∈ 𝑅}, 

      if  𝑇(𝑀) = 𝑀 , then  a m0dule 𝑀 (0ver an integral d0main) is named a t0rsion m0dule. 

      As seen by the example below, 0ver a nonl0cal d0main every t0rsion module need n0t be srgs-m0dule. 

Example 3.1. Let ℤ be the ring 0f integers and let 𝑝 be a prime in ℤ : C0nsider the ℤ-m0dule 𝑀 =⊕𝑛≥1 ℤ𝑝𝑛 where 

ℤ𝑝𝑛 =
ℤ

𝑝𝑛ℤ
 , Then 𝑀 is a t0rsion module. T0 see that  𝑀 is n0t a srgs-m0dule, c0nsider the submodule 𝑝𝑀 0f 𝑀. 

Since 
𝑀

𝑝𝑀
 is a semisimple m0dule, weʼve Rad (𝑀) ≤ 𝑝𝑀. N0w, it can be demonstrated that 𝑝𝑀 d0es not have a g-

supplement in 𝑀, i.e., 𝑀 is not a srgs-module, using the same method as in [5, Example 2.2].  

Definition 3.2. [13, 16.6] A module 𝑀 0ver an integral domain 𝑅 is divisible if 𝑀 = 𝑟𝑀 f0r all n0n-zer0 𝑟 ∈ 𝑅.  

Definition 3.3. [3] A module 𝑀 0ver an arbitrary ring is coatomic if every pr0per subm0dule of 𝑀 is contained in a 

maximal subm0dule of 𝑀.  

Remark 3.4. [3] A module 𝑀 is c0atomic if and only if for all subm0dule 𝐻 0f 𝑀, Rad (
𝑀

𝐻
) =

𝑀

𝐻
 implies 𝐻 = 𝑀.  

Lemma 3.5. Let 𝑅 be a Dedekind d0main and 𝑀 an 𝑅-m0dule.  If 𝐻 ≪g 𝑀, then 𝐻 is c0atomic. 

Proof: Let 𝐻 be a g-small subm0dule 0f  𝑀 and take 𝑋 ≤ 𝐻 with Rad (
𝐻

𝑋
) =

𝐻

𝑋
. Then (

𝐻

𝑋
) 𝑃 =

𝐻

𝑋
 for every maximal 

ideal 𝑃 0f 𝑅.  
𝐻

𝑋
  is divisible since 𝑅 is a Dedekind d0main, making it  an injective 𝑅-module. C0nsequently  

𝐻

𝑋
⊕

𝑊

𝑋
=

𝑀

𝑋
 f0r s0me 𝑊 ≤ 𝑀. Then 𝐻 + 𝑊 = 𝑀 which further implies that 𝐻′ ⊕ 𝑊 = 𝑀 for some 𝐻′ ≤ 𝐻 (by Lemma 

2.15) and 𝐻 = 𝐻′ ⊕ 𝑋. But, by [14, Pr0p0sition 2.3] 𝐻 + 𝑊 = 𝑀 implies that  
𝑀

𝑊
  is semisimple and hence  

𝐻

𝑋
≅ 𝐻′ 

is semisimple. Theref0re  Rad (
𝐻

𝑋
) = 0, consequently  𝐻 = 𝑋. Thus 𝐻 is c0atomic. □                                            

Lemma 3.6. Let 𝑀 be a sgrs-m0dule 0ver a Dedekind domain and 𝑁 be a submodule 0f 𝑀 with Radg (𝑀) ≤ 𝑁. 

Then, every g-supplement 0f  𝑁 is c0atomic. 

 Proof: By Pr0p0siti0n 2.8, 
𝑀

Radg (𝑀)
 is semisimple. So,  

𝑀

𝑁
 is semisimple as a factor module of 

𝑀

Radg (𝑀)
. Presume 𝐿 is 

g-supplement 0f  𝑁 in 𝑀. Then, 𝑀 = 𝑁 + 𝐿 and 𝑁 ∩ 𝐿 ≪g 𝐿. Now in the f0llowing exact sequence 0 ⟶ 𝑁 ∩ 𝐿 ⟶

𝐿 ⟶ 
𝐿

𝑁∩𝐿
⟶ 0 both  𝑁 ∩ 𝐿, by Lemma 3.5 and 

𝐿

𝑁∩𝐿
(≅

𝑀

𝑁
) are c0atomic. By [15, Lemma 1.5 (a)],  𝐿 is c0atomic. □                                                                                                                                                        

      Reduced groups are abelian groups ( ℤ-modules) that have no divisible subgroups other than 0 . Denote 
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𝑃(𝑀): = ∑  {𝑋 ≤ 𝑀: 𝐿 has n0 maximal subm0dules }.  

      Let 𝑅 be a Dedekind d0main. Then an 𝑅-m0dule 𝑀 has no non-zero divisible submodules iff  𝑃(𝑀) = 0 . 

      According to Zöschinger [16], if 𝑃(𝑀) = 0 ,then  an  𝑅-m0dule 𝑀 for for any ring 𝑅  is a reduced module. 

      The f0ll0wing pr0position is an anal0gue 0f [5, Proposition 3.2]. 

Proposition 3.7. Let 𝑅 be a nonl0cal domain and let 𝑀 be a reduced 𝑅-m0dule. If  𝑀 is a srgs-m0dule, then 𝑀 =

𝑇(𝑀) + Radg(𝑀). 

Proof: Presume 𝑇(𝑀) + Radg (𝑀) ≠ 𝑀 . Since, Radg (𝑀) ⊆ 𝑇(𝑀) +  Radg (𝑀) , there exist 𝑋 ≤ 𝑀  such that 

𝑇(𝑀) + Radg (𝑀) + 𝑋 = 𝑀  and 𝑋 ∩  (𝑇(𝑀) + Radg (𝑀)) ≪g 𝑋 . Now 𝑀  being reduced we have a maximal 

submodule 𝑊 0f  𝑋 such that 𝑊′ = 𝑇(𝑀) + Radg (𝑀) + 𝑊 is a maximal submodule 0f  𝑀. (T0 see 𝑊′ maximal in 

𝑀, write 𝑈 = 𝑇(𝑀) + Radg (𝑀) and consider 𝑊0 ≤ 𝑀 , since 𝑈 + 𝑊 ≤ 𝑊0 ≤ 𝑀. Then 𝑊 being maximal in 𝑋, 

we have either 𝑋 ∩ 𝑊0 = 𝑊 or 𝑋 ∩ 𝑊0 = 𝑋. But 𝑋 ∩ 𝑊0 = 𝑊 implies that 𝑊0 = 𝑈 + 𝑊 and 𝑋 ∩ 𝑊0 = 𝑋 implies 

that 𝑊0 = 𝑀, as required). So 𝑊′ has a g-supplement 𝐿 in 𝑀. N0w 𝑊′ being maximal, 0ne can locate a cyclic 

submodul 𝐿0  0f 𝐿  such that 𝑊′ + 𝐿0 = 𝑀 , and so 𝐿0 ≅
𝑅

𝐼
 f0r s0me nonzero 𝐼 ≤ 𝑅 . Therefore, 𝐿0  is a t0rsion 

subm0dule of 𝑀 , and s0  𝐿0 ≤ 𝑇(𝑀) . Hence, we have = 𝑊′ + 𝐿0 =  𝑇(𝑀) + Radg (𝑀) + 𝑊 + 𝐿0 = 𝑇(𝑀) +

Radg (𝑀) + 𝑊 = 𝑊′, a contradiction. So, 𝑀 = 𝑇(𝑀) + Radg (𝑀). □                                                                    

       The following three results appeared in a similar fashion in [11, Propositions 3.3, 3.4, and 3.5]. 

Proposition 3.8. Let 𝑅  be a domain and 𝑀  an 𝑅 -m0dule. Presume  𝑀 =  𝑇(𝑀) + Rad(𝑀)  and  𝑇(𝑀)  is g-

supplemented. Then  𝑀 is a srgs-module. 

Proof: Let’s  𝐻 be a submodule of  𝑀 since 𝑅𝑎𝑑 𝑀 ⊆ 𝐻. Then 𝐻 = 𝐻 ∩ 𝑇(𝑀) + 𝑅𝑎𝑑 (𝑀) = 𝑇(𝐻) + 𝑅𝑎𝑑 𝑀. Let 

𝑋  be a g-supplement 0f 𝑇(𝐻)  in 𝑇(𝑀) . Then 𝑇(𝐻) + 𝑋 = 𝑇(𝑀)  and 𝑇(𝐻) ∩ 𝑋 ≪g 𝑋 . Hence, 𝑀 = 𝑇(𝑀) +

𝑅𝑎𝑑 𝑀 = 𝑇(𝐻) + 𝑋 + 𝑅𝑎𝑑 𝑀 ⊆ 𝐻 + 𝑋, and so 𝑀 = 𝐻 + 𝑋. Since 𝑋 is a torsion one, we have 𝐻 ∩ 𝑋 = 𝑇(𝐻) ∩

𝑋. Therefore, 𝑋 is a g-supplement 0f  𝐻 0f 𝑀.  □ 

    Let 𝑅 be a Dedekind d0maina and  let 𝑀  be an 𝑅ـmodule  and let 𝑅. ,The divisible part of 𝑀 is 𝑃(𝑀), since 𝑅 is 

a Dedekind domain. By [6, Lemma 4.4], 𝑃(𝑀) is (divisible) injective, and hence there exists a subm0dule 𝐻 0f 𝑀 

such that 𝑀 = 𝑃(𝑀)⨁ 𝐻. Here, 𝐻 is called the reduced part 0f 𝑀. Note that 𝑃(𝑀) ⊆ 𝑅𝑎𝑑 𝑀. By [5, C0rollary 2.2], 

we know that  𝑃(𝑀) is an srs-module. By using these fact , we obtain the next result: 

Proposition 3.9. Presume 𝑅 is a Dedekind d0main and 𝑀 an 𝑅-m0dule. Then 𝑀 is an srgs-m0dule iff the reduced 

part 𝐻 of 𝑀 is an srgs-module. 

Proof: By Prop. 2.3, 𝐻 ia an srgsـ module as a homomorphic image of 𝑀. The c0nverse f0llows from Pr0po. 2.5. □ 

Proposition 3.10. Presume 𝑅 is a nonl0cal Dedekind domain and 𝑀 a srgs-module. Then 𝑀 = 𝑇(𝑀) + 𝑅𝑎𝑑g(𝑀). 
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Proof: Let 𝑀 = 𝑃(𝑀)⨁𝐻 with 𝐻 reduced. Then 𝐻 is an srgsـ module as a direct summand 0f 𝑀. By Pr0p0siti0n 3.7, 

we have 𝐻 = 𝑇(𝐻) + 𝑅𝑎𝑑g(𝐻) .Thus  𝑀 = 𝑃(𝑀)⨁𝐻 = 𝑃(𝑀) + 𝑇(𝐻) + 𝑅𝑎𝑑g (𝐻) ⊆ 𝑇(𝑀) + 𝑅𝑎𝑑g( 𝑀) . As a 

result, 𝑀 = 𝑇(𝑀) + 𝑅𝑎𝑑g(𝑀). □                                                                                               
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