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Abstract:

Let R be a commutative ring with 1 # 0, and M be an R-module. The minimal intersection graph of M, denoted
by I'(M), is a simple undirected graph whose vertices are proper non-zero submodules of M and any two distinct
vertices F and Q are adjacent if and only if FNQ be an minimal (= simple) submodule of M. In this article, we
explore connectedness, clique number, split character, planarity, independence number and domination number of
rm).
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1-Introduction

At first the idea of studying the intersection graph of algebraic structures, was appeared by J. Bosak in [8],
where defined the intersection graph of proper subsemigroups of a semigroup in 1964. Inspired by his work, many
mathematicians have been attracted by this topic and considered the intersection graph of algebraic structures, see
for instance [3-6]. In 2015, S. Akbari et. al. in [1], defined the notion of the intersection graph of submodules of a
module. In [2], the second author introduced the maximal submodule graph of a module. Recently, in 2021 [9], B.
Barman, K.K. Rajkhowa introduced the notion of intersection minimal ideal graph of a ring R, the vertices set
represent all non-trivial ideals of R, with edges connecting every pair of distinct vertices. Here, our main goal is
to relate the combinatorial properties of the intersection graph I'(M) to the algebraic properties of the module M.

Here ,we study the smallest intersection graph corresponding to a module M, designated as T(M). Let G a
minimal unoriented graph along here vertex set V(G) and edge set E(G). If G does not contain any edge, then G
is called null graph. The neighborhood in P € V(G) is denoted by N (P). By K,,, we mean the complete graph with
n vertices. If the vertices of G can be partitioned into two disjoint sets W, and W, with every vertex of W is
adjacent to any vertex of W; and no two vertices belonging to same set are adjacent, then G is called a complete
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bipartite graph. As |W;| = m, |W,| = n, the complete bipartite graph is denoted by K, . If one of the partite sets
contains exactly one element, then the graph becomes a star graph. If G graph does not have K5 or K3 3 as its
subgraph, then G is planar [7]. The girth of , denoted is girth(G) (or gr(G)), is the length of the shortest cycle in
G. If there exists a path between any two distinct vertices, then G is connected. If v, v are two distinct vertices of
G, then d (v, v) is the length of the shortest path from v to v and d(v, v) = oo, if there does not exist a path between
v and v. The maximum distance among all the distances between every pair of vertices of G is called the diameter
of G, denoted by diam(G). A clique is a complete subgraph of G. The number of vertices in the largest clique of
G is named the clique number of G beside is denoted by w(G). A subset B of V(G) is called the independent set if
no two vertices of B are adjacent. The cardinality of the largest independent set is said independence number and
it is denoted by a(G). If V(G) can be partitioned in an independent set and a clique then G is said to be an split. A
set D c V(@) said to be a dominating set if every vertex does not in B is adjacent to at least one of the members
of B. The cardinality of smallest dominating set be the domination number of the graph G and is denoted by y(G).
Let M be an R-module. The collection of all minimal (= simple) submodules of M is denoted by min(M) and
the collection of all maximal submodules of M be denoted by max (M), in the corresponding order. The sum for

each minimal (simple) submodules of M is called the socle of M which is denoted by Soc(M). A submodule E
of M is named essential if E N F # 0 for all F < M. For any two submodules X and Y of M, we have % = ﬁ
A module M is an Artinian precisely when there exists no infinite strictly decreasing sequence of submodules. In
Artinian module, every submodule contains a minimal submodule. In section 2, we study the connectivity property
of ['(M). In section 3, we study on the clique and independence numbers of T'(M). Any undefined terminology

in modules can be found in [10, 11] and any undefined terminology in graphs can be found in [7].

2- Connectedness of I'(M)

In his work, R is a commutative ring with identity and M is a unitary R-module. By a non-trivial submodule of M, we
mean is a nonzero proper submodule of M. In this part, we study the connectivity property of T'(M).

Definition 2.1: Let M be a module over a ring R. The minimal intersection graph of M, indicated by I'(M) is a
graph where each vertex represents a non-trivial submodule of M and there is an edge between two vertices U and
V if and only if U N V is a non-zero minimal (=simple) submodule of M.

Lemma 2.2: The following hold in T'(M):
1. Every non-minimal submodule for M is adjacent to at least one of the minimal submodules of M.
2. If Soc(M) # M, then every member of min(M) is adjacent to Soc(M).

Remark 2.3: If p,r € min(M), then it is easy to observe that p and r are not adjacent in I'(M). Thus the
subgraph induced by the minimal submodules of M is null.

Theorem 2.4: If v, v, r are distinct vertices in I'(M) with r € min(M) and v v # r, then the following hold:

i.r € N(uNv) ifand only if r € Nw)NN (v) .
ii. If Soc(M) E v, thenr € N(v).
iii. Ifv € min(M) andv & v, thenv € N(v).

Proof: (i) Ifr € N(v)N N(v), then rNv = r = r Nv. Clearly, r & vNv, which infers that r € (vNv).
Similarly the proof for the opposite direction can be established.

(ii) Since r € Soc(M) beside c((M) Ev, r Ev. Thisresultsin rNv = r. Therefore r € N(v ).

(iii) If v & v, now vNv =v.Asv &€ min(M), we getv &€ N(v).

Proposition 2.5: If T, F ¢ min(M) and {T, F} € E(T(M)), then there exists a unique r € min(M) with r €
N(T)NN(F ).
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Proof: Suppose {T, F} € E(T'(M)), then TNF € min(M). Clearly, TNF is adjacent to both T so F . If it holes,
suppose that there existence of an r € min(M) by r # TNF and r is adjacent to both T and F. By Theorem 2.4,
it is clear that r € N(TNF ). So, r £ T,F. This gives r € TNF . Since TNF is minimal, r = TNF . This
completes the proof. O

Theorem 2.6: Every non-zero proper submodule of M is minimal if and only if ['(M) is null graph.

Proof: Suppose that for each non-zero suitable submodule in M is minimal. Let us take two vertices T, F in
T(M). Obviously, TN F = 0. So, T beside F are not next to each other in I'(M). Since T and F are general, we
state that '(M) has no elements. In reverse, suppose that I'(M') has no elements so B € V(I'(M)). Let B &
mir(M). Since M is Artinian, there is some s € min(M) with s & B. This gives that s & B are adjacent, which
contradicts the null character of T'(M"). Consequently any submodule of M is minimal. Hence the theorem.

Proposition 2.7: The graph T'(M) is connected if and only if the sum of any two distinct minimal submodules
of M is not M, or |[min(M)| = 1.

Proof: Suppose that [min(M)| = 1, therefore it is clear that T'(M) is connected. Assume that |min(M)| # 1,
and the sum of any two distinct minimal submodules of M is not M. Take two vertices X and Y for T'(M). Let
{X,Y} € E(T(M)), is now X —Y a path. Suppose {X,Y} & E(T(M)). Then either Z & XNY for some Z €
min(M), or XNY =0. If Z & XNY,now X —Z —Y is a path of T(M). If XNY = 0, then the following three
cases arise.
Case 1: Suppose X and Y are both minimal. Then X — (X + Y) — Y is a path in T'(M).
Case 2: If exactly one of X and Y is minimal, then without loss of generality, assume that X € min(M) and
Y & min(M). Since M is Artinian, there exists some r € min(M) such that R & Y . Thus, we get the path
X—(R+X)—R-Y.
Case 3: If both X and Y are not minimal, it follows that there is Ry, R, € min(M) suchthat R; & X alsoR, &Y,
respectively. If R; = R,, then X — R; —Y is a path. IfR; # R,, then X — Ry — (R + R;) — R, — Y is apath.
Hence we deduce that I'(M) is connected.

Conversely, consider that T'(M) is connected. If it can be done, suppose that there exist two minimal
submodules T;and T, such that T; + T, = M. Clearly, M =T; @ T,. Also, ;—/[ =T, and i—/[ =T;. Since M is a
1 2

commutative Artinian module, T; and T,are minimal as well as maximal submodules of M. Assume that T} is
neighboring some § € V(T'(M)). now T; NS = Ty, this means that T; & S. Since T; is maximal, we obtain T; =
S. This asserts that T;is an isolated vertex a contradiction. This completes the proof.

Proposition 2.8: If (M) is a connected graph, then diam(T'(M)) < 4.

Proof: Consider that (M) is connected. If min(M) = 1, therefore, clearly diam(IT'(M)) = 2. Suppose that
|min(M)| # 1. Assume {B, H} & E(T(M)). Therefor either R & BNH for some R € min(M) or BNH = 0. In
the same way, as of Proposition 2.7, we can also determine that d(B, H) = 2 or 4. Hence diam(T'(M)) < 4. O
i=1,2,...,7r. Theorem 2.9: If § = §; X &, X...X 8, , then diam(T'(8)) = 2, where S, is a simple module, for
Proof: Let § =51 X 8§, X...X S, we are §; is simple module, for< = 1,2,...,r. Any submodule of § is of the

from A = [[;-, G; where G; = 0 or §; and the minimal submodules of § is of the form R, = [[}_; G; where
G; = 0in 4 # k beside G, = §;. That § contains n minimal submodules. Think about tow not adjacent vertices
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L, T for T'(S). Let L also T both include the same minimal submodule, then d(T, F) = 2. If not, then there exist
R;and R; withR; € L,R; € T,R; ¢ T and R; & L. Now we consider the submodule h = [[]_; G, where G, = §,,

for | = 4,j plus O or else. This provides the way L — h — T. Hence, diam(I['(S)) = 2.
Theorem 2.10: If Soc(M) # M, then girth(T'(M)) = 3,4 whenever T'(M) contains a cycle.

Proof: Let Soc(M) #= M. Suppose that {B, H} € E(T'(M)). Clearly, at least one of B or H does not belong to
min(M).If B,H &€ min(M), then B— BNH — H — B is a cycle. In this case, girth(I'(M)) = 3. Consider that
one of B or H be minimal. Without loss in general terms, take B € min(M), H € min(M). In that case, there is
some P € min(M) So that P& H . Hence, we obtain the cycle B—H —P —Soc(M) —B. If so,

girth(T'(M)) = 4. Their proofis complete. O

Theorem 2.11: Assume that § = §; X §; X...X S, where §; is a simple module for < = 1,2,...,r, then
girth(T(M)) = 3.

Proof: Let S = §; X 8§, X...X §,, wherever §; a simple module for < = 1,2,...,r, any submodule of § is of the
from A =[[}_; G; whereG; = 0 or S,. Let us consider the submodule B = [[}_; G; where G; = §;, fori = 1,2
and otherwise G; = 0; C = [}, G; where G; = S, for i = 1,3 beside otherwise G; = 0; D =[]}, G;, where
G, = S§,;, for i = 2,3 in any other way G; = 0. So, for any minimal submodule of F is in the form of R;, = G, in
which G; = 0, for 4 # k and Gy, = Si. So. § has r minimal submodules. Because hNC = R, CND = R; and
hND = R,, thus we get the cycle h — C — D — h. This concludes that girth(T'(M)) =3.

Theorem 2.12: If (M) is a complete, then M is module with [min(M)| = 1.

Proof: Assume T(M) is complete. If P,q € min(M) and P #q , now PNg =0 .This implies that
lmin(M)| =1. ©
Remark 2.13: We observe that Dpr has exactly one minimal submodule, but H“(Dpr) is not complete. Hence the

converse of theorem 2.12, does not hold.
Theorem 2.14: If a chain is formed using the submodules of M, then T'(M) is a star.

Proof: If a chain is formed the submodules in M, hence there is a P € min(M) such that {P,v} € E(T(M)),
for evey v € V(I'(M)). should B,H € V(I'(M)) and B # P, H # P, as a result, it is apparent that B, H are not
adjacent. Hence T'(M) is star. O

Proposition 2.15: If Soc(M) # M. Then I'(M) is compete bipartite iff any submodule of R is either essential or

minimal.

Proof: Let v; and v, be the set of minimal submodules and essential submodules of M, respectively. Ifp,q €
V1 ,then p N v =0. Thus any two vertices of v; arenot adjacent. Also, ifS,H € v, ,thenSoc(M) € SN H. So any
two vertices of V, are also not adjacent. Again, using Proposition 2.3, we get that every vertex in v; is adjacent to

each vertex in v,. Thus T'(M) is a complete bipartite graph. For the opposite direction, assume that T'(M) is a
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complete bipartite graph. Itis easy to prove that the vertex set v(I'(M)) can be partitioned into the two disjoint subsets
min(M) and {v € v([T(M)) : Soc(M) c v }. This completes the proof. O

Theorem 2.16: If the sum of any two distinct minimal submodules of M is not M, and S is a cut vertex of
T (M). then S = B + H. for some B, H € min(M).

Proof: If § € min(M), as a result is clear. If § € min(M). Suppose v, v are two vertices in separate component
C, beside C, of v(T'(M)\{S}), in the same order. We derive the following results:

Case I: If v,v € min(M), thenv +v € N(v )NNN(v). Thus § = v + v, while § is a cut vertex.

Case II: If v € min(M) & v € min(M), then there is some B € min(M) by B & v. Thus B,V belong to the

same parts C,. since B + v € N(B)NN (v ), and all for B beside v belong to two dissimilar components, also § =
v+ B.

Case III: If v,v € min(M), then there is some B, H € min(M) having B & v, H & v. Here, v and B belong to

the component C;and v and H associated with the other component C,. As B+ H € N(B)(\N(H ), beside B, H

belong to C,, therefore S = B + H. The proof is complete.

3- Independence number, Clique number and Planarity of I'(M)

Theorem 3.1: In T'(M), a clique is contained in the subgraph induced by {v € V(T'(M)) : v C v}, for some
v € min(M).

Proof: Assume that C be a clique of T'(M). Since no two different minimal submodules be neighboring in T'(M)
. So C have at most one minimal submodule. The complete-ness of C and Theorem 2.5, since that there is a unique
v € min(M) in order that C is a subgraph induced by {v € V(I'(M)) : v c v }. Hence the theorem. O

Theorem 3.2: If T'(M) is not empty and V(T'(M)) = min(M) U max(M), then T (M) is split.

Proof: Consider the subgraph caused by max (M) of I'(M). Letv,v € max(M’) with v # v. If it can be done,
consider uNv = 0 now % = v beside % = . Thus simple modules [10] also v, v is minimal. Via Th. 5, T'(M)

is not empty, inconsistency. Then vNv # 0. Clearly vNv € max(M). As a result vNv € min(M). This, the
induced subgraph of max (M) be complete. Also, by Remark 2.3, the induced sub graph of min(M) is empty.
Thus T'(M) is split.
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Theorem 3.3: If v(T(M)) = min(M) U max(M) and [max(M)| < 3, then ['(M) is planar.

Proof: If v(T(M)) = min(M) U max(M), thus, as for Theorem 3.2, [(M) a split graph. As [max(M)| < 3,
every subgraph included using 5 vertices be non-complete. Then, S5 be not contained of I'(M). If feasible, if
833 1s included in I'(M) with part set W;={v,,v,,v3} and W, = {v;,v,,v3}. It is clear that either W; c min(M)
or W, € min(M). If we take W; € min(M), then W, € max (M), this contradiction the fact that any two
maximal submodules are next to each other. Hence, I'(M) is a planar graph. O

Theorem 3.4: If |min(M)] is finite for an Artinian module M, then a(T(M)) = |min(M)]|.

Proof: Assume min(M') = {m,m,,...,m; }. Clearly, min(M) is a independent set, by using Remark 2.3.
Therefor, r < a(I'(M)). Since S = {v4,V,,...,,V;} is a maximal independent set. So, a(]I‘(JV[)) = [.Forany X €
B, there exists some m; € min(M) such that m; c X. If [ > n, then by Pigeonhole principle, there exist at least
two vertices v; ,v; € S which contain the same minimal submodule. This implies that v; , v; are adjacent, a

contradiction to the reality thus S be independent set. Hence | = n, thatis a(T'(M)) = n.

Theorem 3.5: If M is an Artinian module with a unique minimal submodule and S is simple module, then
y(T(M xS)) =1.

Proof: 1t is clear.
Proposition 3.6: Let S;and S, be two simple modules, then y((S; X §3)) =2.
Proof: 1t is clear.
i=1,2,...,r. Theorem 3.7: Let § = §; X 8, X ...X &, then y(T'(S)) < r, where §, is a simple module for

Proof: Let S = 81 X 8, X...X §,, whereS; is simple module of ¢ = 1, 2,...,7. Any submodule of § is of the from
A =1]I;-, G, where G; = 0 or §; and the minimal submodules of § is for in R, = [[}_; G; where G; = 0 for i #
k, Gy, = Sk. Also, § having r minimal submodules. Since the set B = {R;:4 = 1,2,...,r}. The set B dominates
all the vertices of the graph. So, y(T(M x §)) <r.

The following example provides that the equality does not hold necessarily in Theorem 3.7.

Example 3.8: If §=38; XS, XS;, where §; is a simple module for 4=1,2,...,r, then V(I(S))=
{§1 X0X0,8; X8, X0,0x8,%X0,0xXS8, %858 X0XS8;0x 83} Now consider the set B = {§; X §, X 0,0 X
S, X 83}. Every vertex of T () is adjacent at least one of the vertices of B. Hence y(T'(S)) = 2(< 3).
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