

Journal of Education for Pure Science- University of Thi-Qar

Vol.15, No.4(2025)
DOI: https://doi.org/10.32792/jeps.v15i4.721

Website: <u>iceps.utg.edu.ig</u>

Email: jceps@eps.utg.edu.ig

Minimal Intersection Graph of Submodules of Modules

Rawaa A. Salem*,1, (1), Ahmed H. Alwan², (1)

^{1,2}Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq

* Corresponding email: rawaa ahmeed88@utq.edu.iq

Received 15/5/2025, Accepted 22/6/2025, Published 1/12/2025

This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract:

Let R be a commutative ring with $1 \neq 0$, and M be an R-module. The minimal intersection graph of M, denoted by $\Gamma(M)$, is a simple undirected graph whose vertices are proper non-zero submodules of M and any two distinct vertices F and Q are adjacent if and only if $F \cap Q$ be an minimal (= simple) submodule of M. In this article, we explore connectedness, clique number, split character, planarity, independence number and domination number of $\Gamma(M)$.

Keywords: Minimal intersection graph, Module, clique number, independence number, domination number.

1-Introduction

At first the idea of studying the intersection graph of algebraic structures, was appeared by J. Bosak in [8], where defined the intersection graph of proper subsemigroups of a semigroup in 1964. Inspired by his work, many mathematicians have been attracted by this topic and considered the intersection graph of algebraic structures, see for instance [3-6]. In 2015, S. Akbari et. al. in [1], defined the notion of the intersection graph of submodules of a module. In [2], the second author introduced the maximal submodule graph of a module. Recently, in 2021 [9], B. Barman, K.K. Rajkhowa introduced the notion of intersection minimal ideal graph of a ring R, the vertices set represent all non-trivial ideals of R, with edges connecting every pair of distinct vertices. Here, our main goal is to relate the combinatorial properties of the intersection graph $\Gamma(\mathcal{M})$ to the algebraic properties of the module M.

Here ,we study the smallest intersection graph corresponding to a module \mathcal{M} , designated as $\mathbb{F}(\mathcal{M})$. Let G a minimal unoriented graph along here vertex set V(G) and edge set E(G). If G does not contain any edge, then G is called null graph. The neighborhood in $P \in V(G)$ is denoted by N(P). By K_n , we mean the complete graph with n vertices. If the vertices of G can be partitioned into two disjoint sets W_1 and W_2 with every vertex of W_1 is adjacent to any vertex of W_1 and no two vertices belonging to same set are adjacent, then G is called a complete

bipartite graph. As $|W_1| = m$, $|W_2| = n$, the complete bipartite graph is denoted by $K_{m,n}$. If one of the partite sets contains exactly one element, then the graph becomes a star graph. If G graph does not have K_5 or $K_{3,3}$ as its subgraph, then G is planar [7]. The girth of , denoted is girth(G) (or gr(G)), is the length of the shortest cycle in G. If there exists a path between any two distinct vertices, then G is connected. If v, v are two distinct vertices of G, then d(v, v) is the length of the shortest path from v to v and $d(v, v) = \infty$, if there does not exist a path between v and v. The maximum distance among all the distances between every pair of vertices of G is called the diameter of G, denoted by diam(G). A clique is a complete subgraph of G. The number of vertices in the largest clique of G is named the clique number of G beside is denoted by $\omega(G)$. A subset B of V(G) is called the independent set if no two vertices of B are adjacent. The cardinality of the largest independent set is said independence number and it is denoted by $\alpha(G)$. If V(G) can be partitioned in an independent set and a clique then G is said to be an split. A set $D \subset V(G)$ said to be a dominating set if every vertex does not in B is adjacent to at least one of the members of B. The cardinality of smallest dominating set be the domination number of the graph G and is denoted by $\gamma(G)$. Let \mathcal{M} be an R-module. The collection of all minimal (= simple) submodules of \mathcal{M} is denoted by $min(\mathcal{M})$ and the collection of all maximal submodules of \mathcal{M} be denoted by $max(\mathcal{M})$, in the corresponding order. The sum for each minimal (simple) submodules of M is called the socle of M which is denoted by $Soc(\mathcal{M})$. A submodule E of \mathcal{M} is named essential if $E \cap F \neq 0$ for all $F \leq \mathcal{M}$. For any two submodules X and Y of \mathcal{M} , we have $\frac{X+Y}{X} \cong \frac{Y}{X \cap Y}$. A module \mathcal{M} is an Artinian precisely when there exists no infinite strictly decreasing sequence of submodules. In Artinian module, every submodule contains a minimal submodule. In section 2, we study the connectivity property of $\Gamma(\mathcal{M})$. In section 3, we study on the clique and independence numbers of $\Gamma(\mathcal{M})$. Any undefined terminology in modules can be found in [10, 11] and any undefined terminology in graphs can be found in [7].

2- Connectedness of $\Gamma(\mathcal{M})$

In his work, R is a commutative ring with identity and \mathcal{M} is a unitary R-module. By a non-trivial submodule of \mathcal{M} , we mean is a nonzero proper submodule of \mathcal{M} . In this part, we study the connectivity property of $\Gamma(\mathcal{M})$.

Definition 2.1: Let \mathcal{M} be a module over a ring R. The minimal intersection graph of \mathcal{M} , indicated by $\mathbb{F}(\mathcal{M})$ is a graph where each vertex represents a non-trivial submodule of \mathcal{M} and there is an edge between two vertices U and V if and only if $U \cap V$ is a non-zero minimal (=simple) submodule of \mathcal{M} .

Lemma 2.2: The following hold in $\Gamma(\mathcal{M})$:

- 1. Every non-minimal submodule for \mathcal{M} is adjacent to at least one of the minimal submodules of \mathcal{M} .
- 2. If $Soc(M) \neq M$, then every member of $min(\mathcal{M})$ is adjacent to $Soc(\mathcal{M})$.

Remark 2.3: If $p,r \in min(\mathcal{M})$, then it is easy to observe that p and r are not adjacent in $\Gamma(\mathcal{M})$. Thus the subgraph induced by the minimal submodules of \mathcal{M} is null.

Theorem 2.4: If v, v, r are distinct vertices in $\mathbb{F}(\mathcal{M})$ with $r \in min(\mathcal{M})$ and $v \cap v \neq r$, then the following hold:

```
i. r \in N(v \cap v) if and only if r \in N(v) \cap N(v).
ii. If Soc(\mathcal{M}) \subsetneq v, then r \in N(v).
iii. If v \notin min(\mathcal{M}) and v \subsetneq v, then v \notin N(v).
```

Proof: (i) If $r \in N(v) \cap N(v)$, then $r \cap v = r = r \cap v$. Clearly, $r \not\subseteq v \cap v$, which infers that $r \in (v \cap v)$. Similarly the proof for the opposite direction can be established.

```
(ii) Since r \subset Soc(\mathcal{M}) beside c(\mathcal{M}) \subsetneq v, r \subsetneq v. This results in r \cap v = r. Therefore r \in N(v).
(iii) If v \subsetneq v, now v \cap v = v. As v \notin min(\mathcal{M}), we get v \notin N(v).
```

Proposition 2.5: If $T, F \notin min(\mathcal{M})$ and $\{T, F\} \in E(\mathbb{F}(\mathcal{M}))$, then there exists a unique $r \in min(\mathcal{M})$ with $r \in N(T) \cap N(F)$.

Proof: Suppose $\{T, F\} \in E(\mathbb{F}(M))$, then $T \cap F \in min(\mathcal{M})$. Clearly, $T \cap F$ is adjacent to both T so F. If it holes, suppose that there existence of an $r \in min(\mathcal{M})$ by $r \neq T \cap F$ and r is adjacent to both T and F. By Theorem 2.4, it is clear that $r \in N(T \cap F)$. So, $r \not\subseteq T$, F. This gives $r \subset T \cap F$. Since $T \cap F$ is minimal, $r = T \cap F$. This completes the proof. \square

Theorem 2.6: Every non-zero proper submodule of \mathcal{M} is minimal if and only if $\Gamma(\mathcal{M})$ is null graph.

Proof: Suppose that for each non-zero suitable submodule in \mathcal{M} is minimal. Let us take two vertices T, F in $\Gamma(\mathcal{M})$. Obviously, $T \cap F = 0$. So, T beside F are not next to each other in $\Gamma(\mathcal{M})$. Since T and F are general, we state that $\Gamma(\mathcal{M})$ has no elements. In reverse, suppose that $\Gamma(\mathcal{M})$ has no elements so $B \in V(\Gamma(\mathcal{M}))$. Let $B \notin mir(\mathcal{M})$. Since \mathcal{M} is Artinian, there is some $s \in min(\mathcal{M})$ with $s \subseteq B$. This gives that $s \otimes B$ are adjacent, which contradicts the null character of $\Gamma(\mathcal{M})$. Consequently any submodule of \mathcal{M} is minimal. Hence the theorem.

Proposition 2.7: The graph $\mathbb{F}(\mathcal{M})$ is connected if and only if the sum of any two distinct minimal submodules of \mathcal{M} is not \mathcal{M} , or $|min(\mathcal{M})| = 1$.

Proof: Suppose that $|min(\mathcal{M})| = 1$, therefore it is clear that $\mathbb{\Gamma}(\mathcal{M})$ is connected. Assume that $|min(\mathcal{M})| \neq 1$, and the sum of any two distinct minimal submodules of \mathcal{M} is not \mathcal{M} . Take two vertices X and Y for $\mathbb{\Gamma}(\mathcal{M})$. Let $\{X,Y\} \in E(\mathbb{\Gamma}(\mathcal{M}))$, is now X - Y a path. Suppose $\{X,Y\} \notin E(\mathbb{\Gamma}(\mathcal{M}))$. Then either $Z \subsetneq X \cap Y$ for some $Z \in min(\mathcal{M})$, or $X \cap Y = 0$. If $Z \subsetneq X \cap Y$, now X - Z - Y is a path of $\mathbb{\Gamma}(\mathcal{M})$. If $X \cap Y = 0$, then the following three cases arise.

Case 1: Suppose X and Y are both minimal. Then X - (X + Y) - Y is a path in $\mathbb{F}(\mathcal{M})$.

Case 2: If exactly one of X and Y is minimal, then without loss of generality, assume that $X \in min(M)$ and $Y \notin min(M)$. Since \mathcal{M} is Artinian, there exists some $r \in min(\mathcal{M})$ such that $R \subsetneq Y$. Thus, we get the path X - (R + X) - R - Y.

Case 3: If both X and Y are not minimal, it follows that there is $R_1, R_2 \in min(\mathcal{M})$ such that $R_1 \subsetneq X$ also $R_2 \subsetneq Y$, respectively. If $R_1 = R_2$, then $X - R_1 - Y$ is a path. If $R_1 \neq R_2$, then $X - R_1 - (R_1 + R_2) - R_2 - Y$ is apath. Hence we deduce that $\Gamma(\mathcal{M})$ is connected.

Conversely, consider that $\mathbb{F}(\mathcal{M})$ is connected. If it can be done, suppose that there exist two minimal submodules T_1 and T_2 such that $T_1 + T_2 = \mathcal{M}$. Clearly, $\mathcal{M} = T_1 \oplus T_2$. Also, $\frac{\mathcal{M}}{T_1} \cong T_2$ and $\frac{\mathcal{M}}{T_2} \cong T_1$. Since \mathcal{M} is a commutative Artinian module, T_1 and T_2 are minimal as well as maximal submodules of \mathcal{M} . Assume that T_1 is neighboring some $S \in V(\mathbb{F}(\mathcal{M}))$. now $T_1 \cap S = T_1$, this means that $T_1 \nsubseteq S$. Since T_1 is maximal, we obtain $T_1 = S$. This asserts that T_1 is an isolated vertex a contradiction. This completes the proof.

Proposition 2.8: If $\mathbb{F}(\mathcal{M})$ is a connected graph, then $diam(\mathbb{F}(\mathcal{M})) \leq 4$.

Proof: Consider that $\mathbb{F}(\mathcal{M})$ is connected. If $min(\mathcal{M}) = 1$, therefore, clearly $diam(\mathbb{F}(\mathcal{M})) = 2$. Suppose that $|min(\mathcal{M})| \neq 1$. Assume $\{B, H\} \notin E(\mathbb{F}(\mathcal{M}))$. Therefor either $R \subsetneq B \cap H$ for some $R \in min(\mathcal{M})$ or $B \cap H = 0$. In the same way, as of Proposition 2.7, we can also determine that d(B, H) = 2 or 4. Hence $diam(\mathbb{F}(\mathcal{M})) \leq 4$. \square

 $i=1,2,\ldots,r$. Theorem 2.9: If $S=S_1\times S_2\times \ldots \times S_r$, then $diam(\mathbb{F}(S))=2$, where S_i is a simple module, for

Proof: Let $S = S_1 \times S_2 \times ... \times S_r$, we are S_i is simple module, for i = 1, 2, ..., r. Any submodule of S is of the from $A = \prod_{i=1}^r G_i$ where $G_i = 0$ or S_i and the minimal submodules of S is of the form $R_k = \prod_{i=1}^r G_i$ where $G_i = 0$ in $i \neq k$ beside $G_k = S_k$. That S contains n minimal submodules. Think about tow not adjacent vertices

L, T for $\Gamma(S)$. Let L also T both include the same minimal submodule, then d(T, F) = 2. If not, then there exist R_i and R_j with $R_i \subset L$, $R_j \subset T$, $R_i \not\subset T$ and $R_j \not\subset L$. Now we consider the submodule $h = \prod_{l=1}^r G_l$, where $G_l = S_l$, for l = i, j plus 0 or else. This provides the way L - h - T. Hence, $diam(\Gamma(S)) = 2$.

Theorem 2.10: If $Soc(\mathcal{M}) \neq \mathcal{M}$, then $girth(\mathbb{F}(\mathcal{M})) = 3,4$ whenever $\mathbb{F}(\mathcal{M})$ contains a cycle.

Proof: Let $Soc(\mathcal{M}) \neq \mathcal{M}$. Suppose that $\{B, H\} \in E(\Gamma(\mathcal{M}))$. Clearly, at least one of B or H does not belong to $min(\mathcal{M})$. If $B, H \notin min(\mathcal{M})$, then $B - B \cap H - H - B$ is a cycle. In this case, $girth(\Gamma(\mathcal{M})) = 3$. Consider that one of B or H be minimal. Without loss in general terms, take $B \in min(\mathcal{M})$, $H \notin min(\mathcal{M})$. In that case, there is some $P \in min(\mathcal{M})$ So that $P \nsubseteq H$. Hence, we obtain the cycle $B - H - P - Soc(\mathcal{M}) - B$. If so, $girth(\Gamma(\mathcal{M})) = 4$. Their proof is complete. \square

Theorem 2.11: Assume that $S = S_1 \times S_2 \times ... \times S_r$, where S_i is a simple module for i = 1, 2, ..., r, then $girth(\mathbb{F}(\mathcal{M})) = 3$.

Proof: Let $S = S_1 \times S_2 \times ... \times S_r$, wherever S_i a simple module for i = 1, 2, ..., r, any submodule of S is of the from $A = \prod_{i=1}^r G_i$ where $G_i = 0$ or S_i . Let us consider the submodule $B = \prod_{i=1}^r G_i$ where $G_i = S_i$, for i = 1, 2 and otherwise $G_i = 0$; $C = \prod_{i=1}^r G_i$ where $G_i = S_i$, for i = 1, 3 beside otherwise $G_i = 0$; $D = \prod_{i=1}^r G_i$, where $G_i = S_i$, for i = 2, 3 in any other way $G_i = 0$. So, for any minimal submodule of F is in the form of $R_k = G_i$ in which $G_i = 0$, for $i \neq k$ and $G_k = S_k$. So. S has r minimal submodules. Because $h \cap C = R_1$, $C \cap D = R_3$ and $h \cap D = R_2$, thus we get the cycle h - C - D - h. This concludes that $girth(\mathbb{F}(\mathcal{M})) = 3$.

Theorem 2.12: If $\Gamma(\mathcal{M})$ is a complete, then \mathcal{M} is module with $|min(\mathcal{M})| = 1$.

Proof: Assume $\mathbb{F}(\mathcal{M})$ is complete. If $\mathbb{P}, q \in min(\mathcal{M})$ and $\mathbb{P} \neq q$, now $\mathbb{P} \cap q = 0$. This implies that $|min(\mathcal{M})| = 1$.

Remark 2.13: We observe that D_{p_r} has exactly one minimal submodule, but $\mathbb{F}(D_{p_r})$ is not complete. Hence the converse of theorem 2.12, does not hold.

Theorem 2.14: If a chain is formed using the submodules of \mathcal{M} , then $\Gamma(\mathcal{M})$ is a star.

Proof: If a chain is formed the submodules in \mathcal{M} , hence there is a $P \in min(\mathcal{M})$ such that $\{P, v\} \in E(\mathbb{F}(\mathcal{M}))$, for evey $v \in V(\mathbb{F}(\mathcal{M}))$. should $B, H \in V(\mathbb{F}(\mathcal{M}))$ and $B \neq P, H \neq P$, as a result, it is apparent that B, H are not adjacent. Hence $\mathbb{F}(\mathcal{M})$ is star. \square

Proposition 2.15: If $Soc(\mathcal{M}) \neq \mathcal{M}$. Then $\Gamma(\mathcal{M})$ is compete bipartite iff any submodule of R is either essential or minimal.

Proof: Let v_1 and v_2 be the set of minimal submodules and essential submodules of \mathcal{M} , respectively. If $p, q \in v_1$, then $p \cap v = 0$. Thus any two vertices of v_1 are not adjacent. Also, if $S, H \in v_2$, then $Soc(\mathcal{M}) \subset S \cap H$. So any two vertices of V_2 are also not adjacent. Again, using Proposition 2.3, we get that every vertex in v_1 is adjacent to each vertex in v_2 . Thus $\Gamma(\mathcal{M})$ is a complete bipartite graph. For the opposite direction, assume that $\Gamma(\mathcal{M})$ is a

complete bipartite graph. It is easy to prove that the vertex set $v(\mathbb{F}(M))$ can be partitioned into the two disjoint subsets $min(\mathcal{M})$ and $\{v \in v(\mathbb{F}(\mathcal{M})) : Soc(\mathcal{M}) \subset v\}$. This completes the proof. \Box

Theorem 2.16: If the sum of any two distinct minimal submodules of \mathcal{M} is not \mathcal{M} , and \mathcal{S} is a cut vertex of $\mathbb{F}(\mathcal{M})$. then $\mathcal{S} = B + H$. for some $B, H \in min(\mathcal{M})$.

Proof: If $S \in min(\mathcal{M})$, as a result is clear. If $S \notin min(\mathcal{M})$. Suppose v, v are two vertices in separate component C_1 beside C_2 of $v(\Gamma(\mathcal{M})\setminus\{S\})$, in the same order. We derive the following results:

Case I: If $v, v \in min(\mathcal{M})$, then $v + v \in N(v) \cap N(v)$. Thus S = v + v, while S is a cut vertex.

Case II: If $v \in min(\mathcal{M}) \& v \notin min(\mathcal{M})$, then there is some $B \in min(\mathcal{M})$ by $B \subsetneq v$. Thus B, v belong to the same parts C_2 . since $B + v \in N(B) \cap N(v)$, and all for B beside v belong to two dissimilar components, also S = v + B

Case III: If $v, v \notin min(\mathcal{M})$, then there is some $B, H \in min(\mathcal{M})$ having $B \subsetneq v$, $H \subsetneq v$. Here, v and B belong to the component C_1 and v and H associated with the other component C_2 . As $B + H \in N(B) \cap N(H)$, beside B, H belong to C_2 , therefore S = B + H. The proof is complete.

3- Independence number, Clique number and Planarity of $\Gamma(\mathcal{M})$

Theorem 3.1: In $\Gamma(\mathcal{M})$, a clique is contained in the subgraph induced by $\{v \in V(\Gamma(\mathcal{M})) : v \subset v\}$, for some $v \in min(\mathcal{M})$.

Proof: Assume that C be a clique of $\mathbb{F}(\mathcal{M})$. Since no two different minimal submodules be neighboring in $\mathbb{F}(\mathcal{M})$. So C have at most one minimal submodule. The complete-ness of C and Theorem 2.5, since that there is a unique $v \in min(\mathcal{M})$ in order that C is a subgraph induced by $\{v \in V(\mathbb{F}(\mathcal{M})) : v \subset v\}$. Hence the theorem. \Box

Theorem 3.2: If $\mathbb{F}(\mathcal{M})$ is not empty and $V(\mathbb{F}(\mathcal{M})) = min(\mathcal{M}) \cup max(\mathcal{M})$, then $\mathbb{F}(\mathcal{M})$ is split.

Proof: Consider the subgraph caused by $max(\mathcal{M})$ of $\mathbb{F}(\mathcal{M})$. Let $v, v \in max(\mathcal{M})$ with $v \neq v$. If it can be done, consider $v \cap v = 0$ now $\frac{\mathcal{M}}{v} \cong v$ beside $\frac{\mathcal{M}}{v} \cong v$. Thus simple modules [10] also v, v is minimal. Via Th. 5, $\mathbb{F}(\mathcal{M})$ is not empty, inconsistency. Then $v \cap v \neq 0$. Clearly $v \cap v \notin max(\mathcal{M})$. As a result $v \cap v \in min(\mathcal{M})$. This, the induced subgraph of $max(\mathcal{M})$ be complete. Also, by Remark 2.3, the induced sub graph of $min(\mathcal{M})$ is empty. Thus $\mathbb{F}(\mathcal{M})$ is split.

Theorem 3.3: If $v(\mathbb{F}(\mathcal{M})) = min(\mathcal{M}) \cup max(\mathcal{M})$ and $|max(\mathcal{M})| \leq 3$, then $\mathbb{F}(\mathcal{M})$ is planar.

Proof: If $v(\mathbb{F}(\mathcal{M})) = min(\mathcal{M}) \cup max(\mathcal{M})$, thus, as for Theorem 3.2, $\mathbb{F}(\mathcal{M})$ a split graph. As $|max(\mathcal{M})| \leq 3$, every subgraph included using 5 vertices be non-complete. Then, S_5 be not contained of $\mathbb{F}(\mathcal{M})$. If feasible, if $S_{3,3}$ is included in $\mathbb{F}(\mathcal{M})$ with part set $W_1 = \{v_1, v_2, v_3\}$ and $W_2 = \{v_1, v_2, v_3\}$. It is clear that either $W_1 \subset min(\mathcal{M})$ or $W_2 \subset min(\mathcal{M})$. If we take $W_1 \subset min(\mathcal{M})$, then $W_2 \subset max(\mathcal{M})$, this contradiction the fact that any two maximal submodules are next to each other. Hence, $\mathbb{F}(\mathcal{M})$ is a planar graph. \square

Theorem 3.4: If $|min(\mathcal{M})|$ is finite for an Artinian module \mathcal{M} , then $\alpha(\mathbb{F}(\mathcal{M})) = |min(\mathcal{M})|$.

Proof: Assume $min(\mathcal{M}) = \{m_1, m_2, ..., m_r\}$. Clearly, $min(\mathcal{M})$ is a independent set, by using Remark 2.3. Therefor, $r \leq \alpha(\mathbb{F}(\mathcal{M}))$. Since $S = \{v_1, v_2, ..., v_l\}$ is a maximal independent set. So, $\alpha(\mathbb{F}(\mathcal{M})) = l$. For any $X \in \mathcal{B}$, there exists some $m_i \in min(\mathcal{M})$ such that $m_i \subset X$. If l > n, then by Pigeonhole principle, there exist at least two vertices v_i , $v_j \in S$ which contain the same minimal submodule. This implies that v_i , v_j are adjacent, a contradiction to the reality thus S be independent set. Hence l = n, that is $\alpha(\mathbb{F}(\mathcal{M})) = n$.

Theorem 3.5: If \mathcal{M} is an Artinian module with a unique minimal submodule and S is simple module, then $\gamma(\mathbb{F}(\mathcal{M} \times S)) = 1$.

Proof: It is clear.

Proposition 3.6: Let S_1 and S_2 be two simple modules, then $\gamma((S_1 \times S_2)) = 2$.

Proof: It is clear.

 $i=1,2,\ldots,r$. Theorem 3.7: Let $\mathcal{S}=\mathcal{S}_1\times\mathcal{S}_2\times\ldots\times\mathcal{S}_r$, then $\gamma(\mathbb{F}(\mathcal{S}))\leq r$, where \mathcal{S}_i is a simple module for

Proof: Let $S = S_1 \times S_2 \times ... \times S_r$, where S_i is simple module of i = 1, 2, ..., r. Any submodule of S is of the from $A = \prod_{i=1}^r G_i$ where $G_i = 0$ or S_i and the minimal submodules of S is for in $R_k = \prod_{i=1}^r G_i$ where $G_i = 0$ for $i \neq k$, $G_k = S_k$. Also, S having r minimal submodules. Since the set $B = \{R_i : i = 1, 2, ..., r\}$. The set S dominates all the vertices of the graph. So, S (S (S (S (S)) S (S) S (S

The following example provides that the equality does not hold necessarily in Theorem 3.7.

Example 3.8: If $S = S_1 \times S_2 \times S_3$, where S_i is a simple module for i = 1, 2, ..., r, then $V(\mathbb{F}(S)) = \{S_1 \times 0 \times 0, S_1 \times S_2 \times 0, 0 \times S_2 \times 0, 0 \times S_2 \times S_3, S_1 \times 0 \times S_3, 0 \times S_3\}$. Now consider the set $B = \{S_1 \times S_2 \times 0, 0 \times S_2 \times S_3\}$. Every vertex of $\mathbb{F}(S)$ is adjacent at least one of the vertices of S. Hence $\mathcal{F}(S) = \mathcal{F}(S) = \mathcal{F}(S)$.

ACKNOWLEDGMENTS

We would like to thank the referee of his/her careful read of the paper beside constructive comments and suggestion that improved the quality of this paper.

References

- [1] S. Akbari H. A. Tavallaee, and S. Khalashi Ghezelahmad, "intersection graph of submodules of a module", *J. Algebra Appl.*, 11(1), 2012, 1250019.
- [2] **A. H. Alwan**, "Maximal submodule graph of a module", *J. Discrete Math. Sci. Cryptogr.*, 24(7), 2021, 1941-1949. Doi: 10.1080/09720529.2021.19764652
- [3] **A. H. Alwan,** "g-Small intersection graph of a module", *Baghdad Sci. J.*, 21(8), (2024), 2671-2680. Doi: 10.21123/bsj.2024.8967

- [4] **A. H. Alwan**, "Maximal ideal graph of commutative semirings", *Int. J. Nonlinear Anal. Appl.*, 12(1), 2021, 913-926. Doi: 10.22075/IJNAA.2021.4946
- [5] **A. H. Alwan,** "A graph associated to proper non-small subsemimodules of a semimodule", *International Journal of Nonlinear Analysis and Applications*, 12(2), (2021), 499-509. Doi: 10.22075/IJNAA.2021.5091
- [6] **A. H. Alwan,** Z. A. Nema, "The inclusion subsemimodule graph of a semimodule", *J. Discrete Math. Sci. Cryptogr*, 26(6), (2023), 1747-1752. Doi: 10.47974/JDMSC-1636
- [7] J. A. Bondy, U. S. R. Murty, Graph theory, Springer-Verlag, London, 2011.
- [8] **J. Bosak**, "The graphs of semigroups", in Theory of Graphs and its Applications, (Academic Press, New York, 1964), pp. 119-125. Doi: 10.1007/s00233-008-9132-y
- [9] **B. Barman, K. K. Rajkhowa,** "On intersection minimal ideal graph of a ring", *Algebraic Structures and Their Applications*, 12(1), 2025, 1-9. Doi: 10.22034/as.2024.18749.1566
- [10] **T. Lam,** Lectures on modules and rings, Graduate Texts in Mathematics, Volume 189, Springer, New York, 1999.
- [11] **R. Wisbauer**, Foundations of module and ring theory, Gordon and Breach, 1991.