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Abstract: 

   Let 𝑅 be a commutative ring with 1 ≠ 0, and 𝑀 be an 𝑅-module. The minimal intersection graph of 𝑀, denoted 

by 𝛤(𝑀), is a simple undirected graph whose vertices are proper non-zero submodules of 𝑀 and any two distinct 

vertices 𝐹 and 𝑄 are adjacent if and only if 𝐹⋂𝑄 be an minimal (= simple) submodule of 𝑀. In this article, we 
explore connectedness, clique number, split character, planarity, independence number and domination number of 

𝛤(𝑀). 
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1-Introduction 

    At first the idea of studying the intersection graph of algebraic structures, was appeared by J. Bosak in [8], 
where defined the intersection graph of proper subsemigroups of a semigroup in 1964. Inspired by his work, many 

mathematicians have been attracted by this topic and considered the intersection graph of algebraic structures, see 

for instance [3-6]. In 2015, S. Akbari et. al. in [1], defined the notion of the intersection graph of submodules of a 
module. In [2], the second author introduced the maximal submodule graph of a module. Recently, in 2021 [9], B. 

Barman, K.K. Rajkhowa introduced the notion of intersection minimal ideal graph of a ring 𝑅, the vertices set 

represent all non-trivial ideals of 𝑅, with edges connecting every pair of distinct vertices. Here, our main goal is 

to relate the combinatorial properties of the intersection graph Γ(ℳ) to the algebraic properties of the module 𝑀.  

Here  ,we  study  the smallest intersection graph corresponding to a module ℳ , designated as  ℾ(ℳ). Let 𝐺  a 

minimal unoriented graph along here vertex set 𝑉(𝐺) and edge set 𝐸(𝐺). If 𝐺 does not contain any edge, then 𝐺 

is called null graph. The neighborhood in Ƥ ∈ 𝑉(𝐺) is denoted by 𝑁(Ƥ). By 𝐾𝑛, we mean the complete graph with 

𝑛 vertices. If the vertices of 𝐺 can be partitioned into two disjoint sets 𝑊1 and 𝑊2 with every vertex of 𝑊1 is 

adjacent to any vertex of 𝑊1 and no two vertices belonging to same set are adjacent, then 𝐺 is called a complete 
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bipartite graph. As |𝑊1| = 𝑚, |𝑊2| = 𝑛, the complete bipartite graph is denoted by 𝐾𝑚,𝑛. If one of the partite sets 

contains exactly one element, then the graph becomes a star graph. If 𝐺 graph does not have 𝐾5  or 𝐾3,3 as its 

subgraph, then 𝐺 is planar [7]. The girth of  , denoted is girth(𝐺) (or gr(𝐺)), is the length of the shortest cycle in 

𝐺. If there exists a path between any two distinct vertices, then 𝐺 is connected. If 𝜐, 𝜈 are two distinct vertices of 

𝐺, then 𝑑(𝜐, 𝜈) is the length of the shortest path from 𝜐 to 𝜈 and 𝑑(𝜐, 𝜈) = ∞, if there does not exist a path between 

𝜐 and 𝜈. The maximum distance among all the distances between every pair of vertices of 𝐺 is called the diameter 

of 𝐺, denoted by diam(𝐺). A clique is a complete subgraph of 𝐺. The number of vertices in the largest clique of 

𝐺 is named the clique number of 𝐺 beside is denoted by 𝜔(𝐺). A subset 𝐵 of 𝑉(𝐺) is called the independent set if 

no two vertices of 𝐵 are adjacent. The cardinality of the largest independent set is said independence number and 

it is denoted by 𝛼(𝐺). If 𝑉(𝐺) can be partitioned in an independent set and a clique then 𝐺 is said to be an split. A 

set 𝐷 ⊂ 𝑉(𝐺) said to be a dominating set if every vertex does not in 𝐵 is adjacent to at least one of the members 

of 𝐵. The cardinality of smallest dominating set be the domination number of the graph 𝐺 and is denoted by 𝛾(𝐺). 
Let ℳ be an 𝑅-module. The collection of all minimal (= simple) submodules of ℳ is denoted by 𝑚𝑖𝑛(ℳ) and 

the collection of all maximal submodules of ℳ be denoted by 𝑚𝑎𝑥(ℳ), in the corresponding order. The sum for 

each minimal (simple) submodules of 𝑀 is called the socle of ℳ which is denoted by 𝑆𝑜𝑐(ℳ). A submodule 𝐸 

of ℳ is named essential if 𝐸 ∩ 𝐹 ≠ 0 for all 𝐹 ≤ ℳ. For any two submodules 𝑋 and 𝑌 of ℳ, we have 
𝑋+𝑌

𝑋
≅

𝑌

𝑋⋂𝑌
. 

A module ℳ is an Artinian precisely when there exists no infinite strictly decreasing sequence of submodules. In 

Artinian module, every submodule contains a minimal submodule. In section 2, we study the connectivity property 

of Γ(ℳ). In section 3, we study on the clique and independence numbers ᴏf  ℾ(ℳ). Any undefined terminology 

in modules can be found in [10, 11] and any undefined terminology in graphs can be found in [7].  

2- Connectedness of ℾ(𝓜) 

     In his work, 𝑅 is a commutative ring with identity and ℳ is a unitary 𝑅-module. By a non-trivial submodule of ℳ, we 

mean is a nonzero proper submodule of ℳ. In this part, we study the connectivity property of ℾ(ℳ). 

Definition 2.1: Let ℳ be a module over a ring 𝑅. The minimal intersection graph of ℳ, indicated by ℾ(ℳ) is a 

graph where each vertex represents a non-trivial submodule of ℳ and there is an edge between two vertices 𝑈 and 

𝑉 if and only if 𝑈 ∩ 𝑉 is a non-zero minimal (=simple) submodule of ℳ. 

Lemma 2.2: The following hold in ℾ(ℳ): 

1. Every non-minimal submodule for ℳ is adjacent to at least one of the minimal submodules of ℳ. 

2. If  𝑆𝑜𝑐(𝑀) ≠ 𝑀, then every member of 𝑚𝑖𝑛(ℳ) is adjacent to 𝑆𝑜𝑐(ℳ). 
 

Remark 2.3: If 𝑝, 𝑟 ∈ 𝑚𝑖𝑛(ℳ), then it is easy to observe that 𝑝 and 𝑟  are not adjacent in ℾ(ℳ). Thus the 

subgraph induced by the minimal submodules of ℳ is null. 

 

Theorem 2.4: If 𝜐, 𝜈, 𝑟 are distinct vertices in ℾ(ℳ) with 𝑟 ∈ 𝑚𝑖𝑛(ℳ) and 𝜐⋂ 𝜈 ≠ 𝑟, then the following hold: 
 

i. 𝑟 ∈ 𝑁(𝜐⋂𝜈) if and only if 𝑟 ∈ 𝑁(𝜐)⋂𝑁(𝜈) . 

ii. If 𝒮𝑜𝑐(ℳ) ⫋ 𝜐 , then 𝑟 ∈ 𝑁(𝜐). 
iii. If 𝜐 ∉ 𝑚𝑖𝑛(ℳ) and 𝜐 ⫋ 𝜈, then 𝜐 ∉ 𝑁(𝜈). 

 

Proof: (i) If 𝑟 ∈ 𝑁(𝜐 )⋂ 𝑁(𝜈), then 𝑟⋂𝜐 = 𝑟 = 𝑟 ⋂𝜈. Clearly, 𝑟 ⫋ 𝜐⋂𝜈, which infers that 𝑟 ∈ (𝜐⋂𝜈). 
Similarly the proof for the opposite direction can be established. 

(ii) Since 𝑟 ⊂ 𝒮𝑜𝑐(ℳ)  beside 𝑐(ℳ) ⫋ 𝜐 ,  𝑟 ⫋ 𝜐 . This results in  𝑟⋂ 𝜐 = 𝑟. Therefore 𝑟 ∈ 𝑁(𝜐 ). 

(iii) If 𝜐 ⫋ 𝜈, now  𝜐⋂𝜈 = 𝜐 . As 𝜐 ∉ 𝑚𝑖𝑛(ℳ), we get 𝜐 ∉ 𝑁(𝜈).     

 

Proposition 2.5: If 𝑇, 𝐹 ∉  𝑚𝑖𝑛(ℳ) and {𝑇, 𝐹} ∈ 𝐸(ℾ(ℳ)), then there exists a unique 𝑟 ∈ 𝑚𝑖𝑛(ℳ) with 𝑟 ∈
𝑁(𝑇 )⋂𝑁(𝐹 ). 

http://jceps.utq.edu.iq/


 Rawaa et al., Vol.15, No. (2025 (                                                Website: jceps.utq.edu.iq, ISSN: 2710-429X 

 

40 
 

 

 

Proof: Suppose {𝑇, 𝐹} ∈ 𝐸(ℾ(𝑀)), then 𝑇⋂𝐹 ∈ 𝑚𝑖𝑛(ℳ). Clearly, 𝑇⋂𝐹 is adjacent to both 𝑇 so 𝐹 . If it holes, 

suppose that there existence of an 𝑟 ∈ 𝑚𝑖𝑛(ℳ) by 𝑟 ≠ 𝑇⋂𝐹 and 𝑟 is adjacent to both 𝑇 and 𝐹. By Theorem 2.4, 

it is clear that 𝑟 ∈ 𝑁(𝑇⋂𝐹 ).  So, 𝑟 ⫋ 𝑇, 𝐹 . This gives  𝑟 ⊂  𝑇⋂𝐹 .  Since 𝑇⋂𝐹 is minimal, 𝑟 = 𝑇⋂𝐹 . This 

completes the proof.    □ 

 

Theorem 2.6: Every non-zero proper submodule of ℳ is minimal if and only if ℾ(ℳ) is null graph. 

 

Proof: Suppose that for each non-zero suitable submodule in  ℳ is minimal. Let us take two vertices 𝑇, 𝐹 in 

ℾ(ℳ). Obviously, 𝑇⋂ 𝐹 = 0. So, 𝑇 beside  𝐹 are not next to each other in ℾ(ℳ). Since 𝑇 and 𝐹 are general, we 

state that Γ(ℳ) has no elements. In reverse, suppose that ℾ(ℳ) has no elements so 𝐵 ∈ 𝑉(ℾ(ℳ)). Let 𝐵 ∉
𝑚𝑖𝑟(ℳ). Since ℳ is Artinian, there is some 𝑠 ∈ 𝑚𝑖𝑛(ℳ) with 𝑠 ⫋  𝐵. This gives that 𝑠 & 𝐵 are adjacent, which 

contradicts the null character of  ℾ(ℳ). Consequently any submodule of ℳ is minimal. Hence the theorem.     
 

Proposition 2.7: The graph ℾ(ℳ) is connected if and only if the sum of any two distinct minimal submodules 

of ℳ is not ℳ, or |𝑚𝑖𝑛(ℳ)| = 1. 

 

Proof: Suppose that |𝑚𝑖𝑛(ℳ)| = 1, therefore it is clear that ℾ(ℳ) is connected. Assume that |𝑚𝑖𝑛(ℳ)| ≠ 1, 

and the sum of any two distinct minimal submodules of ℳ is not ℳ. Take two vertices 𝑋 and 𝑌 for  ℾ(ℳ). Let  

{𝑋, 𝑌 } ∈  𝐸(ℾ(ℳ)) , is now 𝑋 − 𝑌  a path. Suppose {𝑋, 𝑌} ∉ 𝐸(ℾ(ℳ)).  Then either 𝑍 ⫋ 𝑋⋂𝑌  for some 𝑍 ∈
𝑚𝑖𝑛(ℳ), or 𝑋⋂𝑌 = 0. If 𝑍 ⫋ 𝑋⋂𝑌, now 𝑋 − 𝑍 − 𝑌 is a path of ℾ(ℳ). If 𝑋⋂𝑌 = 0, then the following three 
cases arise. 

Case 1: Suppose 𝑋 and 𝑌 are both minimal. Then 𝑋 − (𝑋 +  𝑌) − 𝑌 is a path in ℾ(ℳ). 
Case 2: If exactly one of 𝑋 and 𝑌 is minimal, then without loss of generality, assume that 𝑋 ∈ 𝑚𝑖𝑛(𝑀) and 

𝑌 ∉ 𝑚𝑖𝑛(𝑀). Since ℳ is Artinian, there exists some 𝑟 ∈ 𝑚𝑖𝑛(ℳ) such that 𝑅 ⫋ 𝑌 . Thus, we get the path 

𝑋 − (𝑅 + 𝑋) − 𝑅 − 𝑌 . 

Case 3: If both  𝑋 and 𝑌 are not minimal, it follows that there is 𝑅1, 𝑅2 ∈ 𝑚𝑖𝑛(ℳ) such that 𝑅1 ⫋ 𝑋 also 𝑅2 ⫋ 𝑌, 
respectively.  If 𝑅1 = 𝑅2, then 𝑋 − 𝑅1 − 𝑌 is a path.  If 𝑅1 ≠ 𝑅2, then 𝑋 − 𝑅1 − (𝑅1 + 𝑅2) − 𝑅2 − 𝑌 is apath. 

Hence we deduce that ℾ(ℳ) is connected.  

 

 

Conversely, consider that ℾ(ℳ) is connected. If it can be done, suppose that there exist two minimal 

submodules 𝑇1and 𝑇2 such that 𝑇1 + 𝑇2 = ℳ. Clearly, ℳ = 𝑇1 ⊕ 𝑇2. Also, 
ℳ

𝑇1
≅ 𝑇2 and 

ℳ

𝑇2
≅ 𝑇1.  Since ℳ is a 

commutative Artinian module, 𝑇1 and 𝑇2are minimal as well as maximal submodules of ℳ. Assume that 𝑇1 is 

neighboring some 𝒮 ∈ 𝑉(ℾ(ℳ)). now 𝑇1⋂𝒮 = 𝑇1, this means that 𝑇1 ⫋ 𝒮. Since 𝑇1 is maximal, we obtain 𝑇1 =
𝒮. This asserts that 𝑇1is an isolated vertex a contradiction. This completes the proof.     

 

Proposition 2.8: If ℾ(ℳ) is a connected graph, then 𝑑𝑖𝑎𝑚(ℾ(ℳ)) ≤ 4. 

 

Proof: Consider that ℾ(ℳ) is connected. If 𝑚𝑖𝑛(ℳ) = 1, therefore, clearly 𝑑𝑖𝑎𝑚(ℾ(ℳ)) = 2. Suppose that 

|𝑚𝑖𝑛(ℳ)| ≠ 1. Assume {𝐵, 𝐻} ∉ 𝐸(ℾ(ℳ)). Therefor either 𝑅 ⫋ 𝐵⋂𝐻 for some 𝑅 ∈ 𝑚𝑖𝑛(ℳ) or 𝐵⋂𝐻 = 0. In 

the same way, as of Proposition 2.7, we can also determine that 𝑑(𝐵, 𝐻) = 2 or 4. Hence 𝑑𝑖𝑎𝑚(ℾ(ℳ)) ≤ 4.    □ 

 

Theorem 2.9: If 𝒮 = 𝒮1 × 𝒮2 × . . .× 𝒮𝑟  , then 𝑑𝑖𝑎𝑚(ℾ(𝒮)) = 2, where 𝒮𝒾 is a simple module, for 𝒾 = 1, 2, . . . , 𝑟. 

 

Proof: Let  𝒮 = 𝒮1 × 𝒮2 × . . .× 𝒮𝑟, we are 𝒮𝒾 is simple module, for 𝒾 = 1,2, . . . , 𝑟. Any submodule of 𝒮 is of the 

from 𝐴 = ∏ 𝐺𝒾
𝑟
𝒾=1  where 𝐺𝒾 = 0 or 𝒮𝒾   and the minimal submodules of 𝒮  is of the form 𝑅𝑘 = ∏ 𝐺𝒾

𝑟
𝒾=1  where 

𝐺𝒾 = 0 in 𝒾 ≠ 𝑘 beside 𝐺𝑘 = 𝒮𝑘 .  That 𝒮 contains n minimal submodules. Think about tow not adjacent vertices  
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𝐿 , 𝑇 for ℾ(𝒮). Let 𝐿 also 𝑇 both include the same minimal submodule, then 𝑑(𝑇, 𝐹) = 2. If not, then there exist 

𝑅𝒾and 𝑅𝑗  with 𝑅𝒾 ⊂ 𝐿, 𝑅𝑗 ⊂ 𝑇, 𝑅𝒾 ⊄ 𝑇  and 𝑅𝑗 ⊄ 𝐿. Now we consider the submodule ℎ = ∏ 𝐺𝑙
𝑟
𝑙=1 , where 𝐺𝑙 = 𝒮𝑙, 

for 𝑙 = 𝒾, 𝑗 plus 0 or else. This provides the way 𝐿 − ℎ − 𝑇. Hence, 𝑑𝑖𝑎𝑚(ℾ(𝒮)) = 2.      
 

Theorem 2.10: If  𝒮𝑜𝑐(ℳ) ≠ ℳ, then 𝑔𝑖𝑟𝑡ℎ(ℾ(ℳ)) = 3,4 whenever  ℾ(ℳ) contains a cycle. 
 

Proof: Let 𝑆𝑜𝑐(ℳ) ≠ ℳ. Suppose that {𝐵, 𝐻} ∈ 𝐸(ℾ(ℳ)). Clearly, at least one of 𝐵 or 𝐻 does not belong to 

𝑚𝑖𝑛(ℳ). If 𝐵, 𝐻 ∉ 𝑚𝑖𝑛(ℳ), then 𝐵 − 𝐵⋂𝐻 − 𝐻 − 𝐵 is a cycle. In this case,  𝑔𝑖𝑟𝑡ℎ(ℾ(ℳ)) = 3. Consider that 

one of 𝐵 or 𝐻 be minimal. Without loss in general terms, take 𝐵 ∈ 𝑚𝑖𝑛(ℳ), 𝐻 ∉ 𝑚𝑖𝑛(ℳ). In that case, there is 

some Ƥ ∈ 𝑚𝑖𝑛(ℳ)  So that Ƥ ⫋ 𝐻 . Hence, we obtain the cycle 𝐵 − 𝐻 − Ƥ − 𝑆𝑜𝑐(ℳ) − 𝐵.  If so, 

𝑔𝑖𝑟𝑡ℎ(ℾ(ℳ)) = 4. Their proof is complete.     □ 

 

Theorem 2.11: Assume that 𝒮 = 𝒮1 × 𝒮2 × . . .× 𝒮𝑟 , where 𝒮𝒾 is a simple module for 𝒾 = 1,2, . . . , 𝑟,  then 

𝑔𝑖𝑟𝑡ℎ(ℾ(ℳ)) = 3. 
 

Proof: Let 𝒮 = 𝒮1 × 𝒮2 × . . .× 𝒮𝑟, wherever 𝒮𝒾   a simple module for 𝒾 = 1,2, . . . , 𝑟, any submodule of 𝒮 is of the 

from  𝐴 = ∏ 𝐺𝒾
𝑟
𝒾=1  where𝐺𝒾 = 0 or 𝒮𝒾 .  Let us consider the submodule 𝐵 = ∏ 𝐺𝒾

𝑟
𝒾=1  where 𝐺𝒾 = 𝒮𝒾, for 𝒾 = 1,2  

and otherwise 𝐺𝒾 = 0; 𝐶 = ∏ 𝐺𝒾
𝑟
𝒾=1  where 𝐺𝒾 = 𝒮𝒾, for 𝒾 = 1,3  beside otherwise 𝐺𝒾 = 0; 𝐷 = ∏ 𝐺𝒾,𝑟

𝒾=1  where 

𝐺𝒾 = 𝒮𝒾 , for 𝒾 = 2,3 in any other way 𝐺𝒾 = 0.  So, for any minimal submodule of F is in  the form of 𝑅𝑘 = 𝐺𝒾  in 

which 𝐺𝒾 = 0, for 𝒾 ≠ 𝑘  and 𝐺𝑘 = 𝒮𝑘 .  So.  𝒮  has 𝑟  minimal submodules. Because ℎ⋂𝐶 = 𝑅1, 𝐶⋂𝐷 = 𝑅3  and 

ℎ⋂𝐷 = 𝑅2, thus we get the cycle ℎ − 𝐶 − 𝐷 − ℎ. This concludes that 𝑔𝑖𝑟𝑡ℎ(ℾ(ℳ)) =3.      

 

Theorem 2.12: If ℾ(ℳ) is a complete, then ℳ is module with |𝑚𝑖𝑛(ℳ)| = 1 . 

 

Proof: Assume  ℾ(ℳ)  is complete. If Ƥ, 𝑞 ∈ 𝑚𝑖𝑛(ℳ)  and Ƥ ≠ 𝑞 , now Ƥ⋂𝑞 = 0  .This implies that 

|𝑚𝑖𝑛(ℳ)| = 1.    □ 

 

Remark 2.13: We observe that 𝐷𝑝𝑟
 has exactly one minimal submodule, but ℾ(𝐷𝑝𝑟

) is not complete. Hence the 

converse of theorem 2.12, does not hold. 

Theorem 2.14: If a chain is formed using the submodules of ℳ, then ℾ(ℳ) is a star. 

 

Proof: If a chain is formed the submodules in ℳ, hence there is a Ƥ ∈ 𝑚𝑖𝑛(ℳ) such that {Ƥ,𝜈} ∈ 𝐸(ℾ(ℳ)), 
for evey 𝜈 ∈ 𝑉(ℾ(ℳ)). should 𝐵, 𝐻 ∈ 𝑉(ℾ(ℳ)) and 𝐵 ≠ Ƥ, 𝐻 ≠ Ƥ, as a result, it is apparent that 𝐵, 𝐻 are not 

adjacent. Hence ℾ(ℳ) is star.     □ 

Proposition 2.15: If 𝒮𝑜𝑐(ℳ) ≠ ℳ. Then ℾ(ℳ) is compete bipartite iff any submodule of 𝑅 is either essential or 

minimal. 

 Proof: Let 𝜈1 and 𝜈2 be the set of minimal submodules and essential submodules of ℳ, respectively. If 𝑝, 𝑞 ∈

𝜈1 , then p ∩ 𝜈 = 0. Thus any two vertices of 𝜈1  are not adjacent. Also, if 𝑆, 𝐻 ∈ 𝜈2  , then 𝑆𝑜𝑐(ℳ) ⊂ 𝑆 ∩ 𝐻. So any 

two vertices of  𝑉2 are also not adjacent. Again, using Proposition 2.3, we get that every vertex in 𝜈1  is adjacent to 

each vertex in 𝜈2 .  Thus ℾ(ℳ) is a complete bipartite graph. For the opposite direction, assume that ℾ(ℳ) is a 
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complete bipartite graph. It is easy to prove that the vertex set 𝜈(ℾ(𝑀)) can be partitioned into the two disjoint subsets 

𝑚𝑖𝑛(ℳ) and {𝜐 ∈ 𝜈(ℾ(ℳ)) ∶  𝑆𝑜𝑐(ℳ) ⊂ 𝜐 }. This completes the proof.    □ 

Theorem 2.16: If the sum of any two distinct minimal submodules of ℳ is not ℳ, and 𝒮 is a cut vertex of 

ℾ(ℳ). then 𝒮 = 𝐵 + 𝐻. for some 𝐵, 𝐻 ∈ 𝑚𝑖𝑛(ℳ). 
 

Proof: If 𝒮 ∈ 𝑚𝑖𝑛(ℳ), as a result is clear. If 𝒮 ∉ 𝑚𝑖𝑛(ℳ). Suppose 𝜐, 𝜈 are two vertices in separate component 

𝐶1 beside 𝐶2 of 𝜈(ℾ(ℳ)\{𝒮}), in the same order. We derive the following results: 

 

Case I: If 𝜐, 𝜈 ∈ 𝑚𝑖𝑛(ℳ), then 𝜐 + 𝜈 ∈ 𝑁(𝜐 )⋂𝑁(𝜈). Thus 𝒮 = 𝜐 + 𝜈, while 𝒮 is a cut vertex. 

Case II: If 𝜐 ∈ 𝑚𝑖𝑛(ℳ) & 𝜈 ∉ 𝑚𝑖𝑛(ℳ), then there is some 𝐵 ∈ 𝑚𝑖𝑛(ℳ) by 𝐵 ⫋ 𝜈. Thus 𝐵, 𝜈 belong to the 

same parts 𝐶2. since 𝐵 + 𝜐 ∈ 𝑁(𝐵)⋂𝑁(𝜐 ), and all for 𝐵 beside 𝜐 belong to two dissimilar components, also 𝒮 =
𝜐 + 𝐵. 

Case III: If 𝜐, 𝜈 ∉ 𝑚𝑖𝑛(ℳ), then there is some 𝐵, 𝐻 ∈ 𝑚𝑖𝑛(ℳ) having 𝐵 ⫋ 𝜐 , 𝐻 ⫋ 𝜈. Here, 𝜐 and 𝐵 belong to 

the component 𝐶1and 𝜈 and 𝐻 associated with the other component 𝐶2 . As 𝐵 + 𝐻 ∈ 𝑁(𝐵)⋂𝑁(𝐻 ), beside 𝐵, 𝐻 

belong to 𝐶2 , therefore 𝒮 = 𝐵 + 𝐻. The proof is complete.     

 

 

 

3- Independence number, Clique number and Planarity of ℾ(𝓜) 

 

Theorem 3.1: In ℾ(ℳ), a clique is contained in the subgraph induced by {𝜐 ∈ 𝑉(ℾ(ℳ)) ∶ 𝜈 ⊂ 𝜐}, for some 

𝜈 ∈ 𝑚𝑖𝑛(ℳ). 
 

Proof: Assume that 𝐶 be a clique of  ℾ(ℳ). Since no two different minimal submodules be neighboring in ℾ(ℳ) 

. So 𝐶 have at most one minimal submodule. The complete-ness of 𝐶 and Theorem 2.5, since that there is a unique 

𝜈 ∈ 𝑚𝑖𝑛(ℳ) in order that 𝐶 is a subgraph induced by {𝜐 ∈ 𝑉(ℾ(ℳ)) ∶  𝜈 ⊂ 𝜐 }. Hence the theorem.    □ 

 

Theorem 3.2: If ℾ(ℳ) is not empty and 𝑉(ℾ(ℳ)) = 𝑚𝑖𝑛(ℳ) ∪ 𝑚𝑎𝑥(ℳ),  then ℾ(ℳ) is split. 
 

Proof: Consider the subgraph caused by 𝑚𝑎𝑥(ℳ) of ℾ(ℳ). Let 𝜐, 𝜈 ∈ 𝑚𝑎𝑥(ℳ) with 𝜐 ≠ 𝜈. If it can be done, 

consider 𝜐⋂𝜈 = 0 now 
ℳ

𝜐
≅ 𝜈 beside  

ℳ

𝜈
≅ 𝜐. Thus simple modules [10] also 𝜐, 𝜈 is minimal. Via Th. 5, ℾ(ℳ) 

is not empty, inconsistency. Then 𝜐⋂𝜈 ≠ 0. Clearly 𝜐⋂𝜈 ∉ 𝑚𝑎𝑥(ℳ). As a result 𝜐⋂𝜈 ∈ 𝑚𝑖𝑛(ℳ). This, the 

induced subgraph of 𝑚𝑎𝑥(ℳ) be complete. Also, by Remark 2.3, the induced sub graph of 𝑚𝑖𝑛(ℳ) is empty. 

Thus ℾ(ℳ) is split.    
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Theorem 3.3: If 𝜈(ℾ(ℳ)) = 𝑚𝑖𝑛(ℳ) ∪ 𝑚𝑎𝑥(ℳ) and |𝑚𝑎𝑥(ℳ)| ≤ 3, then ℾ(ℳ) is planar. 
 

Proof: If 𝜈(ℾ(ℳ)) = 𝑚𝑖𝑛(ℳ) ∪ 𝑚𝑎𝑥(ℳ), thus, as for Theorem 3.2, ℾ(ℳ)  a split graph. As |𝑚𝑎𝑥(ℳ)| ≤ 3, 
every subgraph included using 5 vertices be non-complete. Then, 𝒮5 be not contained of ℾ(ℳ). If feasible, if 

𝒮3,3 is included in ℾ(ℳ) with part set 𝑊1={𝜐1, 𝜐2 , 𝜐3} and 𝑊2 = {𝜈1 , 𝜈2, 𝜈3}. It is clear that either 𝑊1 ⊂ 𝑚𝑖𝑛(ℳ) 

or 𝑊2 ⊂ 𝑚𝑖𝑛(ℳ). If we take 𝑊1 ⊂ 𝑚𝑖𝑛(ℳ), then 𝑊2 ⊂ 𝑚𝑎𝑥(ℳ), this contradiction the fact that any two 

maximal submodules are next to each other. Hence, ℾ(ℳ) is a planar graph.    □ 
 

Theorem 3.4: If |𝑚𝑖𝑛(ℳ)| is finite for an Artinian module ℳ, then 𝛼(ℾ(ℳ)) = |𝑚𝑖𝑛(ℳ)|. 

 

Proof: Assume 𝑚𝑖𝑛(ℳ) = {𝑚1, 𝑚2, . . . , 𝑚𝑟}. Clearly, 𝑚𝑖𝑛(ℳ)  is a independent set, by using Remark 2.3. 

Therefor, 𝑟 ≤ 𝛼(ℾ(ℳ)). Since 𝑆 = {𝜐1, 𝜐2, . . . , , 𝜐𝑙 } is a maximal independent set. So, 𝛼(ℾ(ℳ)) = 𝑙. For any 𝑋 ∈

𝐵, there exists some 𝑚𝒾 ∈ 𝑚𝑖𝑛(ℳ) such that 𝑚𝑖 ⊂ 𝑋. If 𝑙 > 𝑛, then by Pigeonhole principle, there exist at least 

two vertices 𝜐𝑖  , 𝜐𝑗 ∈ 𝑆 which contain the same minimal submodule. This implies that 𝜐𝑖  , 𝜐𝑗  are adjacent, a 

contradiction to the reality thus 𝑆 be independent set. Hence 𝑙 = 𝑛, that is  𝛼(ℾ(ℳ)) = 𝑛.      

 

Theorem 3.5: If ℳ is an Artinian module with a unique minimal submodule and 𝑆  is simple module, then 

𝛾(ℾ(ℳ × 𝑆)) = 1. 

 

Proof: It is clear.     

 

Proposition 3.6: Let  𝒮1and  𝒮2 be two simple modules, then   𝛾((𝒮1 × 𝒮2)) = 2 . 

 

Proof: It is clear.      

 

Theorem 3.7: Let 𝒮 = 𝒮1 × 𝒮2 × . . .× 𝒮𝑟, then 𝛾(ℾ(𝒮 )) ≤ 𝑟, where 𝒮𝒾 is a simple module for 𝒾 = 1, 2, . . . , 𝑟. 
 

Proof: Let 𝒮 = 𝒮1 × 𝒮2 ×. . .× 𝒮𝑟, where𝒮𝒾   is simple module of 𝒾 = 1, 2, . . . , 𝑟. Any submodule of 𝒮 is of the from 

𝐴 = ∏ 𝐺𝒾
𝑟
𝒾=1  where 𝐺𝒾 = 0 or 𝒮𝒾  and the minimal submodules of 𝒮 is for in 𝑅𝑘 = ∏ 𝐺𝒾

𝑟
𝒾=1  where 𝐺𝒾 = 0 for 𝒾 ≠

𝑘, 𝐺𝑘 = 𝒮𝑘 .  Also, 𝒮 having 𝑟 minimal submodules. Since the set 𝐵 = {𝑅𝒾: 𝒾 = 1, 2, . . . , 𝑟}.  The set 𝐵  dominates 

all the vertices of the graph.  So, 𝛾(ℾ(ℳ × 𝒮)) ≤ 𝑟.      

 

      The following example provides that the equality does not hold necessarily in Theorem 3.7. 

Example 3.8: If 𝒮 = 𝒮1 × 𝒮2 × 𝒮3, where 𝒮𝒾 is a simple module for 𝒾 = 1, 2, . . . , 𝑟, then 𝑉(ℾ(𝒮 )) =

{𝒮1 × 0 × 0, 𝒮1 × 𝒮2 × 0, 0 × 𝒮2 × 0, 0 × 𝒮2 × 𝒮3, 𝒮1 × 0 × 𝒮3, 0 × 𝒮3}. Now consider the set 𝐵 = {𝒮1 × 𝒮2 × 0, 0 ×

𝒮2 × 𝒮3}. Every vertex of ℾ (𝒮 ) is adjacent at least one of the vertices of 𝐵. Hence 𝛾(ℾ(𝒮 )) = 2(< 3).      
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