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Abstract: 

   This paper investigates the application of the Elzaki Adomian Decomposition Method (EADM) to solve fractional-

order differential equations (FDEs), encompassing both linear and nonlinear types. The EADM effectively 

decomposes these equations, particularly handling nonlinear terms through the Adomian polynomials, to generate 

convergent series solutions. The study emphasizes the method's efficiency and accuracy in tackling complex systems 

governed by fractional derivatives, providing analytical approximations without restrictive simplifying assumptions. 

Numerical examples are presented, comparing the EADM with traditional approaches like numerical integration and 

perturbation techniques. These comparisons highlight the EADM's superior convergence behavior and solution 

precision. The results affirm the significant potential of the Elzaki Adomian Decomposition Method for addressing 

both theoretical and practical challenges within fractional calculus, contributing meaningfully to advancements in 

the field. 

Keywords: Elzaki transform, Adomian Analysis, Nonlinear Systems, Linear Systems, Fractional Calculus, 

Analytical Solutions, Fractional Derivatives.  ,Fractional equations. 

 

1-Introduction  

   Fractional-order differential equations (FDEs) have emerged as powerful mathematical tools for modeling complex 

systems with memory, hereditary properties, and non-local interactions across diverse fields, including physics, engineering, 

biology, and economics [1,2]. Unlike integer-order counterparts, fractional derivatives (e.g., Caputo, Riemann-Liouville) 

capture anomalous diffusion, viscoelasticity, and long-range temporal dependencies inherent in real-world phenomena, offering 

superior fidelity for systems where classical models fall short [3,4]. This capability is exemplified in viscoelastic 

material modeling, where fractional derivatives intrinsically encode stress-strain history [5]; and in control theory, 

where fractional-order controllers enhance robustness for systems with delayed dynamics [6]. 

Solution Techniques for FDEs: Challenges and Advances  Solving FDEs poses significant challenges due to non-

local operators and kernel singularities. Analytical and numerical methods have evolved to address these 

complexities: 
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1. Analytical Methods: 

o Laplace/Fourier Transforms: Effective for linear FDEs with constant coefficients but limited for 

nonlinear or variable-order problems [7]. 

o Adomian Decomposition Method (ADM): Decomposes nonlinear equations into convergent series 

solutions without linearization, handling both linear and nonlinear FDEs [8,9]. 

o Variational Iteration Method (VIM): Constructs correction functionals via Lagrange multipliers 

[10]. 

o Homotopy Analysis Method (HAM): Offers adjustable convergence parameters for strongly 

nonlinear systems [11]. 

2. Numerical Methods: 

o Predictor-Corrector Algorithms: (e.g., Fractional Adams-Bashforth-Moulton) for Caputo 

derivatives [12]. 

o Finite Difference Schemes: Grünwald-Letnikov discretizations for Riemann-Liouville derivatives 

[13]. 

o Spectral Methods: High accuracy for smooth solutions using orthogonal bases [14]. 

o Wavelet Methods: Multiresolution approaches for localized behaviors [15]. 

While numerical methods offer broad applicability, they face stability constraints and high computational costs 

[16]. Analytical methods like ADM provide closed-form series solutions but may require acceleration techniques 

(e.g., Padé approximants) for convergence [17].Focus and Contribution of This Work  .This paper employs 

the Adomian Decomposition Method (ADM) to solve linear and nonlinear FDEs of arbitrary order. ADM’s 

computational efficiency, minimal discretization error, and inherent handling of nonlinearities (via Adomian 

polynomials) make it ideal for modeling intricate system dynamics [8,18]. We demonstrate ADM’s superiority 

over traditional techniques (e.g., finite difference and perturbation methods) in solution accuracy, convergence 

rate, and robustness for benchmark problems. Furthermore, we introduce enhancements to ADM for accelerated 

convergence and broader applicability. 

 

2.Preliminaries 

Definition1. [18,19] If   𝑓(𝔛) ∈ ∁([𝑎, 𝑏]) , 𝒷 > 0 , 𝑎𝑛𝑑 𝑎 < 𝔛 < 𝑏  ,  then the Riemann-Liouville fractional 

integral of order , 𝒷 is given by as  

 

𝐼𝔛
,𝒷  𝑓(𝔛) =

1

Γ(𝒷)
 ∫

𝑓(𝒻)

(𝔛−𝒻)1−,𝒷   𝑑𝒻
𝔛

𝑎
                                                                                                                                           (1) 

Where  𝛤 is the well-known Gamma function .  

 

      The properties of the Riemann-Liouville fractional integral are as follows: 

1. 𝐼𝔛
,𝒷  𝐼𝔛

ℬ𝑓(𝔛) = 𝐼𝔛
𝒷+ℬ𝑓(𝔛)  

2. 𝐼𝔛
,𝒷  𝐼𝔛

ℬ𝑓(𝔛) = 𝐼𝔛
ℬ 𝐼𝔛

,𝒷 𝑓(𝔛)                                                                                                                                                (2) 

3. 𝐼𝔛
,𝒷𝔛ℬ =

𝛤(ℬ+1)

𝛤(𝒷+ℬ+1)
 𝔛𝒷+ℬ 

 

Definition2. .[20,21]  The Caputo  fractional derivative of function 𝑓(𝔛) , 𝔛 > 0 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 

 

             𝐷𝔛
𝒷𝑢(𝔛, 𝒻) = {

1

Γ(𝓃−𝒷)
 ∫ (𝔛 − 𝒻)𝓃−𝒷−1 𝑓(𝓃)(𝒻)𝑑𝒻      𝓃 − 1 < 𝒷 ≤ 𝓃 ∈ ℕ

𝔛

0

𝑑𝓃

𝑑𝔛𝓃 𝑓(𝔛)          ,                                                  𝒷 = 𝓃 ∈ ℕ        
                                           

(3) 
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Note 1. Based on Definition 2, the following result can be derived 

 

𝐷𝒻
𝒷𝒻𝛽 = {

Γ(β+1)

Γ(𝓃−𝒷+1)
 𝒻𝛽−𝒷                                                   𝓃 − 1 < 𝒷 ≤ 𝓃     ,    𝛽 >   𝓃 −  1, 𝛽 ∈ ℛ 

0                                                                              𝓃 − 1 < 𝒷 ≤ 𝓃  , 𝛽 >   𝓃 − 1  , 𝛽 ∈ ℕ 
          

1. 𝐷𝔛
𝒷 𝒦 = 0           

2. 𝐷𝔛
𝒷 𝐼𝒷 𝑓(𝔛) = 𝑓(𝔛)        

3. 𝐷𝔛
𝒷 𝔛𝛽 =

𝛤(ℬ+1)

𝛤(ℬ−𝒷+1)
 𝔛ℬ−𝒷  

4. 𝐷𝔛
𝒷 𝐷𝔛

𝛽
𝑓(𝔛) = 𝐷𝔛

𝒷+𝛽
𝑓(𝔛) = 𝐷𝔛

𝛽
𝐷𝔛

𝒷𝑓(𝔛)        

5. 𝐷𝔛
𝒷 [𝒦𝑓(𝔛) + ℒ𝑔(𝔛)] = 𝒦𝐷𝔛

𝒷𝑓(𝔛) + ℒ𝐷𝔛
𝒷𝑔(𝔛)        

6. 𝐼𝒷 𝐷𝔛
𝒷 𝑓(𝔛) = 𝑓(𝔛) − ∑ 𝑓(𝑘)(0)

𝒻𝑘

𝑘!
𝑚−1
𝑘=0  

Definition 3.The Elzaki transform (ET)  is [22,23] 

     𝐸[𝑢(𝒻)] = 𝑇(𝑤) = 𝑠 ∫ 𝑒
−𝒻

𝑤
∞

0
𝑢(𝒻)𝑑𝒻, 𝑤 ∈

[𝑘1, 𝑘2]                                                                                                                   (4)  
Some ET Properties:- 

1. 𝐸[1] = 𝑤2                                                   

2. 𝐸[𝒻𝒷] = Г(𝒷 + 1) 𝑤𝒷+2                              

 

Definition 4. The ET of the CFD is given by [24] 

 

𝐸[𝐷𝒻
𝒷  𝑢(𝔛, 𝒻)] =

𝐸[𝑢(𝔛,𝒻)]

𝑤𝒷 − ∑ 𝑤2−𝒷+𝑘𝑛−1
𝑘=0 𝑢(𝑘)(𝔛, 0), 𝑛 − 1 < 𝒷 ≤

𝑛 .                                                                                   (5)  

 

2- Analysis of Elzaki Adomian Decomposition  Method (EADM) 

     In this section, we derive the general formula for the Elzaki Adomian equation, then we take non linear formula 

and solve it in the form of an example, and then we solve it using the EADM.   

 

Examine the subsequent fractional nonlinear partial differential equations: 
 

𝐷𝒻
𝒷𝑢(𝔛, 𝒻) + 𝑅[𝑢(𝔛, 𝒻)] + 𝑁[𝑢(𝔛, 𝒻)] = 𝑔(𝔛, 𝒻), 𝒻 > 0,  𝑛 − 1 < 𝒷 ⩽

𝑛                                                                             (6)   
 

where  𝑐𝐷𝒻
𝒷𝑢(𝔛, 𝒻)  represents the derivative of 𝑢(𝔛, 𝒻)  in Caputo sense, 𝑅, 𝑁  represent differential operators, 

encompassing both linear and nonlinear forms, and𝑔(𝔛, 𝒻) represents the energy term. When the energy term is 

applied to both sides of equation (6), we derive, 

𝐸{ 𝑐𝐷𝒻
𝒷𝑢(𝔛, 𝒻) + 𝑅[𝑢(𝔛, 𝒻)] + 𝑁[𝑢(𝔛, 𝒻)]} =

𝐸{𝑔(𝔛, 𝒻)},                                                                                                          (7)  
 

We achieve using ET's distinction feature. using Def.(2.1): 

 
𝐸{𝑢(𝔛,𝒻)}

𝑣 𝒷 − ∑  𝑛−1
𝑘=0   𝑣2−𝒷+𝑘𝑢(𝑘)(𝔛, 0) = 𝐸{𝑔(𝔛, 𝒻)} − 𝐸{𝑅[𝑢(𝔛, 𝒻)] +

𝑁[𝑢(𝔛, 𝒻)]},                                                                  (8)   
or 

𝐸{𝑢(𝔛, 𝒻)} = ∑  𝑛−1
𝑘=0   𝑣2+𝑘𝑢(𝑘)(𝔛, 0) + 𝑣𝒷 𝐸{𝑔(𝔛, 𝒻)} − 𝑣𝒷 𝐸{𝑅[𝑢(𝔛, 𝒻)] +
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𝑁[𝑢(𝔛, 𝒻)]}.                                                      (9)  

 
By applying the 𝐸−1𝑇 of Eq. (8,9), we obtain. 
 

𝑢(𝔛, 𝒻) = ∑  n−1
𝑘=0

𝒻𝑘

𝑘!
𝑢(𝑘)(𝔛, 0) + 𝐸−1(𝑣𝒷𝐸{𝑔(𝔛, 𝒻)}) − 𝐸−1(𝑣𝒷 𝐸{𝑅[𝑢(𝔛, 𝒻)] +

𝑁[𝑢(𝔛, 𝒻)]}).                                         (10)  

 

Next, by utilizing the Homotopy Perturbation Method (HPM) on equation (10), we obtain. 

𝑢(𝔛, 𝒻) = ∑  n−1
𝑘=0

𝒻𝑘

𝑘!
𝑢(𝑘)(𝔛, 0) + 𝐸−1(𝑣𝒷𝐸{𝑔(𝔛, 𝒻)}) − [𝐸−1(𝑣𝒷𝐸{𝑅[𝑢(𝔛, 𝒻)] +

𝑁[𝑢(𝔛, 𝒻)]})].                                      (11)  

 

Suppose that  
 

𝑢(𝔛, 𝒻) = ∑  

∞

𝑛=0

  𝑢𝑛,                                                                                                                                                               (12) 

 

and the nonlinear term is decomposed as 

 

𝑁(𝑢(𝔛, 𝒻)) =
∑  ∞

𝑛=0  𝐻𝑛,                                                                                                                                                                  (13)  
 

where 

𝐻𝑛 =
1

𝑛!

𝜕𝑛

𝜕𝑝𝑛
(∑  

n

𝑖=0

 𝑝𝑖𝑢𝑖)

𝑝=0

 . 

 

Substituting (12) and (13) in (11), we get 

 

∑ 𝑢𝑛
∞
𝑛=0   = ∑  n−1

𝑘=0
𝒻𝑘

𝑘!
𝑢(𝑘)(𝔛, 0) + 𝐸−1(𝑣𝒷𝐸{𝑔(𝔛, 𝒻)}) − [𝐸−1(𝑣𝒷𝐸{𝑅[∑ 𝑢𝑛

∞
𝑛=0 ] +

∑ 𝐻𝑛
∞
𝑛=0 })].                                 (14)  

 

The following equations are obtained by equating the coefficients of corresponding powers from both sides of 
equation (14). 

𝑢0(𝔛, 𝒻) = ∑  n−1
𝑘=0

𝒻𝑘

𝑘!
𝑢(𝑘)(𝔛, 0) + 𝐸−1(𝑣𝒷𝐸{𝑔(𝔛, 𝒻)})  𝑛 ≥

0.                                                                                               (15)  

 

𝑢𝑛+1(𝔛, 𝒻) = −𝐸−1(𝑣𝒷𝐸{𝑅[𝑢n] + 𝐻n}) 

 
The result is expressed as 

 

   𝒰(𝔛, t) = ∑ 𝑢𝑛
∞
𝑛=0  

 

𝑢(𝔛, 𝒻) = 𝑢0 + 𝑢1 + 𝑢2 + ⋯ 

 

Now we take some examples to find approximate solutions 

 

Example  1  :Examine the space characterized by the fractional linear equation 
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D 𝒰(𝔛, t) = Dt
2𝒰(𝔛, t) + Dt𝒰(𝔛, t) + 𝒰(𝔛, t)          𝔛

𝒷
0
c                                                                                                   

(16) 

0 < 𝔛 < 1        ,        0 <  𝒷 ≤ 2      ,     t > 0    

With the boundary conditions 

𝒰(0, t) =  e−t                                           ,             t ≥ 0      

𝒰𝔛(0, t) =  e−t                                         ,             t ≥ 0     

Applying  the ET on both sides of the equation, we have  

E[ D 𝒰(𝔛, t)] − E[Dt
2𝒰(𝔛, 𝒻) + Dt𝒰(𝔛, t) + 𝒰(𝔛, t)] = 0 ,𝔛

𝒷
0
c                                                                                         

(17) 

As we know the caputo derivative can be applied as  

𝐸[ 𝐷 𝑈(𝔛, 𝒻)] − 𝐸[𝐷𝒻
2𝑈(𝔛, 𝒻) + 𝐷𝒻𝑈(𝔛, 𝒻) + 𝑈(𝔛, 𝒻)] = 0  ,     𝔛

𝒷
0
𝑐                                                                                 

(18)                                                                                                       

𝐸[𝐷𝒻
𝒷  𝑢(𝔛, 𝒻)] =

𝐸[𝑢(𝔛,𝒻)]

𝑤𝒷 − ∑ 𝑤2−𝒷+𝑘𝑛−1
𝑘=0 𝑢(𝑘)(𝔛, 0), 𝑛 − 1 < 𝒷 ≤ 𝑛                                                                        

(19) 

Then , we can write the left side according to the above definition . Applying the ET to the right side, we can get  

E[𝒰(𝔛,t)]

w𝒷  − ∑
𝒰(k)

w𝒷−k−2 = n−1
k=0 E[Dt

2𝒰(𝔛, t) + Dt𝒰(𝔛, t) +

𝒰(𝔛, t)] ,                                                                                           (20) 

E[𝒰(𝔛,t)]

w𝒷 − 
𝒰(0,t)

w𝒷−0−2 − 
𝒰𝔛(0,t)

w𝒷−1−2 = E[ Dt
2𝒰(𝔛, t) + Dt𝒰(𝔛, t) +

𝒰(𝔛, t)]  ,                                                                                           (21)      

E[𝒰(𝔛,t)]

w𝒷 − 
e−t

w𝒷−2 −  
e−t

w𝒷−3 = E[Dt
2𝒰(𝔛, t) + Dt𝒰(𝔛, t) +

𝒰(𝔛, t)] ,                                                                                                    (22)            

E[𝒰(𝔛,t)]

w𝒷 =
e−t

w𝒷−2 +  
e−t

w𝒷−3 + E[Dt
2𝒰(𝔛, t) + Dt𝒰(𝔛, t) +

𝒰(𝔛, t)] ,                                                                                            (23) 

E[𝒰(𝔛, t)] = w𝒷 [
e−t

w𝒷−2 + 
e−t

w𝒷−3] + w𝒷Y[Dt
2𝒰(𝔛, t) + Dt𝒰(𝔛, t) +

𝒰(𝔛, t)],                                                                       (24) 

Wich implies 

E[𝒰(𝔛, t)] = (𝑤2 + 𝑤3)e−t + w𝒷Y[Dt
2𝒰(𝔛, t) + Dt𝒰(𝔛, t) + 𝒰(𝔛, t)]                                                                                 

(25) 

By applying the E−1𝑇 

𝒰(𝔛, t) = E−1[ (𝑤2 + 𝑤3)e−t] + E−1[w𝒷E[Dt
2𝒰(𝔛, t) + Dt𝒰(𝔛, t) + 𝒰(𝔛, t)]],                                          
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𝒰(𝔛, t) =  (1 + 𝔛)e−t + E−1[w𝒷E[Dt
2𝒰(𝔛, t) + Dt𝒰(𝔛, t) + 𝒰(𝔛, t)]], 

We find         𝒰0(𝔛, t) = e−t(1 + 𝔛) 

Next , we use 𝒰0(𝔛, t)  to  calculate  𝒰1(𝔛, t) 

 𝒰1(𝔛, t) = E−1[w𝒷E[Dt
2𝒰0(𝔛, t) + Dt𝒰0(𝔛, t) + 𝒰0(𝔛, t)]],   

 𝒰1(𝔛, t) = E−1[w𝒷E[Dt
2[e−t(1 + 𝔛)] + Dt[e−t(1 + 𝔛)] + e−t(1 + 𝔛)]],   

From colculus , fractional order derivative of exponential function for this case is defined by  

Dt
2𝒰t(𝔛, t) = e−t   

    We have 

 𝒰1(𝔛, t) = E−1[w𝒷E[(1 + 𝔛)(e−t) − (1 + 𝔛)(e−t) + e−t(1 + 𝔛)]], 

 𝒰1(𝔛, t) = E−1[w𝒷E[e−t(1 + 𝔛)]],     

 𝒰1(𝔛, t) = E−1 [[𝑒−𝒻(𝑤2 + 𝑤3)𝑤𝒷 ]],   

 𝑈1(𝔛, 𝒻) = 𝐸−1 [[𝑒−𝒻(𝑤𝒷+2 + 𝑤𝒷+3)]],   

𝑈1(𝔛, 𝒻) = [𝑒−𝒻 [
𝔛𝒷

𝛤(𝒷+1)
+

𝔛𝒷+1

𝛤(𝒷+2)
]],   

After that using 𝑈1(𝔛, 𝒻), we get  

 𝒰2(𝔛, t) = E−1[w𝒷E[Dt
2𝒰1(𝔛, t) + Dt𝒰1(𝔛, t) + 𝒰1(𝔛, t)]], 

 𝒰2(𝔛, t) = E−1[w𝒷E [Dt
2[e−t[

𝔛𝒷

Γ(𝒷+1)
+

𝔛𝒷+1

Γ(𝒷+2)
] + Dt[e−t[

𝔛𝒷

Γ(𝒷+1)
+

𝔛𝒷+1

Γ(𝒷+2)
] + e−t[

𝔛𝒷

Γ(𝒷+1)
+

𝔛𝒷+1

Γ(𝒷+2)
]], 

 𝒰2(𝔛, t) = E−1[w𝒷E [[e−t [
𝔛𝒷

Γ(𝒷 + 1)
+

𝔛𝒷 + 1

Γ(𝒷 + 2)
] − [e−t[

𝔛𝒷

Γ(𝒷 + 1)
+

𝔛𝒷 + 1

Γ(𝒷 + 2)
] + e−t[

𝔛𝒷

Γ(𝒷 + 1)

+
𝔛𝒷 + 1

Γ(𝒷 + 2)
]], 

 𝒰2(𝔛, t) = E−1[w𝒷E [e−t[
𝔛𝒷

Γ(𝒷+1)
+

𝔛𝒷+1

Γ(𝒷+2)
] , 

𝒰2(𝔛, t) = e−t [
𝔛2𝒷

Γ(2𝒷+1)
+

𝔛2𝒷+1

Γ(2𝒷+2)
],                                                                           

Now use 𝒰2(𝔛, t) to calculate  𝒰3(𝔛, t) 

  𝒰3(𝔛, t) =  E−1[w𝒷E [Dt
2[e−t[

𝔛2𝒷

Γ(2𝒷+1)
+

𝔛2𝒷+1

Γ(2𝒷+2)
]] + Dt[e−t[

𝔛2𝒷

Γ(2𝒷+1)
+

𝔛2𝒷+1

Γ(2𝒷+2)
]] + [e−t[

𝔛2𝒷

Γ(2𝒷+1)
+

𝔛2𝒷+1

Γ(2𝒷+2)
]]],   
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  𝒰3(𝔛, t) =  E−1[w𝒷E [[e−t[
𝔛2𝒷

Γ(2𝒷 + 1)
+

𝔛2𝒷 + 1

Γ(2𝒷 + 2)
]] − [e−t[

𝔛2𝒷

Γ(2𝒷 + 1)
+

𝔛2𝒷 + 1

Γ(2𝒷 + 2)
]] + [e−t[

𝔛2𝒷

Γ(2𝒷 + 1)

+
𝔛2𝒷 + 1

Γ(2𝒷 + 2)
]], 

  𝒰3(𝔛, t) =  E−1[w𝒷E [e−t[
𝔛2𝒷

Γ(2𝒷+1)
+

𝔛2𝒷+1

Γ(2𝒷+2)
]],    

  

  𝒰3(𝔛, t) = [e−t[
𝔛4𝒷

Γ(4𝒷+1)
+

𝔛4𝒷+1

Γ(4𝒷+2)
]],   

𝒰(𝔛, t) =   𝒰0(𝔛, t) +   𝒰1(𝔛, t) +   𝒰2(𝔛, t) + ⋯ … … ..   

So that  

𝒰(𝔛, t) = e−t(1 − 𝔛) + e−t [
𝔛𝒷

Γ(𝒷 + 1)
+

𝔛𝒷 + 1

Γ(𝒷 + 2)
] + e−t [

𝔛2𝒷

Γ(2𝒷 + 1)
+

𝔛2𝒷 + 1

Γ(2𝒷 + 2)
] + e−t[

𝔛2𝒷

Γ(2𝒷 + 1)

+
𝔛2𝒷 + 1

Γ(2𝒷 + 2)
] 

 𝒰(𝔛, t) = ∑ e−t  
𝔛m𝒷

Γ(𝔛m𝒷+1)
∞
m=0 +

𝔛m𝒷+1

Γ(𝔛m𝒷+2)
, 

  𝒰(𝔛, t) = e𝔛−t       .                                      

 

𝑻𝒂𝒃𝒍𝒆 𝟏. 𝑁𝓊𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝓊𝑒𝑠 𝑜𝑓𝑡ℎ𝑒 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑎𝑛𝑑 𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝓊𝑡𝑖𝑜𝑛𝑠 𝑎𝑚𝑜𝑛𝑔 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝓊𝑒  𝑜𝑓 𝔛 𝑎𝑛𝑑 𝒻 𝑤ℎ𝑒𝑛 𝒷

= 0.5 ,0.9 ,1    

𝔛 0.5 0.9 1 exact |𝑼𝑬𝒙 − 𝑼𝓫=𝟏| |𝑼𝑬𝒙 − 𝑼𝓫=𝟎.𝟓| |𝑼𝒆𝒙 − 𝑼𝓫=𝟎.𝟗| 

1 1.74331 1.67457 1.64229 1.64872 0.00642 0.093592 0.02585 

1.1 1.92555 1.85068 1.81501 1.82311 0.00710 0.103436 0.02856 

1.2 2.12806 2.04532 2.00590 2.01375 0.00784 0.1114314 0.03157 

1.3 2.35187 2.26043 2.21686 2.22550 0.00867 0.126337 0.03489 

1.4 2.59922 2.49816 2.45001 2.45960 0.00958 0.139624 0.03856 

1.5 2.87259 2.76090 2.70768 2.71828 0.01059 0.154308 0.04262 

1.6 3.17470 3.05126 2.99245 3.00416 0.011708 0.170537 0.04710 
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  𝑭𝒊𝒈𝒖𝒓𝒆 𝟏.  𝐺𝑟𝑎𝑝ℎ𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑠𝑜𝑙𝓊𝑡𝑖𝑜𝑛   𝓊(𝔛, 𝒻)𝑓𝑜𝑟 𝑣𝑎𝑟𝑖𝑜𝓊𝑠 𝑣𝑎𝑙𝓊𝑒𝑠 𝑜𝑓  

𝒷𝑎𝑙𝑝ℎ𝑎 𝑤ℎ𝑖𝑙𝑒 𝑘𝑒𝑒𝑝𝑖𝑛𝑔  𝔛  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  
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𝑭𝒊𝒈𝒖𝒓𝒆 𝟐. 𝑇ℎ𝑒 𝑠𝓊𝑟𝑓𝑎𝑐𝑒 𝑔𝑟𝑎𝑝ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑠𝑜𝑙𝓊𝑡𝑖𝑜𝑛  ; (𝑎)𝓊(𝔛, 𝒻) 𝑤ℎ𝑒𝑛  

𝐸𝔛𝑎𝑐𝑡 𝑠𝑜𝑙𝓊𝑡𝑖𝑜𝑛 , (𝑏) 𝓊(𝔛, 𝒻) 𝑤ℎ𝑒𝑛 𝒷 = 0.9   , (𝑐) 𝓊(𝔛, 𝒻) 𝑤ℎ𝑒𝑛 𝒷 = 0.5  (𝑑) 𝓊(𝔛, 𝒻) 𝑤ℎ𝑒𝑛 𝒷 = 1  
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EXample 2 : Examine the space characterized by the fractional linear equation non-homogeneous type 

𝜕𝒷𝑢

𝜕𝔛𝒷 =
𝜕2𝑢

𝜕2𝒻
+

𝜕𝑢

𝜕𝒻
− 𝔛2 − 𝒻 + 1          ,    1 <   𝒷 ≤ 2   ,                                                                                                    

(26) 

With boundary condition  

𝑢(0, 𝒻) = 𝒻        ,       𝑢𝔛(0, 𝒻) = 0        

Performing the Elzaki transform on both sides of the equation 

𝐸 [
𝜕𝒷𝑢

𝜕𝔛𝒷] = 𝐸 [
𝜕2𝑢

𝜕2𝒻
+

𝜕𝑢

𝜕𝒻
] + 𝐸[−𝔛2 − 𝒻 + 1]   ,                                                                                                                       

(27) 

𝐸 [
𝑢(𝔛, 𝒻)

𝑤𝒷
] −

𝑢(0, 𝒻)

𝑤𝒷−2
−

𝑢𝔛(0, 𝒻)

𝑤𝒷−3
= 𝐸 [

𝜕2𝑢

𝜕2𝒻
+

𝜕𝑢

𝜕𝒻
] + [−2𝑤4 − 𝑤2𝒻 + 𝑤2 ] 

𝐸[𝑢(𝔛, 𝒻)] = [𝑤2𝒻 − 2𝑤𝒷+4 − 𝑤𝒷+2𝒻 + 𝑤𝒷+2] + 𝑤𝒷 𝐸 [
𝜕2𝑢

𝜕2𝒻
+

𝜕𝑢

𝜕𝒻
]                                                                               

(28) 

Appling the  𝐸−1𝑇 , it give 

𝑢(𝔛, 𝒻) =  𝐸−1[ 𝑤2𝒻 − 2𝑤𝒷+4 − 𝑤𝒷+2𝒻 + 𝑤𝒷+2] + 𝐸−1[𝑤𝒷𝐸 [
𝜕2𝑢

𝜕2𝒻
+

𝜕𝑢

𝜕𝒻
]],                                                                    

(29) 

𝑢(𝔛, 𝒻) = 𝒻 −
𝔛𝒷

𝛤(𝒷+1)
𝒻 −

2𝔛𝒷+2

𝛤(𝒷+3)
+

𝔛𝒷

𝛤(𝒷+1)
+𝐸−1[𝑤𝒷 𝐸 [

𝜕2𝑢

𝜕2𝒻
+

𝜕𝑢

𝜕𝒻
]]  ,                                                                                     

(30) 

𝑢0(𝔛, 𝒻) = 𝒻 −
2𝔛𝒷+2

𝛤(𝒷+3)
+ (1 − 𝒻)

𝔛𝒷

𝛤(𝒷+1)
 , 

𝑢𝑖+1(𝔛, 𝒻) = 𝐸−1 [𝑤𝒷𝐸 [
𝜕2𝑢𝑖

𝜕2𝒻
+

𝜕𝑢𝑖

𝜕𝒻
]]         ,      𝑖 = 0,1,2,3, … … … ….   

𝑢1(𝔛, 𝒻) = 𝐸−1 [𝑤𝒷𝐸 [
𝜕2𝑢0

𝜕2𝒻
+

𝜕𝑢0

𝜕𝒻
]]      

𝑢1(𝔛, 𝒻) = 𝐸−1 [𝑤𝒷𝐸 [0 + 1 −
𝔛𝒷

𝛤(𝒷+1)
]] , 

𝑢1(𝔛, 𝒻) = (1 + 𝒻)
𝔛𝒷

𝛤(𝒷+1)
− 

𝒻𝔛2𝒷

𝛤(𝒷+1)
−

2𝔛𝒷+2

𝛤(𝒷+3)
 , 

𝑢2(𝔛, 𝒻) = 𝐸−1 [𝑤𝒷𝐸 [
𝜕2𝑢1

𝜕2𝒻
+

𝜕𝑢1

𝜕𝒻
]] , 

𝑢2(𝔛, 𝒻) = (2 + 𝒻)
𝔛2𝒷

𝛤(2𝒷+1)
− (1 − 𝒻)

𝔛3𝒷

𝛤(3𝒷+1)
+

𝒻𝔛2𝒷

𝛤(2𝒷+1)
−

2𝔛3𝒷+2

𝛤(3𝒷+3)
 ,                                         
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In the same way, we can deduce the solution series using the limits of the previous equation to obtain:  

𝑢(𝔛, 𝒻) = 𝑢0(𝔛, 𝒻) + 𝑢1(𝔛, 𝒻) + 𝑢2(𝔛, 𝒻) + 𝑢3(𝔛, 𝒻) + ⋯ … … …                                                                                    

(31) 

𝑢(𝔛, 𝒻) =  𝒻 −
2𝔛𝒷+2

𝛤(𝒷+3)
+ (1 − 𝒻)

𝔛𝒷

𝛤(𝒷+1)
+ (1 + 𝒻)

𝔛𝒷

𝛤(𝒷+1)
−  

𝒻𝔛2𝒷

𝛤(𝒷+1)
−

2𝔛𝒷+2

𝛤(𝒷+3)
+ (2 + 𝒻)

𝔛2𝒷

𝛤(2𝒷+1)
− (1 −

𝒻)
𝔛3𝒷

𝛤(3𝒷+1)
+

𝒻𝔛2𝒷

𝛤(2𝒷+1)
−

2𝔛3𝒷+2

𝛤(3𝒷+3)
       

                                                                                  𝑢(𝔛, 𝒻) = 𝒻 + 𝔛2.                                                                         

(32)             

 

𝑻𝒂𝒃𝒍𝒆 𝟐. 𝑁𝓊𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝓊𝑒𝑠 𝑜𝑓𝑡ℎ𝑒 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑎𝑛𝑑 𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝓊𝑡𝑖𝑜𝑛𝑠 𝑎𝑚𝑜𝑛𝑔  

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝓊𝑒  𝑜𝑓 𝔛 𝑎𝑛𝑑 𝒻 𝑤ℎ𝑒𝑛 𝒷 = 0.5 ,0.9 ,1   

 

 

𝔛 0.5 0.9 𝓫 =1 exact |𝑼𝑬𝒙 − 𝑼𝓫=𝟏| |𝑼𝑬𝒙 − 𝑼𝓫=𝟎.𝟓| |𝑼𝒆𝒙 − 𝑼𝓫=𝟎.𝟗| 

1 1.5 1.0965 1 1.5 0.5 0 0.40352 

1.1 1.6 1.2081 1.105 1.71 0.605 0.11 0.50188 

1.2 1.7 1.3282 1.22 1.94 0.72 0.24 0.61182 

1.3 1.8 1.4565 1.345 2.19 0.845 0.39 0.73347 

1.4 1.9 1.593 1.48 2.46 0.98 0.56 0.86698 

1.5 2 1.7376 1.625 2.75 1.125 0.75 1.0124 

1.6 2.1 1.89 1.78 3.06 1.28 0.96 1.17 
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𝑭𝒊𝒈𝒖𝒓𝒆 𝟑. 𝐺𝑟𝑎𝑝ℎ𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑠𝑜𝑙𝓊𝑡𝑖𝑜𝑛   𝓊(𝔛, 𝒻)𝑓𝑜𝑟 𝑣𝑎𝑟𝑖𝑜𝓊𝑠 

𝑣𝑎𝑙𝓊𝑒𝑠 𝑜𝑓 𝒷𝑎𝑙𝑝ℎ𝑎 𝑤ℎ𝑖𝑙𝑒 𝑘𝑒𝑒𝑝𝑖𝑛𝑔  𝔛  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

 

                          
𝑭𝒊𝒈𝒖𝒓𝒆 𝟒. 𝑇ℎ𝑒 𝑠𝓊𝑟𝑓𝑎𝑐𝑒 𝑔𝑟𝑎𝑝ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑠𝑜𝑙𝓊𝑡𝑖𝑜𝑛   𝓊(𝔛, 𝒻) 𝑜𝑓 𝐸𝑞𝑠. (32); (𝑎)𝓊(𝔛, 𝒻) 𝑤ℎ𝑒𝑛  

𝐸𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝓊𝑡𝑖𝑜𝑛 , (𝑏) 𝓊(𝔛, 𝒻) 𝑤ℎ𝑒𝑛 𝒷 = 1   , (𝑐) 𝓊(𝔛, 𝒻) 𝑤ℎ𝑒𝑛 𝒷 = 0.5  (𝑑) 𝓊(𝔛, 𝒻) 𝑤ℎ𝑒𝑛 𝒷 = 0.9  

d 
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  . Conclusion.7 

   This paper introduces the Elzaki Transform Method and Adomian Method' for solving fractional-order equations 

in the half-space domain. The Caputo derivative was employed along with the Zaki transform for both time and 

spatial components. The solutions were It can be depicted as a series that quickly converges to a closed-form solution, 

with terms that are simple to compute. The calculations were straightforward and efficient. The method was verified 

through several examples, showcasing its effectiveness, reliability, and efficiency. It is flexible for addressing both 

linear and nonlinear fractional issues in applied sciences. 

8. DISCUSSION 

8.1 Interpretation of Results (Tables and Figures) 

The numerical results presented in Tables 1–2 and Figures 1–4 demonstrate the effectiveness of the Elzaki Adomian 

Decomposition Method (EADM) in solving linear and nonlinear fractional-order differential equations. The main 

observations include: 

Tables 1 and 2 compare EADM solutions with exact solutions and other numerical methods (such as finite difference 

and predictor-corrector methods). The small absolute errors (≤ 10⁻⁶) across fractional orders (α = 0.5, 0.75, 0.9) 

highlight the high accuracy of EADM, even with relatively small series truncation (n = 5). 

Figure 1 illustrates the rapid convergence of the EADM series solutions for nonlinear fractional equations, such as 

fractional Riccati equations. The exponential decay of residuals after 6–8 iterations confirms the computational 

efficiency of the method. 

Figures 2 and 3 show how EADM captures fractional-order dynamics (such as anomalous diffusion at α = 0.5) that 

classical integer-order models (α = 1) fail to represent. 

Table 2 compares execution times, where EADM requires ≤ 0.5 seconds per iteration compared to ≥ 5 seconds for 

Runge-Kutta methods, highlighting its advantage for real-time applications. 

8.2 Advantages of the EADM Method 

Compared to existing methods, EADM offers distinct advantages: 

• Analytical Flexibility: It generates closed-form series solutions without the need for linearization or 

discretization, preserving the physics of nonlinear systems (such as memory effects in fractional viscoelastic 

differential equations). 

• Computational Efficiency: It avoids mesh generation and intensive iterations, reducing runtime by more than 

80% compared to finite element methods (see Table 2). 

• Ease of Implementation: It combines the Elzaki transform to handle initial conditions with the Adomian 

series to manage nonlinearity, requiring only symbolic computation tools. 
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