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Abstract:

This paper investigates the application of the Elzaki Adomian Decomposition Method (EADM) to solve fractional-
order differential equations (FDEs), encompassing both linear and nonlinear types. The EADM effectively
decomposes these equations, particularly handling nonlinear terms through the Adomian polynomials, to generate
convergent series solutions. The study emphasizes the method's efficiency and accuracy in tackling complex systems
governed by fractional derivatives, providing analytical approximations without restrictive simplifying assumptions.
Numerical examples are presented, comparing the EADM with traditional approaches like numerical integration and
perturbation techniques. These comparisons highlight the EADM's superior convergence behavior and solution
precision. The results affirm the significant potential of the Elzaki Adomian Decomposition Method for addressing
both theoretical and practical challenges within fractional calculus, contributing meaningfully to advancements in
the field.

Keywords: Elzaki transform, Adomian Analysis, Nonlinear Systems, Linear Systems, Fractional Calculus,
Analytical Solutions, Fractional Derivatives. ,Fractional equations.

1-Introduction
Fractional-order differential equations (FDEs) have emerged as powerful mathematical tools for modeling complex

systems with memory, hereditary properties, and non-local interactions across diverse fields, including physics, engineering,
biology, and economics [1,2]. Unlike integer-order counterparts, fractional derivatives (e.g., Caputo, Riemann-Liouville)
capture anomalous diffusion, viscoelasticity, and long-range temporal dependencies inherent in real-world phenomena, offering
superior fidelity for systems where classical models fall short [3,4]. This capability is exemplified in viscoelastic
material modeling, where fractional derivatives intrinsically encode stress-strain history [5]; and in control theory,
where fractional-order controllers enhance robustness for systems with delayed dynamics [6].

Solution Techniques for FDEs: Challenges and Advances Solving FDEs poses significant challenges due to non-
local operators and kernel singularities. Analytical and numerical methods have evolved to address these
complexities:
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1. Analytical Methods:
o Laplace/Fourier Transforms: Effective for linear FDEs with constant coefficients but limited for
nonlinear or variable-order problems [7].
o Adomian Decomposition Method (ADM): Decomposes nonlinear equations into convergent series
solutions without linearization, handling both linear and nonlinear FDEs [8,9].
o Variational Iteration Method (VIM): Constructs correction functionals via Lagrange multipliers
[10].
o Homotopy Analysis Method (HAM): Offers adjustable convergence parameters for strongly
nonlinear systems [11].
2. Numerical Methods:
o Predictor-Corrector  Algorithms: (e.g., Fractional Adams-Bashforth-Moulton) for Caputo
derivatives [12].
o Finite Difference Schemes: Griinwald-Letnikov discretizations for Riemann-Liouville derivatives
[13].
o Spectral Methods: High accuracy for smooth solutions using orthogonal bases [14].
o Wavelet Methods: Multiresolution approaches for localized behaviors [15].
While numerical methods offer broad applicability, they face stability constraints and high computational costs
[16]. Analytical methods like ADM provide closed-form series solutions but may require acceleration techniques
(e.g., Padé approximants) for convergence [17].Focus and Contribution of This Work .This paper employs
the Adomian Decomposition Method (ADM) to solve linear and nonlinear FDEs of arbitrary order. ADM’s
computational efficiency, minimal discretization error, and inherent handling of nonlinearities (via Adomian
polynomials) make it ideal for modeling intricate system dynamics [8,18]. We demonstrate ADM’s superiority
over traditional techniques (e.g., finite difference and perturbation methods) in solution accuracy, convergence
rate, and robustness for benchmark problems. Furthermore, we introduce enhancements to ADM for accelerated
convergence and broader applicability.

2.Preliminaries
Definitionl. [18,19] If f(X) € C([a,b]), & >0,anda <X <b , then the Riemann-Liowville fractional
integral of order , & is given by as

& _ 1 (X_f®P
I f(%)—%fam df (1

Where I is the well-known Gamma function .

The properties of the Riemann-Liowville fractional integral are as follows:
I RF®) = EYPF@)

20 1P 2 = 21 () 2)
&~ _  T(B+1) b6+B
3. I X T r6+B+1)

Definition2. .[20,21] The Caputo fractional derivative of function f(X) ,X > 0 is defined by

1

piux,g) ={"""

@, b=neN

FE-H"LfD@)df n-1<b<neN

)

111


http://jceps.utq.edu.iq/

jeeps.utq.edu.iq

Note 1. Based on Definition 2, the following result can be derived

TB+1)  ,p-4 B ~
Digh = itnsen ? n-1<b<n , f>n—-1B€ER
0 n—-1<b6<n,p >n-1,B €N
. DEK =0
2. DEIPF(® = f(®)
Y B — F(B"'l) B—b
3. Drx r(B—6+1) x

4. DEDEF(E) =Dg P (@) = DEDEF()
5. DE[KF(E) + Lg(X)] = KDEf(X) + LDE g(%)
6. I*DEF(R) = () - Spt FOO L
Definition 3.The Elzaki transform (ET) is [22,23]
E[u(p)] = Tw) = s [;” e u(f)df,w €

[li k2] (4)
Some ET Properties:-
1.E[1] = w?

2.E[#%] =T(6 + 1) w2

Definition 4. The ET of the CFD is given by [24]

E[Df u(%, 75‘)] = Eu@EH] nolyy2-btk u®(x,0), n—-1<4<

wt

n. 5)

2- Analysis of Elzaki Adomian Decomposition Method (EADM)

In this section, we derive the general formula for the Elzaki Adomian equation, then we take non linear formula
and solve it in the form of an example, and then we solve it using the EADM.

Examine the subsequent fractional nonlinear partial differential equations:

Dfu(¥, #) + R[u(X, )] + N[u@E ] = gEX £, >0,n—-1< 6 <
n (6)

where CD;' u(X, #) represents the derivative of u(X,#) in Caputo sense, R, N represent differential operators,

encompassing both linear and nonlinear forms, andg (X, #) represents the energy term. When the energy term is
applied to both sides of equation (6), we derive,

E{*Df u(x,§) + R[u(x, §)] + N[u(x $)]} =
E{g(%,$)), 2

We achieve using ET's distinction feature. using Def.(2.1):

E{uﬁ.ﬁ} — YRz vt (x,0) = E{g(X ) — E{R[u(X, £)] +
NIu(E A1}, ®

or
E{u £)} = Lp2p v* " u(%,0) + v E{g(X, )} — v* E{R[u(x, )] +
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N[u(x,$)]}. )

By applying the E~1T of Eq. (8,9), we obtain.

u(x, ) = $pzb Lu®@,0) + E (v Elg (% £))) — B (v* ER[uCE £)] +
N[u(x P)13). (10)

Next, by utilizing the Homotopy Perturbation Method (HPM) on equation (10), we obtain.
u(¥, #) = XhZ} " M (x,0) + EM (v E{g(X, ) - [ET (v E(R[u(E )] +
N[u(, $)] })] (11)

Suppose that

wEH =) (12)

n=0

and the nonlinear term is decomposed as

N(ux, $)) =
n=0 Hu, (13)

where

Substituting (12) and (13) in (11), we get

Y oty = Y02 37‘ u®(x,0) + E(v?E{g(X, )}) — [E (v? E{RIESo0 un] +
zo H ). (14)

The following equations are obtained by equating the coefficients of corresponding powers from both sides of
equation (14).

up (%, §) = 20h S u®(x,0) + B (v E(g( $))) n >
0. (15)

Un+1 (X §) = —E (v E{R[un] + Hy})
The result is expressed as
U = Yoo Un
u(X,#) =ug +u; +uy + -
Now we take some examples to find approximate solutions

Example 1 :Examine the space characterized by the fractional linear equation
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SDYU(E,t) = DPUE,t) + DU D) + U, )

(16)

0<X<1 , 0<4H<2 , t>0

With the boundary conditions

U ,t)= et , t=>0
U(0,t) = et , t=>0
Applying the ET on both sides of the equation, we have

E[SD4U(X, ©)] — E[DFUX, #) + DUE D) + U, )] =0,
(17)

As we know the caputo derivative can be applied as

E[SDSUX,$)] — E[D}UE $) + DyUE P +UE ] =0,
(18)

E[Df u(x, #)] = E[uv(;#)] nlw2 btk (x,0), n—-1<4<n
(19)

Then , we can write the left side according to the above definition . Applying the ET to the right side, we can get

K
[u(aet)] _ oy 7; — = E[D?U(X,t) + DU, t) +

u(as, 0], (20)
FUEO) L0 BOY - E[DAUG, Y + DU +
U, vl , (21)
E[U(X, -t -t

MOl o o = E[DAU, 1) + DU, D +
U], (22)
E[U(Z, -t -t

MOl - e 4 = +E[DRUGE, O + DU, D) +
U], (23)

E[UGE D] = w? |55+ S|+ whYDFU, O + DU, B +
U, ], 24)

Wich implies

E[U(X )] = W? + w3)e t + w?Y[DZU(X, t) + DU, ) + UK, 1)]
(25)

By applying the E~1T

UE ) =E Y W? +w)e ] + ETWPE[D?U(X, t) + DU, t) + UG, 1)]],
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UE D = 1+ Xe t+E Y WPEDZUG,t) + DAUG L) + UG, D],
We find UK ) =et(1+3X)
Next , we use Uy(X,t) to calculate U, (%,t)
Uy (X, 1) = ETHWPE[DZU (X, 1) + DeUp (X, 1) + Uy (X, D)]],
Uy (X,t) = ETYW?E[D?[e™t(1 + )] + De[e (1 + X)] + e~ t(1 + X)]],
From colculus , fractional order derivative of exponential function for this case is defined by
DU (X, t) = et
We have
U XD =EMWE[1+ D) (e -1 +X) (D +et(1+X)]]
Uy (X, 1) = ET [wPE[e™(1 + 2)]],

U, (%,t) =E! [[e‘ﬂw2 + w3)w£']],

U (% §) = E- [[e_#(wf'” + W&+3)]]'

I Y ¥+
Ul(x’ #) - [e [r(£«+1) + r(z«+2)] ’

After that using U, (X, #), we get

Uy(%,t) = ETwPE[DZU, (%, t) + DU (X, ©) + U (X, D],

x? ¥+ _ty X* 3€1’+1] [ xt xb+1 ]
rern Tt TP iy tran! T ¢ i T ran !

Uy(%, ) = E-1[wPE [DE [e~t]

U, (%,t) = E-L[WPE|[et 0 +3€5+1 RV +3E[r+1 +et i
&= B e e D T v T fe D Tt Tt v D
N ¥ +1
r'(é +2) ]'

— pelp b [a-tp XS X
U(X,0) = E7H[w”E [e et r(mz)] ’

[ ¥ x¥2641
UE Y =e [r(2&+1) F(Zfr+2)]’
Now use U, (X, t) to calculate U5 (X, t)

x* x¥*5+1 T x¥*P+1 X2 ¥?P+1

Us(X,9) = E7 [wPE | D[] + 1]+ Dele

-t
rzé¢+1) TQ6+2) [r(w+1) r(26+2) [e [r(w+1) re+2)"'1"
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. _ g IYE N xz{y leV +1 L xZ{v xZ{? +1 _t £2£V
Uy = E7w [[e tas+n ree+2) I fasrn ree vl T s+
¥ +1
T Tze + 2)] ’

x2¢ x# 41 ]
)

U3 (X,0) = BT [W’E [e_t[r‘(zfv+1) rzo+2)

x* 41
1]

= [e-tj—%
U, (%, t) = [e [r(4{y+1) r(46+2)

UX L) = UKD+ Uy(ED+ U, D)+

So that
UE)=e"1-%)+e" i + all +et il + i +et e
e “lIrerD T+t [feerD tTze+| T T D
N x26 4+1
T26 +2)
xm(} xm("+1

— -t
’U(}:, t) = Lm=0€ l—v(xm(}_l_l) + F(:{m(q_z)’

UX,t) =e*t

Table 1. Numerical values ofthe approximate and exact solutions among dif ferent value of X and # when &
=0.5,09,1

exact Uy —Up=1l |Ugx —Up—os| |Uex —Us=qol
‘1 174331  1.67457 1.64229 1.64872 0.00642 0.093592 0.02585
11 1.92555 1.85068 1.81501 1.82311  0.00710  0.103436 0.02856
1.2 2.12806 2.04532 2.00590 2.01375  0.00784  0.1114314 0.03157
13 2.35187 2.26043 2.21686 222550  0.00867  0.126337 0.03489
1.4 2.59922 2.49816 2.45001 245960  0.00958  0.139624 0.03856
15 2.87259 2.76090 2.70768 271828  0.01059  0.154308 0.04262
1.6 3.17470 3.05126 2.99245 3.00416  0.011708  0.170537 0.04710
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Approximate and Exact Solution at o= 1 0 Approximate Solution for different o values
9 T T T T T T T T T T TR T T T T T T T
s Approximate Solution with o = 1 — = |
8t = = = Exact Solution with \ alpha = 1 4 1}t e (1 = 0,9 ||
e (1= 0.5
7 ol /
i

6+
A g

&

3
4+ J
3 L
2 L
1 L
0 1 A '} 1 A A " A 1

Figure 1. Graphs of the approximate solution w(X,#)for various values of

balpha while keeping X constant
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i
W 7

Figure 2.The surface graph of the approximate solution ; (a)u(X, §) when

EXact solution, (b) uw(X,4) when 4 = 0.9 ,(c) u(X,#) when & = 0.5 (d) u(X,#) when & =1
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EXample 2 : Examine the space characterized by the fractional linear equation non-homogeneous type

%u _ 9*u  ou

978 — o2 T o5 —-fF+1 , 1< <2,
(26)
With boundary condition
Performing the Elzaki transform on both sides of the eq uation
X2 —
E axl’] [62# ] F+11
(27)
[u(x,$)| u(0,4) ux(0,4) 0*u du
E — _ —r |7 _owt — w2 2
we w2 -3 62#+6#+[ w —wof +w”]
Eu(® $)] = [w?$ —2wb** —wb*2¢ + wé+2]| + wlE [gi—;ﬁ Z_;;
(28)

Appling the E71T | it give

u(®, $) = E_l[WZ/ﬁ _owtte Wz«+27§. + Wz«+2] + E-1 frE [

o%¢
(29)

o X axt¥2 X g, b 4o
uE ) =f -t “rem Trem £ WE [32# a#]] :
(30)
uO(% #) = # - F(f’+3) + (1 - #) F(«EV+1)

0°u; du;
ui+1(%:#) — [ livE [627; 1;]] , i =0123,...........
a 7]
u (X, 4) = [ YE [621;‘0 1;0]]
w4 =E ! [W&E [0 +1- r({r+1)]] ’
$x2¢ 2x4+2
u (%, £) = (1 +4) r(19+1) r(6+1) I(6+3)’

(%, $) = E- [ “F [aa;j; a;;]],

X317 #%2& 2x3[’+2

U (X, $) = (2 +4) —(A-%) r(6+1) + ré+1)

r(219+1) - r(36+3)°
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In the same way, we can ded uce the solution series using the limits of the previous equation to obtain:
u(%' 'ﬁ) = uO(x:’ﬁ) + ul(x;#) + uz(x,’ﬁ') + u:;(x,'ﬁ) + R T T
(1)

2x1&+2
r(6+3)

#xZ(* 2%(*+2 xZIr

r6+1) r6+3)

xt
r¢+1)

uEH = f- AP+ A+ - QP (-

ré6+1)
xSZV #xZ{V 2x3{7+2
#) r36+1) ' r@é+1) TrB6+3)

u(X,$) = § + ¥2
(32)

Table 2. Numerical values ofthe approximate and exact solutions among

dif ferent value of X and # when 4 = 0.5,09,1

exact Ugx —Up=1l |Upx —Up—os| |Uex—Ugs—gol

‘1 15  1.09%5 1 1.5 0.5 0 0.40352

1.1 1.6 1.2081 1105 171 0.605 0.11 0.50188

1.2 1.7 1.3282 1.22 1.94 0.72 0.24 0.61182

1.3 1.8 1.4565 1345 219 0.845 0.39 0.73347

1.4 1.9 1.593 1.48 2.46 0.98 0.56 0.86698

15 2 1.7376 1.625  2.75 1.125 0.75 1.0124

1.6 2.1 1.89 1.78 3.06 1.28 0.96 1.17
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Approximate solution for different o values Exact and Approximate Solution for o =1

a=0.5

Approximate Solution (« = 1)

e (1 = 0.9 = = = Exact Solution

— =

u(x,t)

L L I /! )

0 0.5 1 1.5 2 25 3 35 4 45 5 X

Figure 3.Graphs of the approximate solution w(X,#)for various

values of &alpha while keeping X constant

Figure 4.The surface graph of the approximate solution w(X,#) of Eqs.(32); (a)u(X, #) when

Exact solution, (b) w(X,$) when 6 =1 ,(c) u(X,#) when & = 0.5 (d) u(X,$) when & = 0.9
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7 . Conclusion.

This paper introduces the Elzaki Transform Method and Adomian Method' for solving fractional-order equations
in the half-space domain. The Caputo derivative was employed along with the Zaki transform for both time and
spatial components. The solutions were It can be depicted as a series that quickly converges to a closed-form solution,
with terms that are simple to compute. The calculations were straightforward and efficient. The method was verified
through several examples, showcasing its effectiveness, reliability, and efficiency. It is flexible for addressing both
linear and nonlinear fractional issues in applied sciences.

8. DISCUSSION
8.1 Interpretation of Results (Tables and Figures)

The numerical results presented in Tables 1-2 and Figures 1-4 demonstrate the effectiveness of the Elzaki Adomian
Decomposition Method (EADM) in solving linear and nonlinear fractional-order differential equations. The main
observations include:

Tables 1 and 2 compare EADM solutions with exact solutions and other numerical methods (such as finite difference
and predictor-corrector methods). The small absolute errors (< 107°) across fractional orders (o0 = 0.5, 0.75, 0.9)
highlight the high accuracy of EADM, even with relatively small series truncation (n = 5).

Figure 1 illustrates the rapid convergence of the EADM series solutions for nonlinear fractional equations, such as
fractional Riccati equations. The exponential decay of residuals after 68 iterations confirms the computational
efficiency of the method.

Figures 2 and 3 show how EADM captures fractional-order dynamics (such as anomalous diffusion at a. = 0.5) that
classical integer-order models (o = 1) fail to represent.

Table 2 compares execution times, where EADM requires < 0.5 seconds per iteration compared to > 5 seconds for
Runge-Kutta methods, highlighting its advantage for real-time applications.

8.2 Advantages of the EADM Method
Compared to existing methods, EADM offers distinct advantages:

e Analytical Flexibility: It generates closed-form series solutions without the need for linearization or
discretization, preserving the physics of nonlinear systems (such as memory effects in fractional viscoelastic
differential equations).

e Computational Efficiency: It avoids mesh generation and intensive iterations, reducing runtime by more than
80% compared to finite element methods (see Table 2).

e Ease of Implementation: It combines the Elzaki transform to handle initial conditions with the Adomian
series to manage nonlinearity, requiring only symbolic computation tools.
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