DOI: <u>http://doi.org/10.32792/utq.jceps.10.02.012</u>

Cartesian Product of Intuitionistic Fuzzy Modular Spaces

Mohammed Jawad Kadhim , Mohammed Jassim Mohammed

(Department of Mathematics, College of Education for Pure Science, Thi- Qar University, Thi-

Qar, Iraq)

Received 26/07/2020 Accepted 6/09/2020 Published 30/11/2020

This work is licensed under a <u>Creative Commons Attribution 4.0 International License.</u>

Abstract:

In this paper, we define the concepts of intuitionistic fuzzy modular space and cartesian product in intuitionistic fuzzy modular space. Also, some properties of them are considered.

Keywords : modular space, cartesian product, fuzzy modular space, intuitionistic fuzzy modular space.

1. Introduction:

The concept of fuzzy sets was introduced by Zadeh [8]in1965 and study the it properties .1986, Atanassov [1] defined the notion of intuitionistic fuzzy set. The concept of modular space was introduced by Nakano [4] in 1950. Soon after, Musielak and Orlicz [3] redefined and generalized the notion of modular space in 1959. The concept of fuzzy modular space was introduced by Young Shen and Wei Chen [7] in 2013. The definition of cartesian product of two fuzzy modular spaces was introduced by Noor F. Al-Mayahi and Al-ham S. Nief [5] in 2019 and prove some results related with it .In this paper, we define the concepts of intuitionistic fuzzy modular space and cartesian product in intuitionistic fuzzy modular space . Also, some properties will be considered.

2. Preliminaries: Definition (2.1)[8] :

Let *X* be a non-empty set and Let I = [0,1] be the closed interval of real numbers. A fuzzy set μ in *X* (or a fuzzy subset form *X*) is a function from *X* to I = [0,1].

If μ is a fuzzy set in *X* then μ is described as characteristic function

which connects every $x \in X$ to real number $\mu(x)$ in the interval $I. \mu(x)$ is

the grade of membership function to x in μ . μ can be described completely as:

 $\mu = \{\langle x, \mu(x) \rangle : x \in X, 0 \le \mu(x) \le 1\}$ or $\mu = \{\frac{\mu(x)}{x} : x \in X\}$ where $\mu(x)$ is called the membership function for the fuzzy set μ . The family of all fuzzy sets in *X* is denoted by I^X .

Definition (2.2)[1]:

Let *X* be a non-empty set . An intuitionistic fuzzy set *A* is given by : $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}, \text{where the functions } \mu_A : X \to I \text{ and} \}$

 $v_A: X \to I$ denote the degree of membership and the degree of nonmembership to the set *A* respectively, and $0 \le \mu_A(x) + v_A(x) \le 1$, for each $x \in X$. The set of all intuitionistic fuzzy sets in *X* denoted by *IFS(X)*.

Definition (2.3)[4]:

Let X be a vector space over a field F. (1) A function $\rho: X \to [0, \infty]$ is called modular if (a) $\rho(x) = 0$ if and only if x = 0; (b) $\rho(\alpha x) = \rho(x)$ for $\alpha \in F$ with $|\alpha| = 1$, for all $x \in X$; (c) $\rho(\alpha x + \beta y) \le \rho(x) + \rho(y)$ iff $\alpha, \beta \ge 0$ whenever $\alpha + \beta = 1$, for all $x, y \in X$. If (c) is replaced by (c') $\rho(\alpha x + \beta y) \le \alpha \rho(x) + \beta \rho(y)$ iff $\alpha, \beta \ge 0, \alpha + \beta = 1$ for all $x, y \in X$, then the modular ρ is called convex modular. (2) A modular ρ defines a corresponding modular space , i. e., the space X_{ρ} given by $X_{\rho} = \{x \in X: \rho(\alpha x) \to 0 \text{ as } \alpha \to 0\}.$

Definition (2.4)[6]:

Let * be a binary operation on the set I = [0,1], i.e * : $[0,1] \times [0,1] \rightarrow [0,1]$ is a function, then * is said to be t-norm (triangular-norm) on the set *I* if * satisfies the following axioms: (1) * is commutative and associative. (2) a * 1 = a for all $a \in [0,1]$. (3) If $b, c \in I$ such that $b \leq c$, then $a * b \leq a * c$ for all $a \in I$. In addition, if * is continuous then * is called a continuous t-norm. **Theorem (2.5)[2]:** Let * be a continuous t-norm on the set I = [0,1], then: (1) 1 * 1 = 1

(2) 0 * 1 = 0

(3) 0 * 0 = 0

 $(4) a * a \le a, \forall a \in I$

(5) If $a \le c$ and $b \le d$, then $a * b \le c * d$ for all $a, b, c, d \in I$.

Definition(2.6)[7]:

The 3- tuple $(X, \mu, *)$ is said to be a fuzzy modular space (shortly, F-modular space) if X is a vector space, * is a continuous t-norm and μ is a fuzzy set on $X \times (0, \infty)$ satisfying the following conditions, for all $x, y \in X, t, s > 0$ and $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$: (*FM*. 1) $\mu(x, t) > 0$, (*FM*. 2) $\mu(x, t) = 1$ for all t > 0 if and only if x = 0,

 $(FM.3) \mu(x,t) = \mu(-x,t),$

 $(FM.4) \mu(\alpha x + \beta y, t + s) \ge \mu(x, t) * \mu(y, s),$

 $(FM.5) \mu(x,.): (0,\infty) \rightarrow (0,1]$ is continuous.

Generally, if $(X, \mu, *)$ is fuzzy modular space, we say that $(\mu, *)$ is a fuzzy modular on X.

Definition(2.7)[6]:

Let \diamond be a binary operation on the set I = [0,1], then \diamond is said to be t-conorm (triangular-conorm) on the set *I* if \diamond satisfies the following axioms:

(1) \Diamond is commutative and associative,

(2) $a \diamond 0 = a$ for all $a \in [0,1]$,

(3) If $b, c \in I$ such that $b \leq c$, then $a \diamond b \leq a \diamond c$ for all $a \in I$.

In addition, If \Diamond is continuous then \Diamond is called a continuous t-conorm.

Theorem (2.8)[2]:

Let \diamond be a continuous t-conorm on the set I = [0,1], then :

(1) $0 \diamond 0 = 0$

(2) 1 ◊ 0 = 1

(3) 1 ◊ 1 = 1

(4) $a \diamond a \ge a, \forall a \in I$

(5) If $a \le c$ and $b \le d$, then $a \diamond b \le c \diamond d$ for all $a, b, c, d \in I$

3. Main Results:

Definition (3.1):

The 5-tuple ($X, \mu, \nu, *, \emptyset$) is said to be an intuitionistic fuzzy modular space (shortly, IF-modular space) if X is a vector space, * is a continuous t-norm, δ is a continuous t-conorm and μ , ν are fuzzy sets on $X \times (0, \infty)$ satisfying the following conditions: for all $x, y \in X, t, s > 0$ and $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$, $(IFM.1) \mu(x,t) + v(x,t) \le 1,$ $(IFM.2) \mu(x,t) > 0,$ $(IFM.3) \mu(x,t) = 1$ if and only if x = 0, $(IFM.4) \mu(x,t) = \mu(-x,t),$ $(IFM.5) \mu(\alpha x + \beta y, t + s) \ge \mu(x, t) * \mu(y, s),$ (*IFM*. 6) $\mu(x, .): (0, \infty) \rightarrow (0, 1]$ is continuous, (IFM.7) v(x,t) < 1,(*IFM*.8) v(x,t) = 0 if and only if x = 0, (IFM.9) v(x,t) = v(-x,t), $(IFM.10) v(\alpha x + \beta y, t + s) \le v(x, t) \diamond v(y, s),$ (IFM.11) $v(x,.): (0,\infty) \rightarrow (0,1]$ is continuous.

Definition(3.2):

Let $(X, \mu, v, *, \delta)$ be an intuitionistic fuzzy modular space, Then 1) A sequence $\{x_n\}$ in X is said to be convergent to $x \in X$, if for every $\epsilon \in (0,1)$ and t > 0, there exists $n_0 \in Z^+$ such that $\mu(x_n - x, t) > 1 - \epsilon$ and $\nu(x_n - x, t) < \epsilon$ for all $n \ge n_0$. (or equivalently $\lim_{n \to \infty} \mu(x_n - x, t) = 1$ and $\lim_{n \to \infty} \nu(x_n - x, t) = 0$).

2) A sequence $\{x_n\}$ in X is said to be Cauchy if for every $\epsilon \in (0,1)$ and t > 0, there exists $n_0 \in Z^+$ such that $\mu(x_n - x_m, t) > 1 - \epsilon$ and $v(x_n - x_m, t) < \epsilon$ for all $n, m \ge n_0$. (or equivalently $\lim_{n,m\to\infty}\mu(x_n-x_m,t)=1 \text{ and } \lim_{n,m\to\infty}\nu(x_n-x_m,t)=0).$

3) An intuitionistic fuzzy modular space $(X, \mu, \nu, *, \delta)$ is said to be Complete if every Cauchy sequence is convergent.

Definition(3.3):

Let $(X, \mu, \nu, *, \delta)$ be an intuitionistic fuzzy modular space. The open ball B(x, r, t) and the closed ball B[x, r, t] with center $x \in X$ and radius 0 < r < 1, t > 0 are defined as follows: $B(x, r, t) = \{y \in X : \mu(x - y, t) > 1 - r \text{ and } v(x - y, t) < r\},\$ $B[x, r, t] = \{y \in X : \mu(x - y, t) \ge 1 - r \text{ and } v(x - y, t) \le r\}.$

Definition(3.4):

Let $(X, \mu_1, \nu_1, *, \delta)$ and $(Y, \mu_2, \nu_2, *, \delta)$ be two intuitionistic fuzzy modular spaces. the cartesian product of $(X, \mu_1, \nu_1, *, \delta)$ and $(Y, \mu_2, \nu_2, *, \delta)$ is the product space $(X \times Y, \mu, \nu, *, \emptyset)$ where $X \times Y$ is the cartesian product of the sets X and Y and μ , v are functions $\mu, \nu: (X \times Y \times (0, \infty)) \rightarrow [0,1]$ is given by: $\mu((w, z), t) = \mu_1(w, t) * \mu_2(z, t),$ $v((w,z),t) = v_1(w,t) \diamond v_2(z,t)$ for all $(w,z) \in X \times Y$ and t, > 0.

Theorem(3.5):

Let $(X, \mu_1, \nu_1, *, \delta)$ and $(Y, \mu_2, \nu_2, *, \delta)$ be two intuitionistic fuzzy modular Spaces .Then $(X \times Y, \mu, v, *, \emptyset)$ is an intuitionistic fuzzy modular space.

Proof:

Let $(w, z) \in X \times Y$, we have 1) since $\mu_1(w, t) > 0$, $\mu_2(z, t) > 0 \forall t > 0$, then $\mu((w, z), t) = \mu_1(w, t) * \mu_2(z, t) > 0$ and since $v_1(w, t) < 1$, $v_2(z, t) < 1 \forall t > 0$, then $v((w,z),t) = v_1(w,t) \diamond v_2(z,t) < 1.$ 2) $\mu_1(w, t) = 1 \Leftrightarrow w = 0$, also $\mu_2(z, t) = 1 \Leftrightarrow z = 0$. Then $\mu_1(w,t) * \mu_2(z,t) = 1 \Leftrightarrow (w,z) = 0$. Hence $\mu((w,z),t) = 1 \Leftrightarrow$ $(w, z) = 0 \forall t > 0 \text{ and } v_1(w, t) = 0 \Leftrightarrow w = 0, \text{ also } v_2(z, t) = 0 \Leftrightarrow z = 0.$ Then $v_1(w,t) \diamond v_2(z,t) = 0 \Leftrightarrow (w,z) = 0$. Hence $v((w,z),t) = 0 \Leftrightarrow (w,z) = 0 \forall t > 0$. 3) since $\mu_1(w, t) = \mu_1(-w, t), v_1(w, t) = v_1(-w, t) \ \forall t > 0$ and $\mu_2(z,t) = \mu_2(-z,t), v_2(z,t) = v_2(-z,t) \ \forall t > 0$, then $\mu((w, z), t) = \mu_1(w, t) * \mu_2(z, t) = \mu_1(-w, t) * \mu_2(-z, t)$ $= \mu(-(w,z),t)$ and

 $v((w,z),t) = v_1(w,t) \diamond v_2(z,t) = v_1(-w,t) \diamond v_2(-z,t)$

$$= v(-(w, z), t).$$
4) $\mu(\alpha(w_1, z_1) + \beta(w_2, z_2), t) \ge \mu((\alpha w_1 + \beta w_2, \alpha z_1 + \beta z_2), t)$
 $\ge \mu_1(\alpha w_1 + \beta w_2, t) * \mu_2(\alpha z_1 + \beta z_2, t)$
 $\ge \mu_1(w_1, t) * \mu_1(w_2, t) * \mu_2(z_1, t) * \mu_2(z_2, t)$
 $\ge \mu_1(w_1, t) * \mu_2(z_1, t) * \mu_1(w_2, t) * \mu_2(z_2, t)$
 $\ge \mu((w_1, z_1), t) * \mu((w_2, z_2), t) \text{ and}$
 $v(\alpha(w_1, z_1) + \beta(w_2, z_2), t) \le v((\alpha w_1 + \beta w_2, \alpha z_1 + \beta z_2), t)$
 $\le v_1(\alpha w_1 + \beta w_2, t) \land v_2(\alpha z_1 + \beta z_2, t)$
 $\le v_1(w_1, t) \land v_1(w_2, t) \land v_2(z_1, t) \land v_2(z_2, t)$
 $\le v_1(w_1, t) \land v_2(z_1, t) \land v_1(w_2, t) \land v_2(z_2, t)$
 $\le v((w_1, z_1), t) \land v((w_2, z_2), t)$
5) since $\mu_1(w, t): (0, \infty) \to (0, 1]$ is continuous , $\mu_2(z, t): (0, \infty) \to (0, 1]$
is continuous and since $v_1(w, t): (0, \infty) \to (0, 1]$ is continuous ,
 $v_2(z, t): (0, \infty) \to (0, 1]$ is continuous and
 $\nu((w, z), t): (0, \infty) \to (0, 1]$ is continuous.

<u>Theorem(3.6):</u>

Let $\{w_n\}$ be a sequence in intuitionistic fuzzy modular space $(X, \mu_1, \nu_1, *, \diamond)$ which converges to w in X and $\{z_n\}$ is a sequence in the intuitionistic fuzzy modular space $(Y, \mu_2, \nu_2, *, \diamond)$ which converges to z in Y. Then $\{(w_n, z_n)\}$ is a sequence in intuitionistic fuzzy modular space $(X \times Y, \mu, \nu, *, \diamond)$ converges to (w, z) in $X \times Y$. **Proof**:

Proof:

To prove that sequence $\{(w_n, z_n)\}$ in $X \times Y$ converges to (w, z)we show that $\lim_{n \to \infty} \mu((w_n, z_n) - (w, z), t) = 1$ and $\lim_{n \to \infty} v((w_n, z_n) - (w, z), t) = 0$ by theorem(3.5) $(X \times Y, \mu, v, *, \emptyset)$ is an intuitionistic fuzzy modular space since $\{w_n\}$ be a sequence in $(X, \mu_1, v_1, *, \emptyset)$ convergence to wthen $\lim_{n \to \infty} \mu_1(w_n - w, t) = 1$ and $\lim_{n \to \infty} v_1(w_n - w, t) = 0$ since $\{z_n\}$ be a sequence in $(Y, \mu_2, v_2, *, \emptyset)$ convergence to zthen $\lim_{n \to \infty} \mu_2(z_n - z, t) = 1$ and $\lim_{n \to \infty} v_2(z_n - z, t) = 0$ then that $\lim_{n \to \infty} \mu((w_n, z_n) - (w, z), t) = \lim_{n \to \infty} \mu_1(w_n - w, t)$ $* \lim_{n \to \infty} \nu((w_n, z_n) - (w, z), t) = \lim_{n \to \infty} v_1(w_n - w, t) \emptyset \lim_{n \to \infty} v_2(z_n - z, t) = 0 \emptyset 0 = 0.$ Hence $\{(w_n, z_n)\}$ converges to (w, z).

<u>Theorem(3.7):</u>

Let $\{w_n\}$ be a Cauchy sequence in intuitionistic fuzzy modular space $(X, \mu_1, \nu_1, *, \emptyset)$ and $\{z_n\}$ is a Cauchy sequence in intuitionistic

fuzzy modular space $(Y, \mu_2, \nu_2, *, \diamond)$ then $\{(w_n, z_n)\}$ is a Cauchy sequence in intuitionistic fuzzy modular space $(X \times Y, \mu, \nu, *, \diamond)$.

Proof:

By theorem (3.5) $(X \times Y, \mu, v, *, \delta)$ is intuitionistic fuzzy modular space since $\{w_n\}$ be a Cauchy sequence in intuitionistic fuzzy modular space $(X, \mu_1, v_1, *, \delta)$ then $\lim_{n,m\to\infty} \mu_1(w_n - w_m, t) = 1$ and $\lim_{n,m\to\infty} v_1(w_n - w_m, t) = 0$ since $\{z_n\}$ be a Cauchy sequence in intuitionistic fuzzy modular space $(Y, \mu_2, v_2, *, \delta)$ then $\lim_{n,m\to\infty} \mu_2(z_n - z_m, t) = 1$ and $\lim_{n,m\to\infty} v_2(z_n - z_m, t) = 0$ then $\lim_{n,m\to\infty} \mu_1(w_n, z_n) - (w_m, z_m), t) = \lim_{n,m\to\infty} \mu_1(w_n - w_m, t)$ $* \lim_{n,m\to\infty} \mu_2(z_n - z_m, t) = 1 * 1 = 1$ and $\lim_{n,m\to\infty} v((w_n, z_n) - (w_m, z_m), t) = \lim_{n,m\to\infty} v_1(w_n - w_m, t)$ $\delta \lim_{n,m\to\infty} v_2(z_n - z_m, t) = 0 \delta 0 = 0$.

Hence $\{(w_n, z_n)\}$ is a Cauchy sequence in $(X \times Y, \mu, \nu, *, \delta)$.

Theorem(3.8):

If $(X \times Y, \mu, \nu, *, \delta)$ is an intuitionistic fuzzy modular space, then? $(X, \mu_1, \nu_1, *, \delta)$ and $(Y, \mu_2, \nu_2, *, \delta)$ are intuitionistic fuzzy modular spaces by defining $\mu_1(w,t) = \mu((w,0),t), v_1(w,t) = v((w,0),t)$ and $\mu_2(z,t) = \mu((0,z),t), v_2(z,t) = v((0,z),t)$ for all $w \in X, z \in Y$ and t > 0. **Proof:** 1) $\mu_1(w,t) = \mu((w,0),t) > 0, v_1(w,t) = v((w,0),t) < 1 \ \forall w \in X$ 2) For all $t > 0, 1 = \mu_1(w, t) = \mu((w, 0), t) \Leftrightarrow w = 0$ and $0 = v_1(w, t) = v((w, 0), t) \Leftrightarrow w = 0.$ 3) For all t > 0, $\mu_1(w, t) = \mu_1(-w, t) = \mu(-(w, 0), t)$ and $v_1(w,t) = v_1(-w,t) = v(-(w,0),t)$. 4) $\mu_1(\alpha w + \beta w_1, t) = \mu \big((\alpha w + \beta w_1, 0), t \big)$ $\geq \mu((w,0),t) * \mu((w_1,0),t) \geq \mu_1(w,t) * \mu_1(w_1,t)$ and $v_1(\alpha w + \beta w_1, t) = v((\alpha w + \beta w_1, 0), t)$ $\leq v((w,0),t) \diamond v((w_1,0),t) \leq v_1(w,t) \diamond v_1(w_1,t)$. 5) $\mu_1(w, .) = \mu((w, 0), .)$ and $v_1(w, .) = v((w, 0), .)$ are continuous from $(0, \infty)$ to (0,1] for all $w \in X$. Then $(X, \mu_1, \nu_1, *, \emptyset)$ is intuitionistic fuzzy modular space Similarly we can prove that $(Y, \mu_2, \nu_2, *, \delta)$.

Theorem(3.9):

Let $(X, \mu_1, \nu_1, *, \delta)$ and $(Y, \mu_2, \nu_2, *, \delta)$ be two intuitionistic fuzzy modular spaces, then the product $(X \times Y, \mu, \nu, *, \delta)$ is complete intuitionistic fuzzy modular space if and only if $(X, \mu_1, \nu_1, *, \delta)$ and $(Y, \mu_2, \nu_2, *, \delta)$ are

complete intuitionistic fuzzy modular spaces.

Proof: Suppose that $(X \times Y, \mu, \nu, *, \delta)$ is complete intuitionistic fuzzy modular space Since $(X, \mu_1, \nu_1, *, \delta)$ and $(Y, \mu_2, \nu_2, *, \delta)$ are intuitionistic fuzzy modular spaces By theorem (3.8)Let $\{w_n\}$ be a Cauchy sequence in $(X, \mu_1, \nu_1, *, \emptyset)$ Then $\{(w_n, 0)\}$ be a Cauchy sequence in $X \times Y$ Since $X \times Y$ is complete intuitionistic fuzzy modular space Then there is (w, 0) in $X \times Y$ such that $\{(w_n, 0)\}$ convergent to (w, 0)Now, $\lim_{n \to \infty} \mu_1(w_n - w, t) = \lim_{n \to \infty} \mu((w_n - w, 0), t) = 1$ and $\lim_{n\to\infty}v_1(w_n-w,t)=\lim_{n\to\infty}v\big((w_n-w,0),t\big)=0$ Then (*X*, μ_1 , ν_1 , *, \diamond) is complete intuitionistic fuzzy modular space Similarly we can prove that $(Y, \mu_2, \nu_2, *, \emptyset)$ is complete intuitionistic fuzzy modular space. Conversely, suppose that $(X, \mu_1, \nu_1, *, \emptyset)$ and $(Y, \mu_2, \nu_2, *, \emptyset)$ are complete intuitionistic fuzzy modular spaces Let $\{(w_n, z_n)\}$ be a Cauchy sequence in $X \times Y$ since $(X, \mu_1, \nu_1, *, \delta)$ and $(Y, \mu_2, \nu_2, *, \delta)$ are complete intuitionistic fuzzy modular spaces then $\exists w \text{ in } X \text{ and } z \text{ in } Y \text{ such that } \{w_n\} \text{ convergent to } w \text{ and } \{z_n\}$ convergent to z. So $\lim_{n \to \infty} \mu_1(w_n - w, t) = 1$, $\lim_{n \to \infty} v_1(w_n - w, t) = 0$ and $\lim_{n \to \infty} \mu_2(z_n - z, t) = 1, \lim_{n \to \infty} v_2(z_n - z, t) = 0 \text{ then}$ $\lim_{n \to \infty} \mu((w_n, z_n) - (w, z), t) = \lim_{n \to \infty} \mu_1(w_n - w, t) * \lim_{n \to \infty} \mu_2(z_n - z, t)$ = 1 * 1 = 1 and $\lim_{n \to \infty} v((w_n, z_n) - (w, z), t) = \lim_{n \to \infty} v_1(w_n - w, t) \\ \lim_{n \to \infty} v_2(z_n - z, t)$ $= 0 \diamond 0 = 0$ Hence $\{(w_n, z_n)\}$ convergent to (w, z) in $X \times Y$.

Hence $(X \times Y, \mu, \nu, *, \delta)$ is complete intuitionistic fuzzy modular space.

4. References :

- [1] K. Atanassov, Intuitionistic fuzzy set, Fuzzy Sets and Systems 20, 87 – 96,1986.
- [2] J. Buckley and E. Eslami, An introduction to fuzzy logic and fuzzy Sets, New York: Physica-verlag, 2002.
- [**3**] J. Musielak, W. Orlicz, On modular spaces, Studia Math. vol. 18, pp. 49 65,1959.
- [4] H. Nakano, Modulared semi-ordered liner spaces, Tokyo, 1950.
- [5]F. Noori Al-Mayahi, S. Al-ham Nief, Some Properties of Cartesian

product of Two Fuzzy Modular spaces, Eng. &Tech. Journal, Vol. 6, Issue 5, pp. 9279 – 9281, May 2019.

- [6] B. Schweizer and A. Sklar, Statistical Metric Spaces, Pacific J. Math., 314 334, 10,1960.
- [7] Y. Shen and W. Chen, On Fuzzy Modular Spaces, Journal of
- Applied Mathematics, Vol. 2013, Article ID576237,8 pages, 2013. **[8]**L. A. Zadeh, Fuzzy sets, Information and Control, 338 353, 8, 1965.