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Abstract:
   This research introduces Ps-Group Spaces as a theoretical framework integrating topology and algebra. It transforms semi-open sets into Ps-Open Sets to analyze key properties like Ps-Harsdorf Spaces and Ps-Compactness. These spaces serve as fundamental structures linking mathematical algorithms with topological data analysis, enabling the exploration of complex space structures.
Studies show that Ps-Group Spaces provide complete separation and compactness, offering advantages over standard topological groups. Specialized mathematical models address dynamic system challenges, with applications in fluid dynamics, AI classification, and cryptocurrency market stability. The research highlights future directions in algebraic geometry and complex physical system analysis.
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1-Introduction 
Research on Ps-Group Spaces develops modern approaches that unify algebraic and topological theories. It builds on Ps-Open Sets and Ps-Compactness to introduce new theoretical properties and practical applications. This paper explores the fundamental concepts of these spaces, highlights key applications, and addresses existing research gaps.
1.1 Theoretical Background
Studies such as Khalaf and Asaad (2016) [1] show that Ps-Open Sets evolved  from Levine’s (1963) [2] semi-open  sets , providing  a framework  for  studying  connectivity  and  separation  in  topology.  Additionally, general topology research [3] offers a solid mathematical foundation for these concepts.
Since Ps-Compactness relates to compactness properties, recent studies [4, 5] have introduced new separation axioms and continuity properties within Ps-Group Spaces. Khelil (2023) [6] expanded these ideas by generalizing the Gromov-Harsdorf metric, enhancing the understanding of Ps-Compact Spaces. Contributions from algebraic topology [7] and computational topology [8] provide essential tools for analyzing these spaces in the context of homotopy and homology theories.

2. Significance of Practical Applications
Ps-Group Spaces play a crucial role in various fields, including:
	•	Mathematical Physics: Used to analyze quantum systems with unusual boundaries (Lee, 2011) [9], supported by Harsdorf distance computations [10].
	•	Artificial Intelligence: Applied in social network classification and dimensionality reduction, emphasizing the role of topology in machine learning (Zomorodi an, 2005) [8, 11].
	•	Mathematical Economics: Utilized in market equilibrium and cryptocurrency analysis, inspired by Debreu (1959) [12] and Shubin’s (1982) [13] game theory applications.
Due to their flexibility, Ps-Group Spaces offer a unified approach for analyzing complex systems and data structures, making them valuable for both theoretical and applied research.
2.1 Addressing Research Gaps
Although Ps-Open Sets and Ps-Compactness have been well studied, further research is needed to explore their connections with fractal geometry and Gromov-Harsdorf metrics in modern topology.
2.2 The objectives of this research are
1. PR-Open Sets work as a foundation that requires expansion to support group actions in topology study.
2.  The project aims to establish the basics of Ps-Group Spaces and their associated separation properties and investigate their compactness characteristics.
3.  This research examines practical implementations regarding weakly separated spaces for algebraic geometry while studying their applications in mathematical physics.
This research combines algebraic methods and topological theories to present a modern framework for understanding generalized topological spaces based on existing theoretical concepts.

3- Ps-open sets 
3.1 Definition
Space topology within semi-closed subsets includes PS-open members that expose complete visibility. X encompasses sets that result from unironing all PS-open sets defined by subsets of X [14].
3.2. Properties
1. The linkage of arbitrary collections of Ps-open sets results in a Ps-open set.
2. The intersection of two P-open sets remains totally unpredictable [14].
3.3. Example
[bookmark: _Hlk189994027] .If A is the set of rational numbers in X and B is the set of irrational numbers in X together with the singleton set {1/2

3.4 .Proposition
If the family of all  propene  sets  forms  a topology,  then the intersection  of Ps-open  sets  is Ps-open,  and  the family  of  Ps-open sets forms  a topology [14].
3.5 Examples
 with the topology τ= {ϕ, X, {a}}. Here {a} is Ps-open because it can be expressed as a union of semi-closed sets.
3.6 Definition
       is considered Ps-compact if there exists a finite subsetuch that 
for any Ps-open cover{α∈}of X [14].
3.7 Properties
Every compact space is Ps –compact but the converse is not true in general [14].
3.8 Examples
Let X=R (the set of real numbers) with a specific topology. Then X is Ps-compact but not compact because if we take the open cover of X .it cannot be reduced to a finite partial cover.
3.9. Theorem
Let  be a topological space, then is Ps-compact if and only if every net in  has a Ps-cluster point in .
Proof:( if X is Ps-compact.  Then every net in X has a Ps-cluster point.
Assume    is  an Ps-compact.  By definition, every Ps-open cover of X has a finite subcover.
Let   be a net in .
Assume, for contradiction, that the net does not have a Ps-cluster point.
This means that for every  there exists a Ps-open set such that is eventually outside ,i.e.,there exists  such that for all .The collection  forms a Ps-open cover of X.By Ps-compactness,there exists a finite subcoverthat covers X.Since the net does not have a Ps-cluster point, for each ,there exists an index beyond which the net is eventually outside Let FOR all for all i=1,2,...,n,contradicting the fact that is a cover of X.Therefore, the net must have a Ps-cluster point.
Conversely: If every net in X has a Ps-cluster point, then X is Ps-compact. Assume that every net in  has Ps –cluster point.
Let be a Ps-open cover of X. Assume for contradiction thatdoes not have a finite subcover.
Construct a net in X as follows: for each finite subcollectionof ,choose appoint .Since the cover does not have a finite subcover, such appoint exists for every finit subcollection.The net  has a Ps-closter point by assumption.
By definition of Ps-cluster point, every Ps-open set  intersects the net infinitely often.
However, the construction of the net ensures that for any finite subcollection contradicting the fact that  is a cover of X.
Therefore must have a finite subcover, and X is Ps-compact.
3.10 Corollary	
Let it be a topological space. Then it is Ps-compact if and only if every net in has a subnet that Ps-converges to a point in.
3.11 Proposition
For any space  the following statement are equivalent:
i.  is Ps-compact
ii. Every family of Ps-closed sets of  such that , then there exists a finite subset such that .

Proof:
 (i)
1.Assume X is Ps-compact. Let  be a family of Ps-closed sets such that  For each,define since is Ps-open .clearly.=.The collection {is a Ps-open cover of X.By Ps-comoactness of X, there exists a finite subset such that=
Thus, condition (ii) holds.
(ii)
. Assume condition (ii) holds.
Let { be a Ps-open cover of X,ie: X=For each,Let since is Ps-open,  is Ps-closed.Since{ covers X ,we have:By condition (ii), there exists a finite subset  such that: , there exist a finite subset such that .
Thus  is a finite subcover of { .Therefore X is Ps-compact. Hence the two conditions are equivalent.

4- Ps-Harsdorf Space
4.1 Definition
A space is called Ps- Hausdorff () if for any two distinct point can be separatd by disjoint Ps-open sets , and 
4.2 Example
i. let X= {a, b, c} with topology   then Ps-open sets  and Ps-closed {a}. Cl({a}) ={a} and interer int({a}) ={a}, also {a, b} Ps-open and cl ({a, b}) = {a, b}, int (cl ({a, b})) ={am} points can be separated albic in to sets Ps-open 
U={a}, V={b} separate a, b.
U= {a, b}, V={c} separate b, c. hence (X,) is 
ii. The discrete space is  space.
iii. The usual topology on  is space.
4.3 Remark
Every-space is -space. But the converse is not true in general. As the following example shows:
      Let  with the topology:
For each  and there exists an open set U such that 
For x=a, take U={a}, which excludes both n and c.
For x=betake U={am}, which excludes c.
For x=c, take U=X/{c}={am}, which excludes c.
Thus (X, is .
A space requires that for every pair of distinct points, there exist disjoint open sets containing each point.
The only open set containing c is Which also contains a and b, meaning no two distinct points can be separated by disjoint open sets. Thus, is not  .
Thus, is Ps-but not 
4.4 Theorem
A topological spaceis  if and only if every ps-convergent net in has a unique Ps-limit points.
Proof:
 Let   be a and be Ps-convergent net in   such that   and    with. Since  is  , there  exist disjoint Ps-open sets U and V such that By the definition of aPs-limit point ,for x there exists a subnet such that  eventually. similarly, for ,there exists a subnet such that eventually.Since ,these subnets are disjoint,contradicting the assumption that the net{ has two  Ps-limit  points . Hence x must be the unique Ps-limit point of  . Conversely: Assume every Ps-convergent net in X has a unique Ps-limit point. Suppose   are two distinct pointis. If  is not Ps-,then for every pair of Ps-open sets  such that We would have construct a net that alternates between And the neighborhoods around .This net would converge to both x and y , contradicting the assumption that Ps-convergent nets have unique Ps-limit points.Hence,X must satisfy the condition for being Ps-.
4.5 Definition
Let  be a set   be a family of subset of  , where eachis a Ps-open set in a Ps-topological space. the collection  has the finite intersection property, if and only if the intersection of any finite sub collection of   is non empty. That is .
4.6 Proposition

Let  be a space then the following statements are equivalent:
i.  is an Ps-Hausdorff.
ii. Ps-limit points in   are unique.
iii. The diagonal   is an Ps-closed in .
Proof:
(i):by Theorem (2.4)
 (ii) Suppose  is not an Ps-closed then for some . A net in be an Ps- converge to then  is a net in   and Ps-converging to both  and   which is contradiction.
(iii) Suppose  is an Ps-closed. If  in X then = hence there is a basic P- neighborhood of  in such that  . Then  and  are disjoint  Ps- neighborhoods of  and (respectively). Thus  is an Ps-Hausdorff.
4.7 Theorem
i. Every  The intersection of  Ps-compact and Ps-closed subset is Ps-compact.
i.e. if is Ps-compact and  is Ps-closed, then  is Ps-compact.
ii. Every Ps-compact subset of an Ps- Hausdorff space is an Ps-closed.
i.e If  is Ps-compact and X is a Ps- space then K is Ps-closed
4.8 Definition
A subset  B of a space  X  is  said  to be Ps-compact  relative  to  X  if  for  every  cover  of  B  by  Ps-open sets  of X  has  finite  sub  cover  of  B . The sub set  B  is Ps-compact  if  it  is  Ps-compact as a sub space.
4.9 Proposition
 Let  be  an Ps-open subset of a space  and let  . Then  is an Ps-compact set in  if and only if  is an Ps-compact set in  .
Proof: 
  is Ps-compact in. To be  is Ps-compact in   We must  Prove  that  any  cover Ps-open for  in  has a finite  partial cover.
  Let  be an Ps-open cover in  of K .  Let  Where all  is Ps-open in Y becaus  open  in  X  and  Y  is  open.
Now   it is Ps-open  cover  for  K  in  Y.
As  K is Ps-compact in Y it is a finite  subset   so that K. Which  gives  that  K covered  by  a finite  subset of  in X .Thus  K  Ps-compact  in  X .
Conversely : Let  be an Ps-compact set in . To prove that   is an Ps-compact  set in  , let   be Ps-open cover in  of  .As  open in Y there  is Ps-open  in X .Now  is Ps-open cover for K in X. As K is Ps-compact in X There is partial  cover finite so that K  , Intersecting With Y we get  KTherefore  K  covered by a finite subset of in Y.  Hence  is Ps-compact set in  . 
4.10 Definition	
Let be a function between two topological spaces, Then 
1. is called Ps-compact if and only if is compact set infor every Ps-compact set   in .
4.11 Proposition
Let   and   be spaces and  ,  be continuous functions then:                                                                                         
i. If is a compact  function and is an Ps-compact function, then  is an Ps-compact function.                                                                    
Proof:
· Let be a Ps-compact set . since g is Ps-compact , is Ps-compact in Y.
 Since f is compact , the preimage  is Ps-compact . Thus ( is Ps-compact.
i. If  is Ps-compact function and  is onto, then  is Ps-compact function.
Proof:
Let    be a Ps-compact set . Then   is Ps-compact by assumption.
Since f is onto, every point in Y has a preimage under f, and by properties of f and the definition of Ps-compact, it follows that  is Ps-compact. Hence g is Ps-compact.                                                                                 
4.12 Theorem
Let  be a Ps-homeomorphism. If is a Ps-compact subset of  then  is also Ps-compat.
Proof: clear.
4.13 Remark
From definition (2.10) we have the following If ,  be two Ps-compact functions then:
i. is Ps-compact set in , for each  .                    
ii. is Ps-compact set in , for each  .
4.14 Theorem
Let are function such that 
 is Ps-compact function then is Ps- compact function.
     Proof:
To proof   is Ps-compact function. we nssd to show that for any Ps-open set ,the preimage under .
Let be Ps-open set of  , then is Ps-open set in  ,where .since is Ps-compact in .By properties of Ps-compact ,the projection of onto is Ps-compact in  Hence   is Ps-compact in , thereforeis Ps-compact .
In the same way, we can prove   is Ps-compact.
4.15 Proposition
If  Ps-compact then the projection :  is Ps-closed.
Proof: 
The image under the projection isTo prove that Ps-closde we prove its complement Y/is Ps-open.
Y/}.because with closed set in ,then is open set in .The complement  of the image can be written   as follows:   ={Y
In other words, if and only if set 
Since  Ps-compact space then any open coveageof   can be reduced to a finite partial coverage .We use this property to verify that Y/is Ps-open for all ,the set  empty set .we can always find a Ps-close set containing y.such thatthatSince  
is Ps-open (According to the previous step). Then is complete Ps-open set Therefore Ps-closed.

[bookmark: _Hlk190089227]
5- Ps-Group Spaces
This section introduces the concept of Ps-group action as a generalization of group actions within the framework of Ps-topology. Definitions of essential components such as Ps-group spaces, Ps-orbits, Ps-stabilizers, and Ps-kernels are constructed and analyzed. The study focuses on exploring the topological and algebraic properties of these structures, emphasizing their interplay in the context of Ps-topology. Additionally, the properties of Ps-group spaces are examined in relation to compactness, separation, and continuity, providing a foundation for further theoretical and applied studies.
5.1 Definition
Letbe a topological space and be a -topological group.
A -continuous function :x , called is a left action of  on , satisfies the following conditions:
i.  , for every in , where e is identity element in .
ii. Wehere  : is the multiplication law in 
The space equipped with the - action  is called  – group space (or, more precisely, a left -space). It is denoted by (similarly, a right --space can be defined by aPs-continuous functionx satisfying analogous conditions. correspondence between  left and right Actions:for every left Ps-action,there is a corresponding right Ps-action  defined as :(,g.for every rigt  right - action , conversely, for every right  P_s -action, a corresponding left  Ps -action exists. While the two are equivalent in many theoretical aspects, their practical applications can differ. In this study, left actions are primarily used for consistency and simplicity.
5.2 Example
Let  =,the unit circle in ,and let =SO (2), the group of rotations about the origin in  .Define the Ps-action :x by,where rotates the points . 
is Ps-continuous because rotations are continuous transformations.
5.3Definition
Let  be an-space where  : x  is aPs-continuous then:
i. The - orbit of  defined by is defined as the set of all points in reachable from   under the action of elements of   
is the set of all distinct Ps-orbits in 
ii. The Ps- stabilizer of a point  defined by is defined as the set of all elements inthat leave unchanged under the action :
iii. The  - kernel of the - action defined
Is defined as the set of all elements in that leave every point in
[bookmark: _Hlk190088535]5.4 Proposition
Let  be-space, where : x  is a Ps-continuous group action then the following properties hold:
i. The - stabilizer is a subgroup for any ,the Ps-stabilizer is a subgroup of 
ii.  .
iii. is a normal subgroup of 
Proof:
i. Let 

Hence
Now, let  then 
)=
Hence  
Therefore
So  is a subgroup of 
ii. Let ǥgfor all
g for all 
g
Then 
iii. From (ii)   subgroup of 
Let ǥ  , we have that

I. Hence    for all
II. Hence  
III. Therefore  for all 
IV. Since  
V. Thus  
VI. Therefore  is a normal subgroup of .
5.5 Definition
Let  ,be -space and . An -action of   on  with is said to be:
i. Transitive if   for all .
ii. Effective if  
iii. Free if   for all .
iv. Trivial if  .
5.6 Examples
· Rotation of the circle  space: Let ,the unit circle in ,with a Ps-topology. Group:,the group of rotations about the origin in .
· Action: Define  : x  by ,where  rotates by anangle .For any there exists  such that Thus,the orbit of any point is the entire circle,
· Satisfying transitivity.
6- Effective Ps-Action
Example: Translation on the Real Line 
· Space:  the set of real numbers with a Ps-topology.
· Group: the group of real numbers under addition.
· Action: Define  : x  by:
· Where ,the kernel of this action is = {.
· Solving   for all , we find  Thus,  making the action effective.
· Example: Rotation of Points on a Sphere .
· Space:  the unit sphere in  equipped with a Ps-topology.
· Group: , the group of all rotations about the origin.
· Action: Define  : x  by:
· where  is a rotation in SO (3) and  is a point on the sphere.
· Verification of Freeness:
For  and , if , then  must be the identity rotation e. Thus, for all , making the action free.
7- Trivial Ps-Action
· Example: Identity Action on Any Space.
· Space: , any Ps-topological space.
· Group: , any group.
· Action: Define  : x  by:

· For all  ,,implies that  leaves every point fixed. Thus making the action trivial.
, if , then  must be the identity rotation e. Thus, for all , making the action free.





8- Practical Applications of Ps-Group Spaces
8.1 In Algebraic Geometry: Studying Algebraic Orbits
Fundamental theoretical bearings of algebraic geometry consist of studying the group-generated orbits. These orbits find representation in a weak topological structure known as Ps-Group Spaces, which enables the study of noncompact territorial spaces.
· Traditional Model:
Standard models base their work on Euclidean topology as their foundation, but this prevents researchers from examining spaces whose properties are less strong. Ps-Group Spaces extend the existing framework by enabling the exploration of broader spaces.
· Practical Benefit:
1.This development optimises the geometric stability investigation of orbits existing within non-compact geometric domains. 
2.The type of orbit description known as ps-Compactness provides a standardised method for examining open orbits.
[image: ]
Figure 1. Adiagram representing algebraic orits in Zareksi topology
· Practical example: The motion of satellites orbiting a planet in unstable paths undergoes investigation. 
· Result: The use of Ps-Group Spaces generates better orbital investigation results while preventing space-based accidents.

[bookmark: _Hlk190158512]8.2 In Mathematical Physics: Describing Weakly Separated Quantum States
· Quantum systems contain states that defy normal point separation mechanisms. We use spaces as tools to describe these states because Ps-Open sets act as separators, despite the Ps-Hausdorff condition in play.
· Traditional Model:
Quantum systems require models that recognise transition states because classical point-separation methods fail to describe transitional conditions.

· Practical Benefit:
1. Analyzes transitional states in quantum systems, considering weak separation.
2. Studies single-phase materials using SO (2)-Ps Group topology.

[image: ]
[bookmark: _Hlk190158859]Figure 2. Adiagram representing algebraic orits in Zareksi topology
· Practical example: Design of a cooling system for a car engine using irregularly shaped pipes.
· Result: Using Ps-Open Sets allows identifying areas that may be subject to fluid flow disturbance, which helps in improving the design.
[bookmark: _Hlk190158961]8.3 In Dynamics: Analyzing Open Systems
Dynamic systems with open boundaries can be analyzed using Ps-Open Spaces to describe stable and unstable patterns.
· Traditional Model:
Traditional systems rely on integration using complete open sets, which may not be suitable for systems with irregular boundaries.
· Practical Benefit:
1. Improves modeling and analysis of fluid or gas flow in irregular systems using Ps-Compactness
2. The study can be expanded to include systems that do not follow traditional separation or integration conditions.
[image: ]
Figure 3. A design representing fluid flow in an irregularly bounded pipe, highlighting stable regions using shapes that represent Ps-Open Sets
8.4 In Artificial Intelligence and Data science
The creation of deep learning algorithms using generalised topological analysis in Ps-Open Spaces to handle difficult data types, such as medical images and data on financial volatility:
· Example: A method exists for classifying medical images that show overlapping features among different patterns of normal tissue and cancer tissue.
· Benefit: The implementation of Ps-Open Sets generates better overlapping data representations that produce more accurate classifications.
The standard KNN approach relies on data that separates linearly or matches requirements for traditional open subsets.
· Practical Benefit:
1. The algorithm’s deep learning capabilities become optimized to process both extended multidimensional structures and unconventional data organization formats. 
2. Neural networks benefit from Ps-Group Spaces which simplify computational complexity.
· Data Analysis and Dimensionality Reduction:
1. Using Ps-Open Sets to identify key features and reduce dimensionality in high-dimensional datasets.
2. For instance, in social networks like Twitter, Ps-Open Sets can help isolate influential clusters of users and optimize the analysis of interactions.
This approach improves model efficiency while preserving the underlying topological relationships in the data.

[image: ]
Figure 4. Graph representing classification algorithms and their relationship to the Ps-open topology and Ps-group space has been created
9- Conclusion 
The new research structure was created by putting together the basic topology ideas of Ps-Open Sets and Ps-Compactness. The base for making Ps-Group Spaces was a single conceptual structure that included both algebraic and topological elements. Research results confirm compactness and separation properties between these spaces. The team used their research to demonstrate applications in algebraic geometry, mathematical physics, and artificial intelligence.
9.1 Future Vision
Nevertheless, many questions remain open, and opportunities to expand this work persist. The future vision of this research lies in exploring broader applications of these spaces, as well as extending the theoretical framework to include more complex concepts. In the following sections, we discuss potential directions for advancing this research and enhancing its role in mathematics and applied sciences.
9.2 Future Vision for the Research on Ps-Group Spaces
The presented research opens up vast opportunities for future developments in both theoretical mathematics and practical applications. The future vision for this research can be outlined across several key directions:
1. Expanding the Theoretical Framework
· Developing New Theories.
· Extending the properties of Ps-Group Spaces to include more complex topological concepts, such as stratified spaces or semi-algebraic spaces.
· Exploring the connections between Ps-Spaces and modern topological structures like spectral spaces used in algebraic geometry.
· Incorporating New Concepts.
· Linking Ps-Group Spaces with dynamic field theories or the geometry of high-dimensional spaces.

2. Broader  Practical  Applications
· In  Mathematical  Physics:
· Exploring  the  use of Ps-Group Spaces in analyzing physical systems with unconventional boundaries, such as black holes or complex cosmic systems.
· Modeling topological defects in quantum systems using these spaces.
· In Artificial Intelligence and  Data Science:
Developing deep learning algorithms based on generalized topology in Ps-Open Spaces to analyze unconventional data, such as medical imaging or volatile financial data.
· In Algebraic Geometry:
Modeling algebraic orbits with unconventional conditions for practical applications, such as circuit design or algebraic dynamical systems.
· In Mathematical Economics:
Analyzing the dynamics of open economic markets or cryptocurrency systems under external perturbations.

3. Strengthening Links Between Topology and Algebra
· Applications in Universal Algebra:
· Integrating  these  spaces into the study of algebraic symmetries, especially in non-compact frameworks.
· Exploring  the  relationship  between  Ps-Spaces and modern theories in group representation.
· Combining Topology and Numerical Analysis:
Employing Ps-Spaces to develop tools for analyzing  numerical  data  in  non-traditional  spaces.

4. Advancing  Interdisciplinary  Research
· Expanding  Collaborative  Research:
We combine expertise between physicists and data scientists and engineers with the purpose of translating theoretical  findings  into  real-world problem solutions . The team developed tools alongside software which utilizes Ps-Group Spaces to conduct  space  analysis.
· Publishing  in  Multidisciplinary  Journals:
Targeting  journals that bridge mathematics  and  physics (e.g., Journal of Mathematical Physics) or  mathematics and data  science (e.g., Journal of Computational  Mathematics).
5. Developing  Educational  Tools
· Designing  Simulation  Tools:
Creating  simulation  programs  based  on Ps-Group Spaces  to  illustrate  their  practical  and theoretical properties.
· Integrating Results into Academic Curricula:
Using the  concepts  from this  research to teach topology and algebra at graduate-level programs.
6. Addressing Open Questions
· Exploring New Applications:
· How can Ps-Group Spaces be utilized to study biological or complex systems?
· Can these spaces be generalized to new theories, such as Topos Theory or nonlinear geometry?
· Analyzing Theoretical Limits:
Investigating the boundaries of Ps-Spaces in unconventional models, such as fractal geometry or chaotic systems.
9.3 Summary of the Future Vision
The research on Ps-Group Spaces marks the beginning of a rich and diverse journey, providing a framework that can be developed further to encompass various mathematical and scientific domains. The future vision should focus on leveraging the theoretical and practical potential of this concept while bridging the gap between theoretical mathematics and advanced.
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