[Poly(Thiourea-Formaldehyde) - Epoxy resin)] Nanomagnetic Full -IPN's for Removal of Heavy Metals from Aqueous Solution : Synthesis and Characterization

Authors

  • Salah Sh.Al,luaibi Department of Chemistry, College of Science, University of Basr a, Iraq2
  • Samia Mezhr Merdas 1Department of Chemistry, College of Science, University of Thi-Qar, Iraq
  • Sajid Hassan Guzar 3Department of Chemistry, College of Education for pure sciences , University of Kerbala, Iraq

DOI:

https://doi.org/10.32792/jeps.v11i2.120

Keywords:

Magnetic nanoparticles, Polymer nanocomposites, Heavy Metals, Adsorption Studies

Abstract

In this work, a batch adsorption study was conducted to investigate the removal efficiency of lead (II), Copper (II) and Cadmium (II) from aqueous solutions by (poly (thiourea-Formaldehyde-Epoxy resin) nanomagnetic Full-IPN's (NM Full-IPN's). The NM Full-IPN's was synthesized by sequential polymerization with presence Fe3O4 nanoparticles. The chemical structure and surface morphology of NM Full-IPNS resin nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The chemical structure and surface morphology of NM Full-IPNS resin nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The thermal properties of (NM Full- IPN's) has been evaluated by Thermogravimetric analysis (TGA) and Differential Scanning Calorimetric (DSC). Adsorption of Pb (II), Cu(lI) and Cd(II) onto NM Full- IPN's agreed well with the Langmuir model, as revealed by the higher values of correlation coefficients. The results indicate that NM Full- IPN's could be used as efficient adsorbent for the removal of Pb (II), Cu(lI) and Cd(II) from aqueous solution

References

.References:

K. Kadirvelu, K. Thamaraiselvi and C. Namasivayam, Removal of heavy metal from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresour. Technol., 2001, 76, 63–65. [2] K. Palanisamy, and S.M. Nomanbhay, Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electronic journal of Biotechnology, 2005, 8, 82-91.

Sperling LH and Mishra V. The current status of interpenetrating polymer networks. PolymEngSci, 1996, 7, 197–208.

Raymond MP and Bui VT. Epoxy/castor oil graft interpenetrating polymer networks. J Appl PolymSci, 1998, 70, 1649–1659.

Samia Mezhr Merdas et al, Heavy Metals Ions Removal from Aqueous Solution Using (Polyurethane- Poly Thiourea- Formaldehyde) Nanomagneticsemi -IPN's, Jour of Adv Research in Dynamical & Control Systems, ,2018, 10, 328- 336.

Hu J, Chen GH, Lo IMC (2005) Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Water Res 39:4528– 4536

Metal ion

Freundlich Isotherm Parameters

Langmuir Isotherm Parameters

/n KF R2F Qm (mg g-1) b (L g–1) R2L Pb2+ 7.987 6.098 0.853 2.564 1.423 0.898 Cd 2+ 1.117 0.629 0.999 6.944 0.0438 0.999 Cu2+ 1.058 0.539 0.892 1.628 0.126 0.981

J Journal of Education for Pure Science- University of Thi-Qar Vol.11, No.2 (Nove, 2021)

Website: jceps.utq.edu.iq Email: jceps@eps.utq.edu.iq

Hu J, Lo IMC, Chen G (2004) Removal of Cr(VI) by magnetite nanoparticles. Water Sci Technol 50:139–146

Peng Y, Liu D, Fan M, Yang D, Zhu R, Ge F, Zhu J, He H (2010) Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. J Hazard Mater 173:614–621.

Hu J, Lo IMC, Chen G (2005) Fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) nanoparticles. Langmuir 21:11173–11179.

Susheel Kalia & Sarita Kango & Amit Kumar & Yuvaraj Haldorai & Bandna Kumari & Rajesh Kumar, Magnetic polymer nanocomposites for environmental and biomedical applications, Colloid Polym Sci (2014) 292:2025–2052.

Hamid Reza Khorshidi, Hossein Eisazadehand Ali Reza Khesali, Preparation and characterization of polyaniline containing Fe3O4 nanoparticles using sodium dodecyl benzene sulfonate as a surfactant, High Performance Polymers, 2011, 23(2) 125–131.

ElifErtan, Mustafa Gu¨ lfen, Separation of Gold(III) Ions from Copper(II) and Zinc(II) Ions Using Thiourea–Formaldehyde or Urea–Formaldehyde Chelating Resins, Journal ofAppliedPolymer Science, 2009, 111, 2798–2805.

Characterization, Thermal uaibi, synthesis, l-Samia Mezhr Merdas,Sajid Hassan Guzar, Salah Sh.Al] 13[ nomagnetic semi IPNs, PolyAnline)Na-Properties Study and Analytical Efficiency of (Epoxy Resin .11074-11068, Journal of Engineering and Applied science, 2018, 13

Ali Mehdinia, Sahar Shegeftib and FarzanehShemiranib, Removal of Lead(II), Copper(II) and Zinc(II) Ions from Aqueous Solutions Using Magnetic Amine-Functionalized Mesoporous Silica Nanocomposites, J. Braz. Chem. Soc., 2015, 26, 2249-2257.

Rajeshwar Man Shrestha, Removal of Cd (II) ions from Aqueous Solution by Adsorption on Activated Carbon Prepared from Lapsi (Choerospondiasaxillaris) Seed Stone, Journal of the Institute of Engineering, 2015, 11,140-150.

Gamze Gu¨ ¸lu¨ ,1 KubilayGu¨ c¸lu¨, SibelKele¸ Competitive Removal of Nickel (II), Cobalt (II), and Zinc (II) Ions from Aqueous Solutions by Starch-Graft-Acrylic Acid Copolymers, Journal of Applied Polymer Science, 2007,106 ,1800–1805. [17] Omid Moradi, Behrooz Mirza, Mehdi Norouziand Ali Fakhri, Removal of Co(II), Cu(II) and Pb(II) ions by polymer based 2-hydroxyethyl methacrylate: thermodynamics and desorption studies, Journal of Environmental Health Sciences & Engineering 2012, Iranian J Environ Health Sci Eng., 2012, 9, 31.

G. Nikolic, S. Zlatkovic, M. Cakic, S. Cakic, C. Lacnjevac and Z. Rajic, Sensors 10 ,684-696 (2010).

M. Riswan Ahamed, R. Azarudeen, M. Karunakaran, T. Karikalan, R. Manikandan and A. Burkanudeen, International Journal of Chemical and Environmental Engineering, 1, 1(2010).

- G. Roviello, L. Ricciotti, C. Ferone, F. Colangelo, R. Cioffi and O. Tarallo, Materials ,6 3943-3962 (2013).

J Journal of Education for Pure Science- University of Thi-Qar Vol.11, No.2 (Nove, 2021)

Website: jceps.utq.edu.iq Email: jceps@eps.utq.edu.iq

- S. Fellahi, N. Chikhi, and M. Bakar, J. Appl. Polym. Sci., 82, 861–878(2001). [22] R.M. Silverstein, Bassler, G.C. Morrill, T.C. Spectrometric Identification of Organic Compounds, 4th ed.; John Wiley and Sons: New York, NY, USA, (1981).

R. S. Sundararajan, M. Senthilkumar, C. Ramachandraraja, Journal of Crystallization Process and Technology, 3,56-59(2013). [24] Nisa Gezer, Mustafa Gu¨ lfen, Ali Osman Aydın, Journal of Applied Polymer Science, 1221134– 1141(2011).

M. Ragamathunnisa, E. Jasmine Vasantha Rani, R. Padmavathy, N. Radha, Journal of Applied Physics (IOSR-JAP), 4 ,05-08 (2013). [26] A. F. Elhusseiny, A. Eldissouky, A. M. Al-hamza, Hammed H.A.M. Hassan, Journal of Molecular Structure, 1100,530-545 (2015) .

R. venkataraghavan and T.R. Kasturi, Canadian Journal of Chemistry ,42 (1964). [28] N. Cristina Candian Lobato, M. Borges Mansur Angela de Mello Ferreira, Materials Research, 20, 736-746(2017).

K. Yang, H. Peng, Y. Wen and N.Li, Applied Surface Science 256, 3093-3097(2010).

S. Nor Atika Baharin Norazilawati Muhamad Sarih and Sharifah Mohamad, Polymers ,8 ,117(2016).

A.A. Javidparvara, B. Ramezanzadehb and E. Ghasemic, Journal of the Taiwan Institute of Chemical Engineers ,000 1–11(2016).

R. Khandanlou, M. B. Ahmad, K. Shameli, Elnaz Saki and K. Kalantari, Int. J. Mol. Sci., 15 1846618483(2014).

Ali Mehdinia, Sahar Shegeftib and FarzanehShemiranib, Removal of Lead(II), Copper(II) and Zinc(II) Ions from Aqueous Solutions Using Magnetic Amine-Functionalized Mesoporous Silica Nanocomposites, J. Braz. Chem. Soc., 2015, 26, 2249-2257.

Rajeshwar Man Shrestha, Removal of Cd (II) ions from Aqueous Solution by Adsorption on Activated Carbon Prepared from Lapsi (Choerospondiasaxillaris) Seed Stone, Journal of the Institute of Engineering, 2015, 11,140-150.

Gamze Gu¨ ¸lu¨ ,1 KubilayGu¨ c¸lu¨, SibelKele¸Competitive Removal of Nickel (II), Cobalt (II), and Zinc (II) Ions from Aqueous Solutions by Starch-Graft-Acrylic Acid Copolymers, Journal of Applied Polymer Science, 2007,106 ,1800–1805.

T. Sivaa, K. Kamarajb, S. Sathiyanarayanan, Epoxy curing by polyaniline (PANI) – Characterization and self-healing, Progress in Organic Coatings, ,2014, 77, 1095–1103

Taty-Costodes, V.C., Fauduet, H., Porte, C., Delacroix, A. Removal of Cd(II) and Pb(II) ions from aqueous solutions by adsorption onto sawdust of Pinussylvestris. J. Hazard. Mater. B,2003, 105, 121–142.

J Journal of Education for Pure Science- University of Thi-Qar Vol.11, No.2 (Nove, 2021)

Website: jceps.utq.edu.iq Email: jceps@eps.utq.edu.iq

Hanafiah, M.A.K.M., Ngah, W.S.W., Ibrahim, S.C., Zakaria, H., Ilias, W.A.H.W., b. Kinetics and thermodynamic study of lead adsorption onto rubber (Heveabrasiliensis) leaf powder. J. Appl. Sci. 2006, 6, 2762–2767.

Bulut, Y., Tez, Z, Removal of heavy metal ions by modified sawdust of walnut. Fresenius Environmental Bulletin, 2003,12, 1499–1504.

Pehlivan, E., Cetin, S., Yanık, B.H, Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash. J. Hazard. Mater. B, 2006, 135 193–199.

Y.V.S. Sai Krishna, G. Sandhya and R. RavichandraBabu, using synthesized chromium doped nickel oxide nano particles, Bull. Chem. Soc. Ethiop., 2018, 32, 225-238.

Pehlivan E, Cetin S, Yanik BH Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash. J Hazard Mater, 2006, 135,193-199.

Kocaoba S Comparison of Amberlite IR 120 and dolomite’s performances for removal of heavy metals. J Hazard Mater, ,2007, 147, 488–496.

HamedrezaJavadian, FatemehZamaniSorkhrodi, Behrouz BabzadehKoutenaei, Mu. Naushad, Gaber ElBaz El-desoky, Experimental investigation on enhancing aqueous cadmium removal via nanostructure composite of modified hexagonal type mesoporous silica with polyaniline/polypyrrole nanoparticles, Journal of Industrial and Engineering Chemistry, 2014, 203678–3688.

Y.V.S. Sai krishna, G. Sandhya and R. RavichandraBabu, Removal of heavy metals Pb(II), Cd(II) and Cu(II) from waste waters using synthesized chromium doped nickel oxide nano particles, BULL. CHEM. SOC. ETHIOP, 2018, 32, 225-238.

Downloads

Published

2022-04-07