A Low-cost Manganese Complex Catalyst for Phenolic Coupling and Further Oxidation of Phenols
DOI:
https://doi.org/10.32792/jeps.v12i2.228Keywords:
Catalyst, Phenolic oxidation, Manganase complexesAbstract
Binuclear manganese (Mn) complexes have been prepared as selective oxidants. Here, the oxidative
coupling of phenols under manganese (Mn)-catalyzed conditions were described to form biphenols,
ortho-quinones and benzoxepines. Manganese(III) picolinate (Mn (III) (PIC)3 H2O, complex (1) is used as
a low- cost and easy to prepare catalyst which activates by periodic acid and some organic substrates can
be oxidized after the activation process proposing that the manganese is converted to a higher oxidation
state. In this study, catalytic oxidation reactions from a mononuclear Mn complex can be used to perform
manganese catalysis that usually requires a binuclear complex. The formation of biphenols was
successfully determined by using 1HNMR.
References
Caron, S.; Dugger, R. W.; Ruggeri, S. G.; Ragan, J. A.; Ripin, D. H. B., Large‐scale oxidations in the
pharmaceutical industry. Chemical reviews 2006, 106 (7), 2943‐2989.
Bäckvall, J.‐E., Modern oxidation methods. John Wiley & Sons: 2011.
Halliwell, B.; Gutteridge, J. M., Free radicals in biology and medicine. Oxford University Press, USA: 2015.
Burton, G.; Ingold, K. U., Vitamin E: application of the principles of physical organic chemistry to the
exploration of its structure and function. Accounts of chemical research 1986, 19 (7), 194‐201.
Tommos, C.; Babcock, G. T., Proton and hydrogen currents in photosynthetic water oxidation. Biochimica
et Biophysica Acta (BBA)‐Bioenergetics 2000, 1458 (1), 199‐219.
Renger, G., Coupling of electron and proton transfer in oxidative water cleavage in photosynthesis.
Biochimica et Biophysica Acta (BBA)‐Bioenergetics 2004, 1655, 195‐204.
Meyer, T. J.; Huynh, M. H. V.; Thorp, H. H., The possible role of proton‐coupled electron transfer (PCET) in
water oxidation by photosystem II. Angewandte Chemie International Edition 2007, 46 (28), 5284‐5304.
Stubbe, J.; Nocera, D. G.; Yee, C. S.; Chang, M. C., Radical initiation in the class I ribonucleotide reductase:
long‐range proton‐coupled electron transfer? Chemical reviews 2003, 103 (6), 2167‐2202.
Webster, R. D., New insights into the oxidative electrochemistry of vitamin E. Accounts of chemical
research 2007, 40 (4), 251‐257.
Huynh, M. H. V.; Meyer, T. J., Proton‐coupled electron transfer. Chemical Reviews 2007, 107 (11), 5004‐
Markle, T. F.; Rhile, I. J.; DiPasquale, A. G.; Mayer, J. M., Probing concerted proton–electron transfer in
phenol–imidazoles. Proceedings of the National Academy of Sciences 2008.
Song, N.; Stanbury, D. M., Proton‐coupled electron‐transfer oxidation of phenols by hexachloroiridate
IV). Inorganic chemistry 2008, 47 (24), 11458‐11460.
Song, N.; Stanbury, D. M., Oxidation of Phenol by Tris (1, 10‐phenanthroline) osmium (III). Inorganic
chemistry 2012, 51 (9), 4909‐4911.
Al‐Ajlouni, A.; Bakac, A.; Espenson, J. H., Kinetics and mechanism of the oxidation of phenols by the
oxochromium (IV) ion. Inorganic Chemistry 1993, 32 (25), 5792‐5796.
Yiu, D. T.; Lee, M. F.; Lam, W. W.; Lau, T.‐C., Kinetics and mechanisms of the oxidation of phenols by a
trans‐dioxoruthenium (VI) complex. Inorganic chemistry 2003, 42 (4), 1225‐1232.
Brudvig, G. W.; Beck, W. F.; Paula, J., Mechanism of photosynthetic water oxidation. Annual review of
biophysics and biophysical chemistry 1989, 18 (1), 25‐46.
Holden Thorp, H.; Brudvig, G., The physical inorganic chemistry of manganese relevant to photosynthetic
oxygen evolution. New journal of chemistry 1991, 15 (6), 479‐490.
Vincent, J. M.; Ménage, S.; Lambeaux, C.; Fontecave, M., Oxidation of alkanes catalyzed by binuclear
metal complexes: Control by the coordination sphere. Tetrahedron letters 1994, 35 (34), 6287‐6290.
Zondervan, C.; Hage, R.; Feringa, B. L., Selective catalytic oxidation of benzyl alcohols to benzaldehydes
with a dinuclear manganese (iv) complex. Chemical Communications 1997, (5), 419‐420.
Hage, R.; Iburg, J. E.; Kerschner, J.; Koek, J. H.; Lempers, E. L.; Martens, R. J.; Racherla, U. S.; Russell, S. W.;
Swarthoff, T.; van Vliet, M. R. P., Efficient manganese catalysts for low‐temperature bleaching. Nature 1994, 369
(6482), 637.
Barton, D. H.; Choi, S.‐Y.; Hu, B.; Smith, J. A., Evidence for a higher oxidation state of manganese in the
reaction of dinuclear manganese complexes with oxidants. Comparison with iron based Gif chemistry.
Tetrahedron 1998, 54 (14), 3367‐3378.
Yamaguchi, K.; Sawyer, D. T., Redox chemistry for the mononuclear tris (picolinato)‐tris (acetylacetonata)‐
, and tris (8‐quinolinata) manganese (III) complexes: reaction mimics for the water‐oxidation cofactor in
photosystem II. Inorganic Chemistry 1985, 24 (6), 971‐976.
Sen Gupta, K. K.; Bhattacharjee, N.; Pal, B., Oxidative Cleavage of S–S Bond During the Reduction of Tris
(pyridine‐2‐carboxylato) manganese (III) by Dithionite in Sodium Picolinate–Picolinic Acid Buffer Medium.
International Journal of Chemical Kinetics 2016, 48 (10), 635‐643.
Iwasawa, N.; Hayakawa, S.; Isobe, K.; Narasaka, K., Generation of β‐keto radicals fromcyclopropanol
derivatives by the use of manganese (III) 2‐pyridinecarboxylate as an oxidant and their reactions with olefins.
Chemistry Letters 1991, 20 (7), 1193‐1196.
Narasaka, K.; Miyoshi, N.; Iwakura, K.; Okauchi, T., The addition reaction of β‐keto carboxylic acids to
olefinic compounds by the use of Mn (III) tris (2‐pyridinecarboxylate) as an oxidant. Chemistry Letters 1989, 18
(12), 2169‐2172.
Narasaka, K.; Mochizuki, T.; Hayakawa, S., Generation of sulfonyl radicals from sodium sulfinates by
oxidation with metallic oxidants and their addition reaction with olefins. Chemistry letters 1994, 23 (9), 1705‐
Iwasawa, N.; Funahashi, M.; Hayakawa, S.; Ikeno, T.; Narasaka, K., Synthesis of Medium‐Sized Bicyclic
Compounds by Intramolecular Cyclization of Cyclic β‐Keto Radicals Generated from Cyclopropanols Using
Manganese (III) Tris (pyridine‐2‐carboxylate) and Its Application to Total Synthesis of 10‐Isothiocyanatoguaia‐6‐
ene. Bulletin of the Chemical Society of Japan 1999, 72 (1), 85‐97.
Gupta, K. K. S.; Pal, B., Inner Sphere Reduction of Tris (pyridine‐2‐carboxylato) manganese (III) by
Hydroxylammonium Ion in Sodium Picolinate‐Picolinic Acid Buffer Media. BioInorganic Reaction Mechanisms
, 1 (4), 265‐272.
Gupta, K. K. S.; Bhattacharjee, N.; Pal, B.; Ghosh, S., Kinetics and mechanism of the oxidation of
neutralized α‐hydroxy acids by tris (pyridine‐2‐carboxylato) manganese (III). Transition Metal Chemistry 1999, 24
(3), 268‐273.
Haack, P.; Kärgel, A.; Greco, C.; Dokic, J.; Braun, B.; Pfaff, F. F.; Mebs, S.; Ray, K.; Limberg, C., Access to a
CuII–O–CuII Motif: Spectroscopic Properties, Solution Structure, and Reactivity. Journal of the American Chemical
Society 2013, 135 (43), 16148‐16160.
Esguerra, K. V. N.; Fall, Y.; Petitjean, L.; Lumb, J.‐P., Controlling the catalytic aerobic oxidation of phenols.
Journal of the American Chemical Society 2014, 136 (21), 7662‐7668.
Karahalis, G. J.; Thangavel, A.; Chica, B.; Bacsa, J.; Dyer, R. B.; Scarborough, C. C., Synthesis and Catalytic
Reactivity of a Dicopper (II) μ‐η2: η2‐Peroxo Species Supported by 1, 4, 7‐Tri‐tert‐butyl‐1, 4, 7‐triazacyclononane.
Inorganic chemistry 2016, 55 (3), 1102‐1107.
Stoumpos, C. C.; Inglis, R.; Roubeau, O.; Sartzi, H.; Kitos, A. A.; Milios, C. J.; Aromí, G.; Tasiopoulos, A. J.;
Nastopoulos, V.; Brechin, E. K., Rare oxidation‐state combinations and unusual structural motifs in hexanuclear
Mn complexes using 2‐pyridyloximate ligands. Inorganic chemistry 2010, 49 (10), 4388‐4390.
Meier, H.; Schneider, H. P.; Rieker, A.; Hitchcock, P. B., Oxepinobenzofurans—The True Nature of
Sterically Hindered “Benzoxetes”. Angewandte Chemie International Edition in English 1978, 17 (2), 121‐123.
Kushioka, K., Catalytic activity of copper (II)‐ethylenediamine complexes in autoxidation of phenols. The
Journal of Organic Chemistry 1983, 48 (25), 4948‐4950.
Kushioka, K., Autoxidation of phenols catalyzed by copper (II)‐ethylenediamine complexes: the reaction
mechanism. The Journal of Organic Chemistry 1984, 49 (23), 4456‐4459.
Kushioka, K., Tanimoto, 1.; Maruyama, KJ Chem. Soc. Perkin Trans 1989, 2, 1303‐1308.
Allen, S. E.; Walvoord, R. R.; Padilla‐Salinas, R.; Kozlowski, M. C., Aerobic copper‐catalyzed organic
reactions. Chemical reviews 2013, 113 (8), 6234‐6458.
Downloads
Published
Issue
Section
License
The Authors understand that, the copyright of the articles shall be assigned to Journal of education for Pure Science (JEPS), University of Thi-Qar as publisher of the journal.
Copyright encompasses exclusive rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms and any other similar reproductions, as well as translations. The reproduction of any part of this journal, its storage in databases and its transmission by any form or media, such as electronic, electrostatic and mechanical copies, photocopies, recordings, magnetic media, etc. , will be allowed only with a written permission from Journal of education for Pure Science (JEPS), University of Thi-Qar.
Journal of education for Pure Science (JEPS), University of Thi-Qar, the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Journal of education for Pure Science (JEPS), University of Thi-Qar are sole and exclusive responsibility of their respective authors and advertisers.