A Low-cost Manganese Complex Catalyst for Phenolic Coupling and Further Oxidation of Phenols

Authors

  • Department of Chemistry, College of Science, University of Basrah, Basrah 61004, Iraq
  • College of Agriculture, University of Misan, Al-Amara, Misan 62001, Iraq.
  • Department of Chemistry, College of Science, University of Basrah, Basrah 61004, Iraq

Keywords:

Catalyst, Phenolic oxidation, Manganase complexes

Abstract

Binuclear manganese (Mn) complexes have been prepared as selective oxidants. Here, the oxidative
coupling of phenols under manganese (Mn)-catalyzed conditions were described to form biphenols,
ortho-quinones and benzoxepines. Manganese(III) picolinate (Mn (III) (PIC)3 H2O, complex (1) is used as
a low- cost and easy to prepare catalyst which activates by periodic acid and some organic substrates can
be oxidized after the activation process proposing that the manganese is converted to a higher oxidation
state. In this study, catalytic oxidation reactions from a mononuclear Mn complex can be used to perform
manganese catalysis that usually requires a binuclear complex. The formation of biphenols was
successfully determined by using 1HNMR.

References

Caron, S.; Dugger, R. W.; Ruggeri, S. G.; Ragan, J. A.; Ripin, D. H. B., Large‐scale oxidations in the

pharmaceutical industry. Chemical reviews 2006, 106 (7), 2943‐2989.

Bäckvall, J.‐E., Modern oxidation methods. John Wiley & Sons: 2011.

Halliwell, B.; Gutteridge, J. M., Free radicals in biology and medicine. Oxford University Press, USA: 2015.

Burton, G.; Ingold, K. U., Vitamin E: application of the principles of physical organic chemistry to the

exploration of its structure and function. Accounts of chemical research 1986, 19 (7), 194‐201.

Tommos, C.; Babcock, G. T., Proton and hydrogen currents in photosynthetic water oxidation. Biochimica

et Biophysica Acta (BBA)‐Bioenergetics 2000, 1458 (1), 199‐219.

Renger, G., Coupling of electron and proton transfer in oxidative water cleavage in photosynthesis.

Biochimica et Biophysica Acta (BBA)‐Bioenergetics 2004, 1655, 195‐204.

Meyer, T. J.; Huynh, M. H. V.; Thorp, H. H., The possible role of proton‐coupled electron transfer (PCET) in

water oxidation by photosystem II. Angewandte Chemie International Edition 2007, 46 (28), 5284‐5304.

Stubbe, J.; Nocera, D. G.; Yee, C. S.; Chang, M. C., Radical initiation in the class I ribonucleotide reductase:

long‐range proton‐coupled electron transfer? Chemical reviews 2003, 103 (6), 2167‐2202.

Webster, R. D., New insights into the oxidative electrochemistry of vitamin E. Accounts of chemical

research 2007, 40 (4), 251‐257.

Huynh, M. H. V.; Meyer, T. J., Proton‐coupled electron transfer. Chemical Reviews 2007, 107 (11), 5004‐

Markle, T. F.; Rhile, I. J.; DiPasquale, A. G.; Mayer, J. M., Probing concerted proton–electron transfer in

phenol–imidazoles. Proceedings of the National Academy of Sciences 2008.

Song, N.; Stanbury, D. M., Proton‐coupled electron‐transfer oxidation of phenols by hexachloroiridate

IV). Inorganic chemistry 2008, 47 (24), 11458‐11460.

Song, N.; Stanbury, D. M., Oxidation of Phenol by Tris (1, 10‐phenanthroline) osmium (III). Inorganic

chemistry 2012, 51 (9), 4909‐4911.

Al‐Ajlouni, A.; Bakac, A.; Espenson, J. H., Kinetics and mechanism of the oxidation of phenols by the

oxochromium (IV) ion. Inorganic Chemistry 1993, 32 (25), 5792‐5796.

Yiu, D. T.; Lee, M. F.; Lam, W. W.; Lau, T.‐C., Kinetics and mechanisms of the oxidation of phenols by a

trans‐dioxoruthenium (VI) complex. Inorganic chemistry 2003, 42 (4), 1225‐1232.

Brudvig, G. W.; Beck, W. F.; Paula, J., Mechanism of photosynthetic water oxidation. Annual review of

biophysics and biophysical chemistry 1989, 18 (1), 25‐46.

Holden Thorp, H.; Brudvig, G., The physical inorganic chemistry of manganese relevant to photosynthetic

oxygen evolution. New journal of chemistry 1991, 15 (6), 479‐490.

Vincent, J. M.; Ménage, S.; Lambeaux, C.; Fontecave, M., Oxidation of alkanes catalyzed by binuclear

metal complexes: Control by the coordination sphere. Tetrahedron letters 1994, 35 (34), 6287‐6290.

Zondervan, C.; Hage, R.; Feringa, B. L., Selective catalytic oxidation of benzyl alcohols to benzaldehydes

with a dinuclear manganese (iv) complex. Chemical Communications 1997, (5), 419‐420.

Hage, R.; Iburg, J. E.; Kerschner, J.; Koek, J. H.; Lempers, E. L.; Martens, R. J.; Racherla, U. S.; Russell, S. W.;

Swarthoff, T.; van Vliet, M. R. P., Efficient manganese catalysts for low‐temperature bleaching. Nature 1994, 369

(6482), 637.

Barton, D. H.; Choi, S.‐Y.; Hu, B.; Smith, J. A., Evidence for a higher oxidation state of manganese in the

reaction of dinuclear manganese complexes with oxidants. Comparison with iron based Gif chemistry.

Tetrahedron 1998, 54 (14), 3367‐3378.

Yamaguchi, K.; Sawyer, D. T., Redox chemistry for the mononuclear tris (picolinato)‐tris (acetylacetonata)‐

, and tris (8‐quinolinata) manganese (III) complexes: reaction mimics for the water‐oxidation cofactor in

photosystem II. Inorganic Chemistry 1985, 24 (6), 971‐976.

Sen Gupta, K. K.; Bhattacharjee, N.; Pal, B., Oxidative Cleavage of S–S Bond During the Reduction of Tris

(pyridine‐2‐carboxylato) manganese (III) by Dithionite in Sodium Picolinate–Picolinic Acid Buffer Medium.

International Journal of Chemical Kinetics 2016, 48 (10), 635‐643.

Iwasawa, N.; Hayakawa, S.; Isobe, K.; Narasaka, K., Generation of β‐keto radicals fromcyclopropanol

derivatives by the use of manganese (III) 2‐pyridinecarboxylate as an oxidant and their reactions with olefins.

Chemistry Letters 1991, 20 (7), 1193‐1196.

Narasaka, K.; Miyoshi, N.; Iwakura, K.; Okauchi, T., The addition reaction of β‐keto carboxylic acids to

olefinic compounds by the use of Mn (III) tris (2‐pyridinecarboxylate) as an oxidant. Chemistry Letters 1989, 18

(12), 2169‐2172.

Narasaka, K.; Mochizuki, T.; Hayakawa, S., Generation of sulfonyl radicals from sodium sulfinates by

oxidation with metallic oxidants and their addition reaction with olefins. Chemistry letters 1994, 23 (9), 1705‐

Iwasawa, N.; Funahashi, M.; Hayakawa, S.; Ikeno, T.; Narasaka, K., Synthesis of Medium‐Sized Bicyclic

Compounds by Intramolecular Cyclization of Cyclic β‐Keto Radicals Generated from Cyclopropanols Using

Manganese (III) Tris (pyridine‐2‐carboxylate) and Its Application to Total Synthesis of 10‐Isothiocyanatoguaia‐6‐

ene. Bulletin of the Chemical Society of Japan 1999, 72 (1), 85‐97.

Gupta, K. K. S.; Pal, B., Inner Sphere Reduction of Tris (pyridine‐2‐carboxylato) manganese (III) by

Hydroxylammonium Ion in Sodium Picolinate‐Picolinic Acid Buffer Media. BioInorganic Reaction Mechanisms

, 1 (4), 265‐272.

Gupta, K. K. S.; Bhattacharjee, N.; Pal, B.; Ghosh, S., Kinetics and mechanism of the oxidation of

neutralized α‐hydroxy acids by tris (pyridine‐2‐carboxylato) manganese (III). Transition Metal Chemistry 1999, 24

(3), 268‐273.

Haack, P.; Kärgel, A.; Greco, C.; Dokic, J.; Braun, B.; Pfaff, F. F.; Mebs, S.; Ray, K.; Limberg, C., Access to a

CuII–O–CuII Motif: Spectroscopic Properties, Solution Structure, and Reactivity. Journal of the American Chemical

Society 2013, 135 (43), 16148‐16160.

Esguerra, K. V. N.; Fall, Y.; Petitjean, L.; Lumb, J.‐P., Controlling the catalytic aerobic oxidation of phenols.

Journal of the American Chemical Society 2014, 136 (21), 7662‐7668.

Karahalis, G. J.; Thangavel, A.; Chica, B.; Bacsa, J.; Dyer, R. B.; Scarborough, C. C., Synthesis and Catalytic

Reactivity of a Dicopper (II) μ‐η2: η2‐Peroxo Species Supported by 1, 4, 7‐Tri‐tert‐butyl‐1, 4, 7‐triazacyclononane.

Inorganic chemistry 2016, 55 (3), 1102‐1107.

Stoumpos, C. C.; Inglis, R.; Roubeau, O.; Sartzi, H.; Kitos, A. A.; Milios, C. J.; Aromí, G.; Tasiopoulos, A. J.;

Nastopoulos, V.; Brechin, E. K., Rare oxidation‐state combinations and unusual structural motifs in hexanuclear

Mn complexes using 2‐pyridyloximate ligands. Inorganic chemistry 2010, 49 (10), 4388‐4390.

Meier, H.; Schneider, H. P.; Rieker, A.; Hitchcock, P. B., Oxepinobenzofurans—The True Nature of

Sterically Hindered “Benzoxetes”. Angewandte Chemie International Edition in English 1978, 17 (2), 121‐123.

Kushioka, K., Catalytic activity of copper (II)‐ethylenediamine complexes in autoxidation of phenols. The

Journal of Organic Chemistry 1983, 48 (25), 4948‐4950.

Kushioka, K., Autoxidation of phenols catalyzed by copper (II)‐ethylenediamine complexes: the reaction

mechanism. The Journal of Organic Chemistry 1984, 49 (23), 4456‐4459.

Kushioka, K., Tanimoto, 1.; Maruyama, KJ Chem. Soc. Perkin Trans 1989, 2, 1303‐1308.

Allen, S. E.; Walvoord, R. R.; Padilla‐Salinas, R.; Kozlowski, M. C., Aerobic copper‐catalyzed organic

reactions. Chemical reviews 2013, 113 (8), 6234‐6458.

Downloads

Published

2023-03-01