Proposed Model for Detection of PCOS Using Machine learning methods and Feature Selection
DOI:
https://doi.org/10.32792/jeps.v13i1.250Keywords:
pcos, KNN, SVM, Machine Learning, Genetic algorithmAbstract
PCOS (Polycystic Ovary Syndrome) is an endocrine disorder that affects women of reproductive age.
Once diagnosed, the condition cannot be cured, but treatment can help relieve its symptoms. Although
the exact cause of PCOS is unknown, certain risk factors do exist. Obesity, insulin resistance, blood
pressure, depression, and inflammation are all factors that contribute to this syndrome. While the
symptoms include hirsutism, oligo-ovulation, acne, heavy bleeding, and skin darkening. Using the causes
and symptoms, a model is created that accepts them as features and outputs the presence or absence of
this condition. Machine learning models used for classification include Linear SVM, Gaussian SVM,
Decision Tree, Nave Bayes, KNN1, KNN3, and KNN5. The goal of building multiple models is to find
the best one for a given dataset within the known scope of knowledge.
References
X. Zhang et al., “Raman spectroscopy of follicular fluid and plasma with machine-learning
algorithms for polycystic ovary syndrome screening,” Mol. Cell. Endocrinol., vol. 523, no.
December 2020, p. 111139, 2021, doi: 10.1016/j.mce.2020.111139.
K. Maheswari, T. Baranidharan, S. Karthik, and T. Sumathi, “Modelling of F3I based feature
selection approach for PCOS classification and prediction,” J. Ambient Intell. Humaniz. Comput.,
vol. 12, no. 1, pp. 1349–1362, 2021, doi: 10.1007/s12652-020-02199-1.
S. Bhosale, L. Joshi, and A. Shivsharan, “PCOS ( POLYCYSTIC OVARIAN SYNDROME )
DETECTION USING,” no. 01, pp. 195–200, 2022.
J. Madhumitha, M. Kalaiyarasi, and S. S. Ram, “Automated polycystic ovarian syndrome
identification with follicle recognition,” 2021 3rd Int. Conf. Signal Process. Commun. ICPSC
, no. May, pp. 98–102, 2021, doi: 10.1109/ICSPC51351.2021.9451720.
S. Bharati, P. Podder, and M. R. Hossain Mondal, “Diagnosis of Polycystic Ovary Syndrome
Using Machine Learning Algorithms,” 2020 IEEE Reg. 10 Symp. TENSYMP 2020, no. June, pp.
–1489, 2020, doi: 10.1109/TENSYMP50017.2020.9230932.
P. Soni and S. Vashisht, “Exploration on Polycystic Ovarian Syndrome and Data Mining
Techniques,” Proc. 3rd Int. Conf. Commun. Electron. Syst. ICCES 2018, no. Icces, pp. 816–820,
, doi: 10.1109/CESYS.2018.8724087.
M. S. Khan Inan, R. E. Ulfath, F. I. Alam, F. K. Bappee, and R. Hasan, “Improved Sampling and
Feature Selection to Support Extreme Gradient Boosting for PCOS Diagnosis,” 2021 IEEE 11th
Annu. Comput. Commun. Work. Conf. CCWC 2021, pp. 1046–1050, 2021, doi:
1109/CCWC51732.2021.9375994.
U. N. Wisesty and J. Nasri, “Modified backpropagation algorithm for polycystic ovary syndrome
detection based on ultrasound images,” in International Conference on Soft Computing and Data
Mining, 2016, pp. 141–151.
R. M. Dewi, Adiwijaya, U. N. Wisesty, and Jondri, “Classification of polycystic ovary based on
ultrasound images using competitive neural network,” J. Phys. Conf. Ser., vol. 971, no. 1, 2018,
doi: 10.1088/1742-6596/971/1/012005.
N. N. Xie, F. F. Wang, J. Zhou, C. Liu, and F. Qu, “Establishment and Analysis of a CombinedDiagnostic Model of Polycystic Ovary Syndrome with Random Forest and Artificial Neural
Network,” Biomed Res. Int., vol. 2020, 2020, doi: 10.1155/2020/2613091.
V. Fruh, J. J. Cheng, A. Aschengrau, S. Mahalingaiah, and K. J. Lane, “Fine particulate matter and
polycystic ovarian morphology,” Environ. Heal., vol. 21, no. 1, pp. 1–8, 2022, doi:
1186/s12940-022-00835-1.
C. Neto, M. Silva, M. Fernandes, D. Ferreira, and J. Machado, “Prediction models for Polycystic
Ovary Syndrome using data mining,” in International Conference on Advances in Digital Science,
Wang, J., Jain, S., Chen, D., Song, W., Hu, C.T., & Su, Y.H., Development and Evaluation of
Novel Statistical Methods in Urine Biomarker-Based Hepatocellular Carcinoma Screening. Sci Rep 8, 1
(2018) 3799.
www.kaggle.com/prasoonkottarathil/polycystic-ovary-syndrome-pcos. last accessed on 5 May
Azeez, R. A., Miften, F. S., & Hayawi, M. J. (2020). Epileptic EEG Signals Classification Based on
Determinant of Matrix as a Feature. 4. Journal of Global Scientific Research (ISSN: 2523-9376), 4, 461-465.
Al-Salman, W., Li, Y., Wen, P., Miften, F. S., Oudah, A. Y., & Al Ghayab, H. R. (2022). Extracting epileptic
features in EEGs using a dual-tree complex wavelet transform coupled with a classification algorithm. Brain
Research, 1779, 147777.
Miften, F. S. (2017). Using Quantum Particle Swarm Optimization to Enhance K-Means Clustering. Journal
of Education for Pure Science, 7(4).
Miften, F. S., Taher, H. B., & Ajeel, K. (2017). Fractal Image Compression using Quantum PSO. Journal of
Education for Pure Science, 7(2).
Hadi, I., & Miften, F. S. (2017). A Graph Clustering Algorithm Based on Adaptive Neighbors
Connectivity. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(2-11), 19-22.
Miften, F. S. (2014). Upgrade PIFS to Patterns Recognition
Downloads
Published
Issue
Section
License
The Authors understand that, the copyright of the articles shall be assigned to Journal of education for Pure Science (JEPS), University of Thi-Qar as publisher of the journal.
Copyright encompasses exclusive rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms and any other similar reproductions, as well as translations. The reproduction of any part of this journal, its storage in databases and its transmission by any form or media, such as electronic, electrostatic and mechanical copies, photocopies, recordings, magnetic media, etc. , will be allowed only with a written permission from Journal of education for Pure Science (JEPS), University of Thi-Qar.
Journal of education for Pure Science (JEPS), University of Thi-Qar, the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Journal of education for Pure Science (JEPS), University of Thi-Qar are sole and exclusive responsibility of their respective authors and advertisers.