The effect of metabolic products of Enterococcus faecalis strains on the cell toxicity


  • Faez Khalaf Abdulmuhsen Coll. Medicine -University of Thi-Qar
  • Ahmed Khassaf Al Atya 1Dept. Biology-Coll. Science-University of Thi-Qar
  • Sabah H Eenayh Dept. Biology-Coll. Science-University of Thi-Qar


LAB, Cytotoxicity, VERO cells, pathogen, hemolycin


Enterococcus faecalis strains are common commensal of the intestines of humans and other animals. Production of different metabolic substance from Enterococci has highest effect on the microorganism and cytotoxicity. The present study highlights the effect of metabolic productions on the cell toxicity by used VERO cells. The results also  showed that the metabolic productions of E. faecalis A1 and E. faecalis A2 were toxic untile dilution factor 12 and had cytoxicity effect on the VERO cells, While the E. faecalis A3    was less toxicity at dilution 1/8


Ahmed, W., Payyappat, S., Cassidy, M., & Besley, C. (2019). Enhanced insights from human and animal

host-associated molecular marker genes in a freshwater lake receiving wet weather overflows, (April), 1–

Alvarez-Cisneros, Y., & Espuñes, T. (2011). Enterocins: Bacteriocins with applications in the food

industry. Formatex.Info, 1330–1341.

Bang, N., Jensen, S., Melchiorsen, C. R. I. X., Jokumsen, K. V., & Villadsen, J. (2001). Metabolic

Behavior of Lactococcus lactis MG1363 in Microaerobic Continuous Cultivation at a Low Dilution Rate,

(6), 2677–2682.

Ben Said, L., Klibi, N., Lozano, C., Dziri, R., Ben Slama, K., Boudabous, A., & Torres, C. (2015).

Diversity of enterococcal species and characterization of high-level aminoglycoside resistant enterococci

of samples of wastewater and surface water in Tunisia. Science of The Total Environment, 530–531, 11–

Coburn, P. S., & Gilmore, M. S. (2003). The Enterococcus faecalis cytolysin: a novel toxin active against

eukaryotic and prokaryotic cells. Cellular Microbiology, 5(10), 661–669. Retrieved from

Goto, D. K., & Yan, T. (2011). Effects of Land Uses on Fecal Indicator Bacteria in the Water and Soil of

a Tropical Watershed. Microbes and Environments, 26(3), 254–260.

Hayashi, H., Takahashi, R., Nishi, T., Sakamoto, M., & Benno, Y. (2005). Molecular analysis of jejunal,

ileal, caecal and rectosigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal

restriction fragment length polymorphism. Journal of Medical Microbiology, 54(11), 1093–1101.

Henning, C., Gautam, D., & Muriana, P. (2015). Identification of Multiple Bacteriocins in Enterococcus

spp. Using an Enterococcus-Specific Bacteriocin PCR Array. Microorganisms, 3(1), 1–16.

Huang, E., Zhang, L., Chung, Y. K., Zheng, Z., & Yousef, A. E. (2013). Characterization and application

of enterocin RM6, a bacteriocin from enterococcus faecalis. BioMed Research International, 2013, 1–7.

Izquierdo, E., Wagner, C., Marchioni, E., Aoude-werner, D., & Ennahar, S. (2009). Enterocin 96 , a Novel

Class II Bacteriocin Produced by Enterococcus faecalis WHE 96 , Isolated from Munster Cheese ????,

(13), 4273–4276.

Jamet, E., Akary, E., Poisson, M. A., Chamba, J. F., Bertrand, X., & Serror, P. (2012). Prevalence and

characterization of antibiotic resistant Enterococcus faecalis in French cheeses. Food Microbiology,

(2), 191–198.

Kim, M. H., Kim, S. Y., Son, J. H., Kim, S. Il, Lee, H., Kim, S., … Lee, J. C. (2019). Production of

Membrane Vesicles by Enterococcus faecium Cultured With or Without Subinhibitory Concentrations of

Antibiotics and Their Pathological Effects on Epithelial Cells, 9(August), 1–11.

Klein, G. (2003). Taxonomy, ecology and antibiotic resistance of enterococci from food and the gastrointestinal

tract. International Journal of Food Microbiology, 88(2–3), 123–131.

Layton, B. a., Walters, S. P., Lam, L. H., & Boehm, a. B. (2010). Enterococcus species distribution among

human and animal hosts using multiplex PCR. Journal of Applied Microbiology, 109(2), 539–547.

Martín-Platero, A. M., Valdivia, E., Ruíz-Rodríguez, M., Soler, J. J., Martín-Vivaldi, M., Maqueda, M.,

& Martínez-Bueno, M. (2006). Characterization of antimicrobial substances produced by Enterococcus

faecalis MRR 10-3, isolated from the uropygial gland of the hoopoe (Upupa epops). Applied and

Environmental Microbiology, 72(6), 4245–4249.

Mehmeti, I., Jo, M., Fergestad, E. M., Mathiesen, G., Nes, I. F., & Holo, H. (2011). Transcriptome ,

Proteome , and Metabolite Analyses of a Lactate Dehydrogenase-Negative Mutant of Enterococcus

faecalis V583 ???? †, 77(7), 2406–2413.

Nishie, M., Nagao, J.-I., & Sonomoto, K. (2012). Antibacterial peptides “bacteriocins”: an overview of

their diverse characteristics and applications. Biocontrol Science, 17(1), 1–16. Retrieved from

Tanaka, K., Watabe, T., Kato, K., Tsukimi, T., Sato, M. P., & Odamaki, T. (2019). crossm Draft Genome

Sequences of Enterococcus faecalis Strains, (October), 17–19.

Zi, P., Gnat, S., & Nowakiewicz, A. (2017). Characterization of Multidrug Resistant E . faecalis Strains

from Pigs of Local Origin by ADSRRS-Fingerprinting and MALDI -TOF MS ; Evaluation of the

Compatibility of Methods Employed for Multidrug Resistance Analysis, 1–19.

Zommiti, M., Cambronel, M., Maillot, O., & Barreau, M. (2018). Evaluation of Probiotic Properties and

Safety of Enterococcus faecium Isolated From Artisanal Tunisian Meat “ Dried Ossban ,” 9(August), 1–