Efficiency of Nanofertilizers in plant ( Review)
Efficiency of Nanofertilizers in plant
DOI:
https://doi.org/10.32792/jeps.v15i3.605Keywords:
Nanofertilizers, Chemical fertilizers, Nanotechnology, NanonutrientsAbstract
Nanofertilizers are a modern technology that improves the quality of agricultural production, increases and supports it biologically, and supports its environmental safety and financial stability, to overcome the obstacles of traditional agriculture, nanotechnology is considered a solution. Nanofertilizers are essential to reduce the damaging environmental effects resulting from Chemical fertilizers used. Nanofertilizers can penetrate the epidermis and are more reactive, allowing for controlled release, thus reducing nutrient excess, enhancing nutrient utilization efficiency, and increasing targeted distribution. Nanofertilizers it is used to increase soil fertility, increase plant efficiency in absorbing nutrients, increasing the efficiency of nutrients. To overcome the negative effects of traditional chemical fertilizers, nanofertilizers(NFs) are used as they are an excellent alternative. The effectiveness of NFs in terms of environmental sustainability has been proven on bulk chemical fertilizers as well as increasing crop productivity as it provides intelligent delivery of nutrients to plants. Depending on the properties of NFs and their application methods, plants can absorb it through the roots or leaves of trees. NFs reduce production costs, and environmental environmental impacts harmful, and enhance the plant’s ability to withstand biotic and abiotic stress. However, the overuse of NFs is a source of concern in various plants due to the addition of excessive doses, due to the Phytotoxicity as it may harm plant environment and growth. The main difficulties facing NFs manufacturers are non-toxicity, cost, recycling, and the ability to recover them after use and decompose them biologically
References
Aguilar-Pérez, K. M., Avilés-Castrillo, J. I., & Ruiz-Pulido, G. (2020). Nano-sorbent materials for pharmaceutical- based
wastewater effluents-An overview. Case Studies in Chemical and Environmental Engineering, 2, 100028.
Bilal, M., Barceló, D., & Iqbal, H. M. (2021). Occurrence, environmental fate, ecological issues, and redefining of endocrine
disruptive estrogens in water resources. Science of the Total Environment, 800, 149635.
Qamar, M. A., Shahid, S., Javed, M., Sher, M., Iqbal, S., Bahadur, A., & Li, D. (2021). Fabricated novel g-C3N4/Mn doped
ZnO nanocomposite as highly active photocatalyst for the disinfection of pathogens and degradation of the organic
pollutants from wastewater under sunlight radiations. Colloids and Surfaces A: Physicochemical and Engineering
Aspects, 611, 125863.
Vakhrouchev, A. V., & Golubchikov, V. B. (2007, March). Numerical investigation of the dynamics of nanoparticle systems
in biological processes of plant nutrition. In Journal of physics: Conference series (Vol. 61, No. 1, p. 31). IOP Publishing.
Meena, M. D., P. K. Joshi, H . S. Jat, A. R. Chinchmalatpure, B. Narjary, P. Sheoran, D. K. Sharma (2016) Changes in
biological and chemical properties of saline soil amended with municipal solid waste compost and chemical fertilizers in a
mustard–pearl millet cropping system. CATENA, 140, 1-8.
Chaudhary, S., G.S. Dheri, B.S. Brar (2017) Long-term effects of NPK fertilizersand organic manures on carbon
stabilization and management index under rice-wheat cropping system. Soil and Tillage Research, 166, 59-66.
Adhikari, T. A. P. A. N., & Ramana, S. I. V. A. K. O. T. I. (2019). Nano Fertilizer: Its impact on crop growth and soil
health. J. Res. Pjtsau, 47, 1-70.
Chugh, D., Viswamalya, V. S., & Das, B. (2021). Green synthesis of silver nanoparticles with algae and the importance
of capping agents in the process. Journal of Genetic Engineering and Biotechnology, 19(1), 1-21.
Chhipa, H. (2017). Nanofertilizers and nanopesticides for agriculture. Environmental chemistry letters, 15, 15-22.
Singh, S. K., Patra, A., Verma, Y., Chattopadhyay, A., Rakshit, A., & Kumar, S. (2021). Potential and risk of
nanotechnology application in agriculture vis-à-vis nanomicronutrient fertilizers. Soil Science: Fundamentals to Recent
Advances, 513-552.
Bacon, J. (2014). Third day is the charm, Toledo can drink its water. USA Today.
Aftab, A., Aziz, R., Ghaffar, A., Rafiq, M. T., Feng, Y., Saqib, Z., ... & Awan, M. A. (2023). Occurrence, source
identification and ecological risk assessment of heavy metals in water and sediments of Uchalli lake–Ramsar site,
Pakistan. Environmental Pollution, 334, 122117.
Singh, B. P., Kumar, V., Chander, M., Reddy, M. B., Singh, M., Suman, R. S., & Yadav, V. (2023). Impact of Soil
Health Card Scheme on Soil Fertility and Crop Production Among the Adopted Farmers. Indian Journal of Extension
Education, 59(1), 122-126.
Babu, S., Singh, R., Yadav, D., Rathore, S. S., Raj, R., Avasthe, R., ... & Singh, V. K. (2022). Nanofertilizers for
agricultural and environmental sustainability. Chemosphere, 292, 133451.
Raliya, R., Saharan, V., Dimkpa, C., & Biswas, P. (2017). Nanofertilizer for precision and sustainable agriculture:
current state and future perspectives. Journal of agricultural and food chemistry, 66(26), 6487-6503.
Okey‐Onyesolu, C. F., Hassanisaadi, M., Bilal, M., Barani, M., Rahdar, A., Iqbal, J., & Kyzas, G. Z. (2021).
Nanomaterials as nanofertilizers and nanopesticides: An overview. ChemistrySelect, 6(33), 8645-8663.
Shang, Y., Hasan, M. K., Ahammed, G. J., Li, M., Yin, H., & Zhou, J. (2019). Applications of nanotechnology in plant
growth and crop protection: a review. Molecules, 24(14), 2558.
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., ... & Battaglia, M. L. (2021). Drought
stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259.
Hussain, N., Bilal, M., & Iqbal, H. M. (2022). Carbon-based nanomaterials with multipurpose attributes for water
treatment: Greening the 21st-century nanostructure materials deployment. Biomaterials and Polymers Horizon, 1(1),
-58.
Siddiqi, K. S., & Husen, A. (2017). Plant response to engineered metal oxide nanoparticles. Nanoscale research
letters, 12, 1-18.
Union, A. (2019). Corruption perceptions index 2018. Google Scholar Copyright holder.
Anstalt, S. V. (2013). Food and agriculture organization of the United Nations.
Ditta, A., Arshad, M., & Ibrahim, M. (2015). Nanoparticles in sustainable agricultural crop production: applications
and perspectives. Nanotechnology and plant sciences: nanoparticles and their impact on plants, 55-75.
Aziz, T., Rahmatullah, M. A., Maqsood, M. A., Tahir, I. A., & Cheema, M. A. (2006). Phosphorus utilization by six
Brassica cultivars (Brassica juncea L.) from tri-calcium phosphate; a relatively insoluble P compound. Pakistan
Journal of Botany, 38(5), 1529-1538.
Subramanian, K. S., Manikandan, A., Thirunavukkarasu, M., & Rahale, C. S. (2015). Nano-fertilizers for balanced
crop nutrition. Nanotechnologies in food and agriculture, 69-80.
Davarpanah, S., Tehranifar, A., Davarynejad, G., Abadía, J., & Khorasani, R. (2016). Effects of foliar applications of
zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Scientia
horticulturae, 210, 57-64.
Mikhak, A., Sohrabi, A., Kassaee, M. Z., & Feizian, M. (2017). Synthetic nanozeolite/nanohydroxyapatite as a
phosphorus fertilizer for German chamomile (Matricariachamomilla L.). Industrial crops and products, 95, 444-452.
Mani, P. K., & Mondal, S. (2016). Agri-nanotechniques for plant availability of nutrients. Plant nanotechnology:
principles and practices, 263-303.
Guru, T., Veronica, N., Thatikunta, R., & Reddy, S. N. (2015). Crop nutrition management with nano fertilizers. Int.
J. Environ. Sci. Technol, 1(1), 4-6.
El-Ghamry, A., Mosa, A. A., Alshaal, T., & El-Ramady, H. (2018). Nanofertilizers vs. biofertilizers: new
insights. Environment, Biodiversity and Soil Security, 2(2018), 51-72.
Wang, P., Lombi, E., Zhao, F. J., & Kopittke, P. M. (2016). Nanotechnology: a new opportunity in plant
sciences. Trends in plant science, 21(8), 699-712.
Fraceto, L. F., Grillo, R., de Medeiros, G. A., Scognamiglio, V., Rea, G., & Bartolucci, C. (2016). Nanotechnology in
agriculture: which innovation potential does it have?. Frontiers in Environmental Science, 4, 20.
Suleiman, M. F., Almutairi, K. F., Alotaibi, M., Shami, A., Alhammad, B. A., & Battaglia, M. L. (2020a). Nano-
fertilization as an emerging fertilization technique: Why can modern agriculture benefit from its use?. Plants, 10(1), 2.
Mehnaz, S. (2014). Azospirillum: a biofertilizer for every crop. In Plant microbes symbiosis: Applied facets (pp. 297-
. New Delhi: Springer India.
Wiesner, M. R., Lowry, G. V., Jones, K. L., Hochella, Jr, M. F., Di Giulio, R. T., Casman, E., & Bernhardt, E. S.
(2009). Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of
nanomaterials.
Lough, T. J., & Lucas, W. J. (2006). Integrative plant biology: role of phloem long-distance macromolecular
trafficking. Annu. Rev. Plant Biol., 57, 203-232.
Siddiqui, M. H., Al-Whaibi, M. H., Firoz, M., & Al-Khaishany, M. Y. (2015). Role of nanoparticles in
plants. Nanotechnology and plant sciences: nanoparticles and their impact on plants, 19-35.
Dimkpa, C. O., & Bindraban, P. S. (2016). Fortification of micronutrients for efficient agronomic production: a
review. Agronomy for Sustainable Development, 36(1), 7.
Chhipa, H., & Joshi, P. (2016). Nanofertilisers, nanopesticides and nanosensors in agriculture. Nanosci Food Agric 1:
–282.
Jampílek, J., & Kráľová, K. (2015). Application of nanotechnology in agriculture and food industry, its prospects and
risks. Ecological Chemistry and Engineering S, 22(3), 321-361.
Rather, A. M., Narayan, S., Hussain, K., Khan, F. A., Mir, S. A., Malik, A. A., & Bhat, J. I. (2022). Influence of
nitrogen, copper and zinc nanofertilizers on growth characteristics of chilli (Capsicum annuum var. annuum
L.). Pharm. Innov. J., 11, 946-949.
Prasad, R., Bhattacharyya, A., & Nguyen, Q. D. (2017). Nanotechnology in sustainable agriculture: recent
developments, challenges, and perspectives. Frontiers in microbiology, 8, 1014.
Kerry, R. G., Gouda, S., Das, G., Vishnuprasad, C. N., & Patra, J. K. (2017). Agricultural nanotechnologies: Current
applications and future prospects. Microbial Biotechnology: Volume 1. Applications in Agriculture and Environment,
-28.
Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S. A., ur Rehman, H., ... & Sanaullah, M. (2020).
Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of the Total
Environment, 721, 137778.
Singh, M. D., & Kumar, B. (2017). Bio efficacy of nano zinc sulphide (ZnS) on growth and yield of sunflower
(Helianthus annuus L.) and nutrient status in the soil. Int. J. Agric. Sci, 9, 0975-3710.
DeRosa, M. C., Monreal, C., Schnitzer, M., Walsh, R., & Sultan, Y. (2010). Nanotechnology in fertilizers. Nature
nanotechnology, 5(2), 91-91.
Adeyemi, O., Keshavarz-Afshar, R., Jahanzad, E., Battaglia, M. L., Luo, Y., & Sadeghpour, A. (2020). Effect of wheat
cover crop and split nitrogen application on corn yield and nitrogen use efficiency. Agronomy, 10(8), 1081.
Li, S. X., WANG, Z. H., MIAO, Y. F., & Li, S. Q. (2014). Soil organic nitrogen and its contribution to crop
production. Journal of Integrative Agriculture, 13(10), 2061-2080.
Eid, M. A., Abdel-Salam, A. A., Salem, H. M., Mahrous, S. E., Seleiman, M. F., Alsadon, A. A., ... & Ibrahim, A. A.
(2020). Interaction effects of nitrogen source and irrigation regime on tuber quality, yield, and water Use efficiency of
Solanum tuberosum L. Plants, 9(1), 110.
Tariq, M., Khan, F., Shah, A. H., Fahad, S., Wahid, F., Ali, J., ... & Danish, S. (2020). Effect of micronutrients foliar
supplementation on the production and eminence of plum (Prunus domestica L.). Quality Assurance and Safety of
Crops & Foods, 12(SP1), 32-40.
Qureshi, A., Singh, D. K., & Dwivedi, S. (2018). Nano-fertilizers: a novel way for enhancing nutrient use efficiency
and crop productivity. Int. J. Curr. Microbiol. App. Sci, 7(2), 3325-3335.
Kahrl, F., Li, Y., Su, Y., Tennigkeit, T., Wilkes, A., & Xu, J. (2010). Greenhouse gas emissions from nitrogen fertilizer
use in China. Environmental science & policy, 13(8), 688-694.
Zahra, Z., Arshad, M., Rafique, R., Mahmood, A., Habib, A., Qazi, I. A., & Khan, S. A. (2015). Metallic nanoparticle
(TiO2 and Fe3O4) application modifies rhizosphere phosphorus availability and uptake by Lactuca sativa. Journal of
agricultural and food chemistry, 63(31), 6876-6882.
Pitambara, Archana, & Shukla, Y. M. (2019). Nanofertilizers: A recent approach in crop production. Nanotechnology
for agriculture: crop production & protection, 25-58.
Liscano, J. F., Wilson, C. E., Norman-Jr, R. J., & Slaton, N. A. (2000). Zinc availability to rice from seven granular
fertilizers (Vol. 963). Fayetteville, CA, USA: Arkansas Agricultural Experiment Station.
Seleiman, M. F., Almutairi, K. F., Alotaibi, M., Shami, A., Alhammad, B. A., & Battaglia, M. L. (2020). Nano-
fertilization as an emerging fertilization technique: Why can modern agriculture benefit from its use?. Plants, 10(1), 2.
Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., Nehra, K., & Duhan, S. (2017). Nanotechnology: The new perspective
in precision agriculture. Biotechnology Reports, 15, 11-23.
Hafeez, A., Razzaq, A., Mahmood, T., & Jhanzab, H. M. (2015). Potential of copper nanoparticles to increase growth
and yield of wheat. J Nanosci Adv Technol, 1(1), 6-11.
Toksha, B., Sonawale, V. A. M., Vanarase, A., Bornare, D., Tonde, S., Hazra, C., ... & Chatterjee, A. (2021).
Nanofertilizers: A review on synthesis and impact of their use on crop yield and environment. Environmental
Technology & Innovation, 24, 101986.
Devi, O. R., Ojha, N., Laishram, B., Dutta, S., & Kalita, P. (2023). Roles of Nano-Fertilizers in Sustainable Agriculture
and Biosafety. Environment and Ecology, 41(1B), 457-463.
Schwab, F., Zhai, G., Kern, M., Turner, A., Schnoor, J. L., & Wiesner, M. R. (2016). Barriers, pathways and processes
for uptake, translocation and accumulation of nanomaterials in plants–Critical review. Nanotoxicology, 10(3), 257-278.
Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A. J., ... & Sigg, L. (2008). Environmental behavior
and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17, 372-386.
Abobatta, W. (2018). Impact of hydrogel polymer in agricultural sector. Adv. Agric. Environ. Sci. Open Access, 1(2),
-64.
Manjunatha, S. B., Biradar, D. P., & Aladakatti, Y. R. (2016). Nanotechnology and its applications in agriculture: A
review. J farm Sci, 29(1), 1-13.
Corredor, E., Testillano, P. S., Coronado, M. J., González-Melendi, P., Fernández-Pacheco, R., Marquina, C., ... &
Risueño, M. C. (2009). Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular
identification. BMC plant biology, 9, 1-11.
Pollard, M., Beisson, F., Li, Y., & Ohlrogge, J. B. (2008). Building lipid barriers: biosynthesis of cutin and
suberin. Trends in plant science, 13(5), 236-246.
Eichert, T., Kurtz, A., Steiner, U., & Goldbach, H. E. (2008). Size exclusion limits and lateral heterogeneity of the
stomatal foliar uptake pathway for aqueous solutes and water‐suspended nanoparticles. Physiologia
plantarum, 134(1), 151-160.
Lv, J., Christie, P., & Zhang, S. (2019). Uptake, translocation, and transformation of metal-based nanoparticles in
plants: recent advances and methodological challenges. Environmental Science: Nano, 6(1), 41-59.
Larue, C., Laurette, J., Herlin-Boime, N., Khodja, H., Fayard, B., Flank, A. M., ... & Carriere, M. (2012).
Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter
and crystal phase. Science of the total environment, 431, 197-208.
Sohair, E. E., Abdall, A. A., Amany, A. M., & Houda, R. A. (2018). Effect of nitrogen, phosphorus and potassium
nano fertilizers with different application times, methods and rates on some growth parameters of Egyptian cotton
(Gossypium barbadense L.). Bioscience Research, 15(2), 549-564.
Wang, W. N., Tarafdar, J. C., & Biswas, P. (2013). Nanoparticle synthesis and delivery by an aerosol route for
watermelon plant foliar uptake. Journal of nanoparticle research, 15, 1-13.
Rameshaiah, G. N., Pallavi, J., & Shabnam, S. (2015). Nano fertilizers and nano sensors–an attempt for developing
smart agriculture. Int J Eng Res Gen Sci, 3(1), 314-320.
Behzadi, S., Serpooshan, V., Tao, W., Hamaly, M. A., Alkawareek, M. Y., Dreaden, E. C., ... & Mahmoudi, M. (2017).
Cellular uptake of nanoparticles: journey inside the cell. Chemical society reviews, 46(14), 4218-4244.
Auría-Soro, C., Nesma, T., Juanes-Velasco, P., Landeira-Viñuela, A., Fidalgo-Gomez, H., Acebes-Fernandez, V., ...
& Fuentes, M. (2019). Interactions of nanoparticles and biosystems: microenvironment of nanoparticles and
biomolecules in nanomedicine. Nanomaterials, 9(10), 1365.
Foroozandeh, P., & Aziz, A. A. (2018). Insight into cellular uptake and intracellular trafficking of
nanoparticles. Nanoscale research letters, 13, 1-12.
Li, J. H., Au, B., Rentsch, J., Block, S., & Ewers, H. (2020). Directed manipulation of membrane proteins by
fluorescent magnetic nanoparticles. Biophysical Journal, 118(3), 313a.
Pérez-de-Luque, A. (2017). Interaction of nanomaterials with plants: what do we need for real applications in
agriculture?. Frontiers in Environmental Science, 5, 12.
Khalkhal, K., Asgari Lajayer, B., & Ghorbanpour, M. (2020). An overview on the effect of soil physicochemical
properties on the immobilization of biogenic nanoparticles. Biogenic Nano-Particles and their Use in Agro-
ecosystems, 133-160.
Nawaz, H. R., Solangi, B. A., Zehra, B., & Nadeem, U. (2011). Preparation of nano zinc oxide and its application in
leather as a retanning and antibacterial agent. Canadian Journal on Scientific and Industrial Research, 2(4), 164-170.
Ismail, M., Prasad, R., Ibrahim, A. I., & Ahmed, A. I. (2017). Modern prospects of nanotechnology in plant
pathology. Nanotechnology: An Agricultural Paradigm, 305-317.
Bley, H., Gianello, C., Santos, L. D. S., & Selau, L. P. R. (2017). Nutrient release, plant nutrition, and potassium
leaching from polymer-coated fertilizer. Revista Brasileira de Ciência do Solo, 41.
Naz, M. Y., & Sulaiman, S. A. (2016). Slow release coating remedy for nitrogen loss from conventional urea: a
review. Journal of Controlled Release, 225, 109-120.
Omanović-Mikličanina, E., & Maksimović, M. (2016). Nanosensors applications in agriculture and food industry. Bull
Chem Technol Bosnia Herzegovina, 47, 59-70.
Chen, H., & Yada, R. (2011). Nanotechnologies in agriculture: new tools for sustainable development. Trends in Food
Science & Technology, 22(11), 585-594.
Ditta, A., & Arshad, M. (2016). Applications and perspectives of using nanomaterials for sustainable plant
nutrition. Nanotechnology Reviews, 5(2), 209-229.
Khan, M. R., & Rizvi, T. F. (2017). Application of nanofertilizer and nanopesticides for improvements in crop
production and protection. Nanoscience and plant–soil systems, 405-427.
Tassi, E., Giorgetti, L., Morelli, E., Peralta-Videa, J. R., Gardea-Torresdey, J. L., & Barbafieri, M. (2017).
Physiological and biochemical responses of sunflower (Helianthus annuus L.) exposed to nano-CeO2 and excess
boron: modulation of boron phytotoxicity. Plant physiology and biochemistry, 110, 50-58.
Tripathi, D. K., Singh, S., Singh, S., Pandey, R., Singh, V. P., Sharma, N. C., ... & Chauhan, D. K. (2017b). An
overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant
physiology and biochemistry, 110, 2-12.
Shukla, P. K., Misra, P., & Kole, C. (2016). Uptake, translocation, accumulation, transformation, and generational
transmission of nanoparticles in plants. Plant Nanotechnology: Principles and Practices, 183-218.
Reddy, P. V. L., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2016). Lessons learned:
are engineered nanomaterials toxic to terrestrial plants?. Science of the Total Environment, 568, 470-479
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Journal of Education for Pure Science

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The Authors understand that, the copyright of the articles shall be assigned to Journal of education for Pure Science (JEPS), University of Thi-Qar as publisher of the journal.
Copyright encompasses exclusive rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms and any other similar reproductions, as well as translations. The reproduction of any part of this journal, its storage in databases and its transmission by any form or media, such as electronic, electrostatic and mechanical copies, photocopies, recordings, magnetic media, etc. , will be allowed only with a written permission from Journal of education for Pure Science (JEPS), University of Thi-Qar.
Journal of education for Pure Science (JEPS), University of Thi-Qar, the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Journal of education for Pure Science (JEPS), University of Thi-Qar are sole and exclusive responsibility of their respective authors and advertisers.