Efficiency of Nanofertilizers in plant ( Review)

Efficiency of Nanofertilizers in plant

Authors

  • Bihar M. Al-Ani1 وزارة التربية / المديرية العامة لتربية الانبار
  • Dr. Bihar جامعة الانبار - كلية العلوم- قسم التقنيات الاحيائية

DOI:

https://doi.org/10.32792/jeps.v15i3.605

Keywords:

Nanofertilizers, Chemical fertilizers, Nanotechnology, Nanonutrients

Abstract

      Nanofertilizers are a modern technology that improves the quality of agricultural production, increases and supports it biologically, and supports its environmental safety and financial stability, to overcome the obstacles of traditional agriculture, nanotechnology is considered a solution. Nanofertilizers are essential to reduce the damaging environmental effects resulting from Chemical fertilizers used. Nanofertilizers can penetrate the epidermis and are more reactive, allowing for controlled release, thus reducing nutrient excess, enhancing nutrient utilization efficiency, and increasing targeted distribution. Nanofertilizers it is used to increase soil fertility, increase plant efficiency in absorbing nutrients, increasing the efficiency of nutrients. To overcome the negative effects of traditional chemical fertilizers, nanofertilizers(NFs) are used as they are an excellent alternative. The effectiveness of NFs in terms of environmental sustainability has been proven on bulk chemical fertilizers as well as increasing crop productivity as it provides intelligent delivery of nutrients to plants. Depending on the properties of NFs and their application methods, plants can absorb it through the roots or leaves of trees. NFs reduce production costs, and environmental environmental impacts harmful, and enhance the plant’s ability to withstand biotic and abiotic stress. However, the overuse of NFs is a source of concern in various plants due to the addition of excessive doses, due to the Phytotoxicity as it may harm plant environment and growth. The main difficulties facing NFs manufacturers are non-toxicity, cost, recycling, and the ability to recover them after use and decompose them biologically

References

Aguilar-Pérez, K. M., Avilés-Castrillo, J. I., & Ruiz-Pulido, G. (2020). Nano-sorbent materials for pharmaceutical- based

wastewater effluents-An overview. Case Studies in Chemical and Environmental Engineering, 2, 100028.‏

Bilal, M., Barceló, D., & Iqbal, H. M. (2021). Occurrence, environmental fate, ecological issues, and redefining of endocrine

disruptive estrogens in water resources. Science of the Total Environment, 800, 149635.

Qamar, M. A., Shahid, S., Javed, M., Sher, M., Iqbal, S., Bahadur, A., & Li, D. (2021). Fabricated novel g-C3N4/Mn doped

ZnO nanocomposite as highly active photocatalyst for the disinfection of pathogens and degradation of the organic

pollutants from wastewater under sunlight radiations. Colloids and Surfaces A: Physicochemical and Engineering

Aspects, 611, 125863.‏

Vakhrouchev, A. V., & Golubchikov, V. B. (2007, March). Numerical investigation of the dynamics of nanoparticle systems

in biological processes of plant nutrition. In Journal of physics: Conference series (Vol. 61, No. 1, p. 31). IOP Publishing.‏

Meena, M. D., P. K. Joshi, H . S. Jat, A. R. Chinchmalatpure, B. Narjary, P. Sheoran, D. K. Sharma (2016) Changes in

biological and chemical properties of saline soil amended with municipal solid waste compost and chemical fertilizers in a

mustard–pearl millet cropping system. CATENA, 140, 1-8.

Chaudhary, S., G.S. Dheri, B.S. Brar (2017) Long-term effects of NPK fertilizersand organic manures on carbon

stabilization and management index under rice-wheat cropping system. Soil and Tillage Research, 166, 59-66.

Adhikari, T. A. P. A. N., & Ramana, S. I. V. A. K. O. T. I. (2019). Nano Fertilizer: Its impact on crop growth and soil

health. J. Res. Pjtsau, 47, 1-70.‏

Chugh, D., Viswamalya, V. S., & Das, B. (2021). Green synthesis of silver nanoparticles with algae and the importance

of capping agents in the process. Journal of Genetic Engineering and Biotechnology, 19(1), 1-21.‏

Chhipa, H. (2017). Nanofertilizers and nanopesticides for agriculture. Environmental chemistry letters, 15, 15-22.‏

Singh, S. K., Patra, A., Verma, Y., Chattopadhyay, A., Rakshit, A., & Kumar, S. (2021). Potential and risk of

nanotechnology application in agriculture vis-à-vis nanomicronutrient fertilizers. Soil Science: Fundamentals to Recent

Advances, 513-552.‏

Bacon, J. (2014). Third day is the charm, Toledo can drink its water. USA Today.‏

Aftab, A., Aziz, R., Ghaffar, A., Rafiq, M. T., Feng, Y., Saqib, Z., ... & Awan, M. A. (2023). Occurrence, source

identification and ecological risk assessment of heavy metals in water and sediments of Uchalli lake–Ramsar site,

Pakistan. Environmental Pollution, 334, 122117.‏

Singh, B. P., Kumar, V., Chander, M., Reddy, M. B., Singh, M., Suman, R. S., & Yadav, V. (2023). Impact of Soil

Health Card Scheme on Soil Fertility and Crop Production Among the Adopted Farmers. Indian Journal of Extension

Education, 59(1), 122-126.‏

Babu, S., Singh, R., Yadav, D., Rathore, S. S., Raj, R., Avasthe, R., ... & Singh, V. K. (2022). Nanofertilizers for

agricultural and environmental sustainability. Chemosphere, 292, 133451.‏

Raliya, R., Saharan, V., Dimkpa, C., & Biswas, P. (2017). Nanofertilizer for precision and sustainable agriculture:

current state and future perspectives. Journal of agricultural and food chemistry, 66(26), 6487-6503.‏

Okey‐Onyesolu, C. F., Hassanisaadi, M., Bilal, M., Barani, M., Rahdar, A., Iqbal, J., & Kyzas, G. Z. (2021).

Nanomaterials as nanofertilizers and nanopesticides: An overview. ChemistrySelect, 6(33), 8645-8663.‏

Shang, Y., Hasan, M. K., Ahammed, G. J., Li, M., Yin, H., & Zhou, J. (2019). Applications of nanotechnology in plant

growth and crop protection: a review. Molecules, 24(14), 2558.‏

Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., ... & Battaglia, M. L. (2021). Drought

stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259.‏

Hussain, N., Bilal, M., & Iqbal, H. M. (2022). Carbon-based nanomaterials with multipurpose attributes for water

treatment: Greening the 21st-century nanostructure materials deployment. Biomaterials and Polymers Horizon, 1(1),

-58.‏

Siddiqi, K. S., & Husen, A. (2017). Plant response to engineered metal oxide nanoparticles. Nanoscale research

letters, 12, 1-18.‏

Union, A. (2019). Corruption perceptions index 2018. Google Scholar Copyright holder.‏

Anstalt, S. V. (2013). Food and agriculture organization of the United Nations. ‏

Ditta, A., Arshad, M., & Ibrahim, M. (2015). Nanoparticles in sustainable agricultural crop production: applications

and perspectives. Nanotechnology and plant sciences: nanoparticles and their impact on plants, 55-75.‏

Aziz, T., Rahmatullah, M. A., Maqsood, M. A., Tahir, I. A., & Cheema, M. A. (2006). Phosphorus utilization by six

Brassica cultivars (Brassica juncea L.) from tri-calcium phosphate; a relatively insoluble P compound. Pakistan

Journal of Botany, 38(5), 1529-1538.‏

Subramanian, K. S., Manikandan, A., Thirunavukkarasu, M., & Rahale, C. S. (2015). Nano-fertilizers for balanced

crop nutrition. Nanotechnologies in food and agriculture, 69-80.‏

Davarpanah, S., Tehranifar, A., Davarynejad, G., Abadía, J., & Khorasani, R. (2016). Effects of foliar applications of

zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Scientia

horticulturae, 210, 57-64.‏

Mikhak, A., Sohrabi, A., Kassaee, M. Z., & Feizian, M. (2017). Synthetic nanozeolite/nanohydroxyapatite as a

phosphorus fertilizer for German chamomile (Matricariachamomilla L.). Industrial crops and products, 95, 444-452.‏

Mani, P. K., & Mondal, S. (2016). Agri-nanotechniques for plant availability of nutrients. Plant nanotechnology:

principles and practices, 263-303.‏

Guru, T., Veronica, N., Thatikunta, R., & Reddy, S. N. (2015). Crop nutrition management with nano fertilizers. Int.

J. Environ. Sci. Technol, 1(1), 4-6.‏

El-Ghamry, A., Mosa, A. A., Alshaal, T., & El-Ramady, H. (2018). Nanofertilizers vs. biofertilizers: new

insights. Environment, Biodiversity and Soil Security, 2(2018), 51-72.‏

Wang, P., Lombi, E., Zhao, F. J., & Kopittke, P. M. (2016). Nanotechnology: a new opportunity in plant

sciences. Trends in plant science, 21(8), 699-712.‏

Fraceto, L. F., Grillo, R., de Medeiros, G. A., Scognamiglio, V., Rea, G., & Bartolucci, C. (2016). Nanotechnology in

agriculture: which innovation potential does it have?. Frontiers in Environmental Science, 4, 20.‏

Suleiman, M. F., Almutairi, K. F., Alotaibi, M., Shami, A., Alhammad, B. A., & Battaglia, M. L. (2020a). Nano-

fertilization as an emerging fertilization technique: Why can modern agriculture benefit from its use?. Plants, 10(1), 2.‏

Mehnaz, S. (2014). Azospirillum: a biofertilizer for every crop. In Plant microbes symbiosis: Applied facets (pp. 297-

. New Delhi: Springer India.‏

Wiesner, M. R., Lowry, G. V., Jones, K. L., Hochella, Jr, M. F., Di Giulio, R. T., Casman, E., & Bernhardt, E. S.

(2009). Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of

nanomaterials.‏

Lough, T. J., & Lucas, W. J. (2006). Integrative plant biology: role of phloem long-distance macromolecular

trafficking. Annu. Rev. Plant Biol., 57, 203-232.‏

Siddiqui, M. H., Al-Whaibi, M. H., Firoz, M., & Al-Khaishany, M. Y. (2015). Role of nanoparticles in

plants. Nanotechnology and plant sciences: nanoparticles and their impact on plants, 19-35.‏

Dimkpa, C. O., & Bindraban, P. S. (2016). Fortification of micronutrients for efficient agronomic production: a

review. Agronomy for Sustainable Development, 36(1), 7.‏

Chhipa, H., & Joshi, P. (2016). Nanofertilisers, nanopesticides and nanosensors in agriculture. Nanosci Food Agric 1:

–282.‏

Jampílek, J., & Kráľová, K. (2015). Application of nanotechnology in agriculture and food industry, its prospects and

risks. Ecological Chemistry and Engineering S, 22(3), 321-361.‏

Rather, A. M., Narayan, S., Hussain, K., Khan, F. A., Mir, S. A., Malik, A. A., & Bhat, J. I. (2022). Influence of

nitrogen, copper and zinc nanofertilizers on growth characteristics of chilli (Capsicum annuum var. annuum

L.). Pharm. Innov. J., 11, 946-949.‏

Prasad, R., Bhattacharyya, A., & Nguyen, Q. D. (2017). Nanotechnology in sustainable agriculture: recent

developments, challenges, and perspectives. Frontiers in microbiology, 8, 1014.‏

Kerry, R. G., Gouda, S., Das, G., Vishnuprasad, C. N., & Patra, J. K. (2017). Agricultural nanotechnologies: Current

applications and future prospects. Microbial Biotechnology: Volume 1. Applications in Agriculture and Environment,

-28.‏

Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S. A., ur Rehman, H., ... & Sanaullah, M. (2020).

Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of the Total

Environment, 721, 137778.‏

Singh, M. D., & Kumar, B. (2017). Bio efficacy of nano zinc sulphide (ZnS) on growth and yield of sunflower

(Helianthus annuus L.) and nutrient status in the soil. Int. J. Agric. Sci, 9, 0975-3710.‏

DeRosa, M. C., Monreal, C., Schnitzer, M., Walsh, R., & Sultan, Y. (2010). Nanotechnology in fertilizers. Nature

nanotechnology, 5(2), 91-91.‏

Adeyemi, O., Keshavarz-Afshar, R., Jahanzad, E., Battaglia, M. L., Luo, Y., & Sadeghpour, A. (2020). Effect of wheat

cover crop and split nitrogen application on corn yield and nitrogen use efficiency. Agronomy, 10(8), 1081.‏

Li, S. X., WANG, Z. H., MIAO, Y. F., & Li, S. Q. (2014). Soil organic nitrogen and its contribution to crop

production. Journal of Integrative Agriculture, 13(10), 2061-2080.‏

Eid, M. A., Abdel-Salam, A. A., Salem, H. M., Mahrous, S. E., Seleiman, M. F., Alsadon, A. A., ... & Ibrahim, A. A.

(2020). Interaction effects of nitrogen source and irrigation regime on tuber quality, yield, and water Use efficiency of

Solanum tuberosum L. Plants, 9(1), 110.‏

Tariq, M., Khan, F., Shah, A. H., Fahad, S., Wahid, F., Ali, J., ... & Danish, S. (2020). Effect of micronutrients foliar

supplementation on the production and eminence of plum (Prunus domestica L.). Quality Assurance and Safety of

Crops & Foods, 12(SP1), 32-40.‏

Qureshi, A., Singh, D. K., & Dwivedi, S. (2018). Nano-fertilizers: a novel way for enhancing nutrient use efficiency

and crop productivity. Int. J. Curr. Microbiol. App. Sci, 7(2), 3325-3335.‏

Kahrl, F., Li, Y., Su, Y., Tennigkeit, T., Wilkes, A., & Xu, J. (2010). Greenhouse gas emissions from nitrogen fertilizer

use in China. Environmental science & policy, 13(8), 688-694.‏

Zahra, Z., Arshad, M., Rafique, R., Mahmood, A., Habib, A., Qazi, I. A., & Khan, S. A. (2015). Metallic nanoparticle

(TiO2 and Fe3O4) application modifies rhizosphere phosphorus availability and uptake by Lactuca sativa. Journal of

agricultural and food chemistry, 63(31), 6876-6882.‏

Pitambara, Archana, & Shukla, Y. M. (2019). Nanofertilizers: A recent approach in crop production. Nanotechnology

for agriculture: crop production & protection, 25-58.‏

Liscano, J. F., Wilson, C. E., Norman-Jr, R. J., & Slaton, N. A. (2000). Zinc availability to rice from seven granular

fertilizers (Vol. 963). Fayetteville, CA, USA: Arkansas Agricultural Experiment Station.‏

Seleiman, M. F., Almutairi, K. F., Alotaibi, M., Shami, A., Alhammad, B. A., & Battaglia, M. L. (2020). Nano-

fertilization as an emerging fertilization technique: Why can modern agriculture benefit from its use?. Plants, 10(1), 2.

Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., Nehra, K., & Duhan, S. (2017). Nanotechnology: The new perspective

in precision agriculture. Biotechnology Reports, 15, 11-23.‏

Hafeez, A., Razzaq, A., Mahmood, T., & Jhanzab, H. M. (2015). Potential of copper nanoparticles to increase growth

and yield of wheat. J Nanosci Adv Technol, 1(1), 6-11.‏

Toksha, B., Sonawale, V. A. M., Vanarase, A., Bornare, D., Tonde, S., Hazra, C., ... & Chatterjee, A. (2021).

Nanofertilizers: A review on synthesis and impact of their use on crop yield and environment. Environmental

Technology & Innovation, 24, 101986.‏

Devi, O. R., Ojha, N., Laishram, B., Dutta, S., & Kalita, P. (2023). Roles of Nano-Fertilizers in Sustainable Agriculture

and Biosafety. Environment and Ecology, 41(1B), 457-463.

Schwab, F., Zhai, G., Kern, M., Turner, A., Schnoor, J. L., & Wiesner, M. R. (2016). Barriers, pathways and processes

for uptake, translocation and accumulation of nanomaterials in plants–Critical review. Nanotoxicology, 10(3), 257-278.

Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A. J., ... & Sigg, L. (2008). Environmental behavior

and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17, 372-386.‏

Abobatta, W. (2018). Impact of hydrogel polymer in agricultural sector. Adv. Agric. Environ. Sci. Open Access, 1(2),

-64.‏

Manjunatha, S. B., Biradar, D. P., & Aladakatti, Y. R. (2016). Nanotechnology and its applications in agriculture: A

review. J farm Sci, 29(1), 1-13.‏

Corredor, E., Testillano, P. S., Coronado, M. J., González-Melendi, P., Fernández-Pacheco, R., Marquina, C., ... &

Risueño, M. C. (2009). Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular

identification. BMC plant biology, 9, 1-11.‏

Pollard, M., Beisson, F., Li, Y., & Ohlrogge, J. B. (2008). Building lipid barriers: biosynthesis of cutin and

suberin. Trends in plant science, 13(5), 236-246.‏

Eichert, T., Kurtz, A., Steiner, U., & Goldbach, H. E. (2008). Size exclusion limits and lateral heterogeneity of the

stomatal foliar uptake pathway for aqueous solutes and water‐suspended nanoparticles. Physiologia

plantarum, 134(1), 151-160.‏

Lv, J., Christie, P., & Zhang, S. (2019). Uptake, translocation, and transformation of metal-based nanoparticles in

plants: recent advances and methodological challenges. Environmental Science: Nano, 6(1), 41-59.‏

Larue, C., Laurette, J., Herlin-Boime, N., Khodja, H., Fayard, B., Flank, A. M., ... & Carriere, M. (2012).

Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter

and crystal phase. Science of the total environment, 431, 197-208.‏

Sohair, E. E., Abdall, A. A., Amany, A. M., & Houda, R. A. (2018). Effect of nitrogen, phosphorus and potassium

nano fertilizers with different application times, methods and rates on some growth parameters of Egyptian cotton

(Gossypium barbadense L.). Bioscience Research, 15(2), 549-564.‏

Wang, W. N., Tarafdar, J. C., & Biswas, P. (2013). Nanoparticle synthesis and delivery by an aerosol route for

watermelon plant foliar uptake. Journal of nanoparticle research, 15, 1-13.‏

Rameshaiah, G. N., Pallavi, J., & Shabnam, S. (2015). Nano fertilizers and nano sensors–an attempt for developing

smart agriculture. Int J Eng Res Gen Sci, 3(1), 314-320.‏

Behzadi, S., Serpooshan, V., Tao, W., Hamaly, M. A., Alkawareek, M. Y., Dreaden, E. C., ... & Mahmoudi, M. (2017).

Cellular uptake of nanoparticles: journey inside the cell. Chemical society reviews, 46(14), 4218-4244.‏

Auría-Soro, C., Nesma, T., Juanes-Velasco, P., Landeira-Viñuela, A., Fidalgo-Gomez, H., Acebes-Fernandez, V., ...

& Fuentes, M. (2019). Interactions of nanoparticles and biosystems: microenvironment of nanoparticles and

biomolecules in nanomedicine. Nanomaterials, 9(10), 1365.‏

Foroozandeh, P., & Aziz, A. A. (2018). Insight into cellular uptake and intracellular trafficking of

nanoparticles. Nanoscale research letters, 13, 1-12.‏

Li, J. H., Au, B., Rentsch, J., Block, S., & Ewers, H. (2020). Directed manipulation of membrane proteins by

fluorescent magnetic nanoparticles. Biophysical Journal, 118(3), 313a.‏

Pérez-de-Luque, A. (2017). Interaction of nanomaterials with plants: what do we need for real applications in

agriculture?. Frontiers in Environmental Science, 5, 12.‏

Khalkhal, K., Asgari Lajayer, B., & Ghorbanpour, M. (2020). An overview on the effect of soil physicochemical

properties on the immobilization of biogenic nanoparticles. Biogenic Nano-Particles and their Use in Agro-

ecosystems, 133-160.‏

Nawaz, H. R., Solangi, B. A., Zehra, B., & Nadeem, U. (2011). Preparation of nano zinc oxide and its application in

leather as a retanning and antibacterial agent. Canadian Journal on Scientific and Industrial Research, 2(4), 164-170.‏

Ismail, M., Prasad, R., Ibrahim, A. I., & Ahmed, A. I. (2017). Modern prospects of nanotechnology in plant

pathology. Nanotechnology: An Agricultural Paradigm, 305-317.

Bley, H., Gianello, C., Santos, L. D. S., & Selau, L. P. R. (2017). Nutrient release, plant nutrition, and potassium

leaching from polymer-coated fertilizer. Revista Brasileira de Ciência do Solo, 41.‏

Naz, M. Y., & Sulaiman, S. A. (2016). Slow release coating remedy for nitrogen loss from conventional urea: a

review. Journal of Controlled Release, 225, 109-120.‏

Omanović-Mikličanina, E., & Maksimović, M. (2016). Nanosensors applications in agriculture and food industry. Bull

Chem Technol Bosnia Herzegovina, 47, 59-70.‏

Chen, H., & Yada, R. (2011). Nanotechnologies in agriculture: new tools for sustainable development. Trends in Food

Science & Technology, 22(11), 585-594.‏

Ditta, A., & Arshad, M. (2016). Applications and perspectives of using nanomaterials for sustainable plant

nutrition. Nanotechnology Reviews, 5(2), 209-229.‏

Khan, M. R., & Rizvi, T. F. (2017). Application of nanofertilizer and nanopesticides for improvements in crop

production and protection. Nanoscience and plant–soil systems, 405-427.‏

Tassi, E., Giorgetti, L., Morelli, E., Peralta-Videa, J. R., Gardea-Torresdey, J. L., & Barbafieri, M. (2017).

Physiological and biochemical responses of sunflower (Helianthus annuus L.) exposed to nano-CeO2 and excess

boron: modulation of boron phytotoxicity. Plant physiology and biochemistry, 110, 50-58.‏

Tripathi, D. K., Singh, S., Singh, S., Pandey, R., Singh, V. P., Sharma, N. C., ... & Chauhan, D. K. (2017b). An

overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant

physiology and biochemistry, 110, 2-12.‏

Shukla, P. K., Misra, P., & Kole, C. (2016). Uptake, translocation, accumulation, transformation, and generational

transmission of nanoparticles in plants. Plant Nanotechnology: Principles and Practices, 183-218.‏

Reddy, P. V. L., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2016). Lessons learned:

are engineered nanomaterials toxic to terrestrial plants?. Science of the Total Environment, 568, 470-479

Downloads

Published

2025-09-01