Stability Analysis of the Numerical Solution of the Generalised Burgers’ Equation Using Finite Difference Methods

Authors

  • ثروى فارس تكريت

DOI:

https://doi.org/10.32792/jeps.v15i4.745

Keywords:

Generalised Fisher equation, numerical solution, explicit method, Crank-Nicholson method, convergence analysis.

Abstract

       Stability analysis of the explicit Euler, backward Euler and Crank-Nicholson finite differences methods for solving the generalised Burgers equation using Fourier (von-Neumann) method is studied. The results demonstrated that the forward Euler scheme is conditionally stable, while Crank-Nicholson and implicit schemes are unconditionally stable.

References

J. D. Logan. Applied Mathematics. John Wiley & Sons, (1987).

M. Shanthakumar. Computer Based Numerical Analysis. Khanna Publishers, (1989).

Kaper H. G. Garbey, M. and N. Romanyukha. A fast solver for systems of reaction-diffusion equations. Thirteenth International Conference on Domain Decomposition Methods, Editors: Bibliography 75 Debit, N., Garbey, M., Hoppe, R., Periaus, J., Keses, D. and Knznetsov, Y., pages 385–392, (2001).

Wany X.Y.; Z.S. Zhu and Y.K. Lu (1990) “Solitary Wave Solution of The Generalized Burgers-Huxley Equation”, Phys. A: Math. Gen. 23, PP.271- 274.

Benuey, D.J. and Chow, K., Instability of Waves on a Free Surface, Studies in Aoolied Mathematics, Vol. Lxxiv, No.3, pp. 227-243, (1986).

Shiragami, V., and Inane, I., Fully Developed and Developing Laminar Velocity Profiles in Rectangular Bend, Int of Engineering Fluid Mechanics, Vol. L.pp.100-133, (1988).

Howes, F.A. The Response of Turbulent Boundary Layer to a small Amplitude Travelling Wave, Mathematical and Computer Modelling, Vol.13, No. l. pp. 27-31, (1990).

Busse F.H., and Clever, R.M. Higher Order Bifurcations in Fluid Systems and Coherent Structures in Turbulence Nonlinear Coherent Structures in Physics and Biology, PP.405-415, (1994).

Zhaug D.S., Wei G.W., Kouri D.J.& Hoffman Q.K., Burger’s Equation with High Reynolds Number J. Phys. Fluid 9(6), pp. 1853-1855, (1997).

Fortunato, M., Kurizki, G. and Schleich W.P., Stabilization of Deterministically Chaotic Systems by Interference and Quantum Measurements the Ikeda Map Case Physical Review Letters, Vol. 80, NO.26, PP 5730-5733, (1998).

Ali-Obaidi, M.F. and Abraham, B.M. Stability Analysis and Chaos in a Bend Duct, Raf. J. Sci., Vol. 12, No. l, pp.91-99, (2001).

Leonenko. N.N. & Meluikovn, Renormalization & Homogenization of the solutions of heat equation with linear Potential and related Burger’s equation with random data Theory probe & Math. Statistics,1,27-64. (2001).

M. Sabawi. Numerical solution and stability analysis of Huxley equation. Master’s thesis, University of Mosul, Iraq, 2005.

M. Sabawi. Stability study of stationary solutions of the viscous Burgers equation. Raf. J. of Comp. & Math’s, 4(1):19–40, 2007.

S. Manaa and M. Sabawi. Numerical solution and stability analysis of Huxley equation. Raf. J. of Comp. & Math’s, 2(1):85–97, 2005.

S. Manaa and M. Sabawi. Stability analysis of steady state solutions of Huxley equation. Raf. J. of Comp. & Math’s, 2(1):69–84, 2005.

S. Manaa and M. Sabawi. Numerical solution of oscillatory reaction-diffusion system of λ - ω type. Tikrit Journal of Pure Science, 13(2):50–58, 2008.

S. Manaa, M. Sabawi, and Y. Sabawi. A numerical solution for sine-Gordon type system. Tikrit Journal of Pure Science, 15(3):106–113, 2010.

Z. Mohsen. Stability analysis and the Numerical solution of the generalised Huxley equation using finite difference methods. Master’s thesis, Tikrit University, Iraq, 2025.

Z. Mohsen and M. Sabawi. Stability analysis and the Numerical solution of the generalised Huxley equation using finite difference methods. J. Math. Prob. Equations Stat., 6(1): 124-132, 2025

Downloads

Published

2025-12-02